Working on examples...

This commit is contained in:
Ray 2017-04-08 23:31:58 +02:00
parent 5fd83708cf
commit 20d205cae5
77 changed files with 591 additions and 925 deletions

View file

@ -0,0 +1,158 @@
/*******************************************************************************************
*
* raylib [text] example - Font selector
*
* This example has been created using raylib 1.3 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [text] example - font selector");
// NOTE: Textures MUST be loaded after Window initialization (OpenGL context is required)
SpriteFont fonts[8]; // SpriteFont array
fonts[0] = LoadSpriteFont("resources/fonts/alagard.rbmf"); // SpriteFont loading
fonts[1] = LoadSpriteFont("resources/fonts/pixelplay.rbmf"); // SpriteFont loading
fonts[2] = LoadSpriteFont("resources/fonts/mecha.rbmf"); // SpriteFont loading
fonts[3] = LoadSpriteFont("resources/fonts/setback.rbmf"); // SpriteFont loading
fonts[4] = LoadSpriteFont("resources/fonts/romulus.rbmf"); // SpriteFont loading
fonts[5] = LoadSpriteFont("resources/fonts/pixantiqua.rbmf"); // SpriteFont loading
fonts[6] = LoadSpriteFont("resources/fonts/alpha_beta.rbmf"); // SpriteFont loading
fonts[7] = LoadSpriteFont("resources/fonts/jupiter_crash.rbmf"); // SpriteFont loading
int currentFont = 0; // Selected font
Color colors[8] = { MAROON, ORANGE, DARKGREEN, DARKBLUE, DARKPURPLE, LIME, GOLD, RED };
const char fontNames[8][20] = { "[0] Alagard", "[1] PixelPlay", "[2] MECHA", "[3] Setback",
"[4] Romulus", "[5] PixAntiqua", "[6] Alpha Beta", "[7] Jupiter Crash" };
const char text[50] = "THIS is THE FONT you SELECTED!"; // Main text
Vector2 textSize = MeasureTextEx(fonts[currentFont], text, fonts[currentFont].baseSize*3, 1);
Vector2 mousePoint;
Color btnNextOutColor = DARKBLUE; // Button color (outside line)
Color btnNextInColor = SKYBLUE; // Button color (inside)
int framesCounter = 0; // Useful to count frames button is 'active' = clicked
int positionY = 180; // Text selector and button Y position
Rectangle btnNextRec = { 673, positionY, 109, 44 }; // Button rectangle (useful for collision)
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
// Keyboard-based font selection (easy)
if (IsKeyPressed(KEY_RIGHT))
{
if (currentFont < 7) currentFont++;
}
if (IsKeyPressed(KEY_LEFT))
{
if (currentFont > 0) currentFont--;
}
if (IsKeyPressed('0')) currentFont = 0;
else if (IsKeyPressed('1')) currentFont = 1;
else if (IsKeyPressed('2')) currentFont = 2;
else if (IsKeyPressed('3')) currentFont = 3;
else if (IsKeyPressed('4')) currentFont = 4;
else if (IsKeyPressed('5')) currentFont = 5;
else if (IsKeyPressed('6')) currentFont = 6;
else if (IsKeyPressed('7')) currentFont = 7;
// Mouse-based font selection (NEXT button logic)
mousePoint = GetMousePosition();
if (CheckCollisionPointRec(mousePoint, btnNextRec))
{
// Mouse hover button logic
if (framesCounter == 0)
{
btnNextOutColor = DARKPURPLE;
btnNextInColor = PURPLE;
}
if (IsMouseButtonDown(MOUSE_LEFT_BUTTON))
{
framesCounter = 20; // Frames button is 'active'
btnNextOutColor = MAROON;
btnNextInColor = RED;
}
}
else
{
// Mouse not hover button
btnNextOutColor = DARKBLUE;
btnNextInColor = SKYBLUE;
}
if (framesCounter > 0) framesCounter--;
if (framesCounter == 1) // We change font on frame 1
{
currentFont++;
if (currentFont > 7) currentFont = 0;
}
// Text measurement for better positioning on screen
textSize = MeasureTextEx(fonts[currentFont], text, fonts[currentFont].baseSize*3, 1);
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
DrawText("font selector - use arroys, button or numbers", 160, 80, 20, DARKGRAY);
DrawLine(120, 120, 680, 120, DARKGRAY);
DrawRectangle(18, positionY, 644, 44, DARKGRAY);
DrawRectangle(20, positionY + 2, 640, 40, LIGHTGRAY);
DrawText(fontNames[currentFont], 30, positionY + 13, 20, BLACK);
DrawText("< >", 610, positionY + 8, 30, BLACK);
DrawRectangleRec(btnNextRec, btnNextOutColor);
DrawRectangle(675, positionY + 2, 105, 40, btnNextInColor);
DrawText("NEXT", 700, positionY + 13, 20, btnNextOutColor);
DrawTextEx(fonts[currentFont], text, (Vector2){ screenWidth/2 - textSize.x/2,
260 + (70 - textSize.y)/2 }, fonts[currentFont].baseSize*3,
1, colors[currentFont]);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
for (int i = 0; i < 8; i++) UnloadSpriteFont(fonts[i]); // SpriteFont(s) unloading
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

View file

@ -0,0 +1,244 @@
/*******************************************************************************************
*
* raylib [textures] example - texture formats loading (compressed and uncompressed)
*
* NOTE: This example requires raylib OpenGL 3.3+ or ES2 versions for compressed textures,
* OpenGL 1.1 does not support compressed textures, only uncompressed ones.
*
* This example has been created using raylib 1.3 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#define NUM_TEXTURES 24
typedef enum {
PNG_R8G8B8A8 = 0,
PVR_GRAYSCALE,
PVR_GRAY_ALPHA,
PVR_R5G6B5,
PVR_R5G5B5A1,
PVR_R4G4B4A4,
DDS_R5G6B5,
DDS_R5G5B5A1,
DDS_R4G4B4A4,
DDS_R8G8B8A8,
DDS_DXT1_RGB,
DDS_DXT1_RGBA,
DDS_DXT3_RGBA,
DDS_DXT5_RGBA,
PKM_ETC1_RGB,
PKM_ETC2_RGB,
PKM_ETC2_EAC_RGBA,
KTX_ETC1_RGB,
KTX_ETC2_RGB,
KTX_ETC2_EAC_RGBA,
ASTC_4x4_LDR,
ASTC_8x8_LDR,
PVR_PVRT_RGB,
PVR_PVRT_RGBA
} TextureFormats;
static const char *formatText[] = {
"PNG_R8G8B8A8",
"PVR_GRAYSCALE",
"PVR_GRAY_ALPHA",
"PVR_R5G6B5",
"PVR_R5G5B5A1",
"PVR_R4G4B4A4",
"DDS_R5G6B5",
"DDS_R5G5B5A1",
"DDS_R4G4B4A4",
"DDS_R8G8B8A8",
"DDS_DXT1_RGB",
"DDS_DXT1_RGBA",
"DDS_DXT3_RGBA",
"DDS_DXT5_RGBA",
"PKM_ETC1_RGB",
"PKM_ETC2_RGB",
"PKM_ETC2_EAC_RGBA",
"KTX_ETC1_RGB",
"KTX_ETC2_RGB",
"KTX_ETC2_EAC_RGBA",
"ASTC_4x4_LDR",
"ASTC_8x8_LDR",
"PVR_PVRT_RGB",
"PVR_PVRT_RGBA"
};
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [textures] example - texture formats loading");
// NOTE: Textures MUST be loaded after Window initialization (OpenGL context is required)
Texture2D sonic[NUM_TEXTURES];
sonic[PNG_R8G8B8A8] = LoadTexture("resources/formats/sonic.png");
// Load UNCOMPRESSED PVR texture data
sonic[PVR_GRAYSCALE] = LoadTexture("resources/formats/sonic_GRAYSCALE.pvr");
sonic[PVR_GRAY_ALPHA] = LoadTexture("resources/formats/sonic_L8A8.pvr");
sonic[PVR_R5G6B5] = LoadTexture("resources/formats/sonic_R5G6B5.pvr");
sonic[PVR_R5G5B5A1] = LoadTexture("resources/formats/sonic_R5G5B5A1.pvr");
sonic[PVR_R4G4B4A4] = LoadTexture("resources/formats/sonic_R4G4B4A4.pvr");
// Load UNCOMPRESSED DDS texture data
sonic[DDS_R5G6B5] = LoadTexture("resources/formats/sonic_R5G6B5.dds");
sonic[DDS_R5G5B5A1] = LoadTexture("resources/formats/sonic_A1R5G5B5.dds");
sonic[DDS_R4G4B4A4] = LoadTexture("resources/formats/sonic_A4R4G4B4.dds");
sonic[DDS_R8G8B8A8] = LoadTexture("resources/formats/sonic_A8R8G8B8.dds");
// Load COMPRESSED DXT DDS texture data (if supported)
sonic[DDS_DXT1_RGB] = LoadTexture("resources/formats/sonic_DXT1_RGB.dds");
sonic[DDS_DXT1_RGBA] = LoadTexture("resources/formats/sonic_DXT1_RGBA.dds");
sonic[DDS_DXT3_RGBA] = LoadTexture("resources/formats/sonic_DXT3_RGBA.dds");
sonic[DDS_DXT5_RGBA] = LoadTexture("resources/formats/sonic_DXT5_RGBA.dds");
// Load COMPRESSED ETC texture data (if supported)
sonic[PKM_ETC1_RGB] = LoadTexture("resources/formats/sonic_ETC1_RGB.pkm");
sonic[PKM_ETC2_RGB] = LoadTexture("resources/formats/sonic_ETC2_RGB.pkm");
sonic[PKM_ETC2_EAC_RGBA] = LoadTexture("resources/formats/sonic_ETC2_EAC_RGBA.pkm");
sonic[KTX_ETC1_RGB] = LoadTexture("resources/formats/sonic_ETC1_RGB.ktx");
sonic[KTX_ETC2_RGB] = LoadTexture("resources/formats/sonic_ETC2_RGB.ktx");
sonic[KTX_ETC2_EAC_RGBA] = LoadTexture("resources/formats/sonic_ETC2_EAC_RGBA.ktx");
// Load COMPRESSED ASTC texture data (if supported)
sonic[ASTC_4x4_LDR] = LoadTexture("resources/formats/sonic_ASTC_4x4_ldr.astc");
sonic[ASTC_8x8_LDR] = LoadTexture("resources/formats/sonic_ASTC_8x8_ldr.astc");
// Load COMPRESSED PVR texture data (if supported)
sonic[PVR_PVRT_RGB] = LoadTexture("resources/formats/sonic_PVRT_RGB.pvr");
sonic[PVR_PVRT_RGBA] = LoadTexture("resources/formats/sonic_PVRT_RGBA.pvr");
int selectedFormat = PNG_R8G8B8A8;
Rectangle selectRecs[NUM_TEXTURES];
for (int i = 0; i < NUM_TEXTURES; i++)
{
if (i < NUM_TEXTURES/2) selectRecs[i] = (Rectangle){ 40, 30 + 32*i, 150, 30 };
else selectRecs[i] = (Rectangle){ 40 + 152, 30 + 32*(i - NUM_TEXTURES/2), 150, 30 };
}
// Texture sizes in KB
float textureSizes[NUM_TEXTURES] = {
512*512*32/8/1024, //PNG_R8G8B8A8 (32 bpp)
512*512*8/8/1024, //PVR_GRAYSCALE (8 bpp)
512*512*16/8/1024, //PVR_GRAY_ALPHA (16 bpp)
512*512*16/8/1024, //PVR_R5G6B5 (16 bpp)
512*512*16/8/1024, //PVR_R5G5B5A1 (16 bpp)
512*512*16/8/1024, //PVR_R4G4B4A4 (16 bpp)
512*512*16/8/1024, //DDS_R5G6B5 (16 bpp)
512*512*16/8/1024, //DDS_R5G5B5A1 (16 bpp)
512*512*16/8/1024, //DDS_R4G4B4A4 (16 bpp)
512*512*32/8/1024, //DDS_R8G8B8A8 (32 bpp)
512*512*4/8/1024, //DDS_DXT1_RGB (4 bpp) -Compressed-
512*512*4/8/1024, //DDS_DXT1_RGBA (4 bpp) -Compressed-
512*512*8/8/1024, //DDS_DXT3_RGBA (8 bpp) -Compressed-
512*512*8/8/1024, //DDS_DXT5_RGBA (8 bpp) -Compressed-
512*512*4/8/1024, //PKM_ETC1_RGB (4 bpp) -Compressed-
512*512*4/8/1024, //PKM_ETC2_RGB (4 bpp) -Compressed-
512*512*8/8/1024, //PKM_ETC2_EAC_RGBA (8 bpp) -Compressed-
512*512*4/8/1024, //KTX_ETC1_RGB (4 bpp) -Compressed-
512*512*4/8/1024, //KTX_ETC2_RGB (4 bpp) -Compressed-
512*512*8/8/1024, //KTX_ETC2_EAC_RGBA (8 bpp) -Compressed-
512*512*8/8/1024, //ASTC_4x4_LDR (8 bpp) -Compressed-
512*512*2/8/1024, //ASTC_8x8_LDR (2 bpp) -Compressed-
512*512*4/8/1024, //PVR_PVRT_RGB (4 bpp) -Compressed-
512*512*4/8/1024, //PVR_PVRT_RGBA (4 bpp) -Compressed-
};
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//---------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
if (IsKeyPressed(KEY_DOWN))
{
selectedFormat++;
if (selectedFormat >= NUM_TEXTURES) selectedFormat = 0;
}
else if (IsKeyPressed(KEY_UP))
{
selectedFormat--;
if (selectedFormat < 0) selectedFormat = NUM_TEXTURES - 1;
}
else if (IsKeyPressed(KEY_RIGHT))
{
if (selectedFormat < NUM_TEXTURES/2) selectedFormat += NUM_TEXTURES/2;
}
else if (IsKeyPressed(KEY_LEFT))
{
if (selectedFormat >= NUM_TEXTURES/2) selectedFormat -= NUM_TEXTURES/2;
}
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
// Draw rectangles
for (int i = 0; i < NUM_TEXTURES; i++)
{
if (i == selectedFormat)
{
DrawRectangleRec(selectRecs[i], SKYBLUE);
DrawRectangleLines(selectRecs[i].x, selectRecs[i].y, selectRecs[i].width, selectRecs[i].height, BLUE);
DrawText(formatText[i], selectRecs[i].x + selectRecs[i].width/2 - MeasureText(formatText[i], 10)/2, selectRecs[i].y + 11, 10, DARKBLUE);
}
else
{
DrawRectangleRec(selectRecs[i], LIGHTGRAY);
DrawRectangleLines(selectRecs[i].x, selectRecs[i].y, selectRecs[i].width, selectRecs[i].height, GRAY);
DrawText(formatText[i], selectRecs[i].x + selectRecs[i].width/2 - MeasureText(formatText[i], 10)/2, selectRecs[i].y + 11, 10, DARKGRAY);
}
}
// Draw selected texture
if (sonic[selectedFormat].id != 0)
{
DrawTexture(sonic[selectedFormat], 350, -10, WHITE);
}
else
{
DrawRectangleLines(488, 165, 200, 110, DARKGRAY);
DrawText("FORMAT", 550, 180, 20, MAROON);
DrawText("NOT SUPPORTED", 500, 210, 20, MAROON);
DrawText("ON YOUR GPU", 520, 240, 20, MAROON);
}
DrawText("Select texture format (use cursor keys):", 40, 10, 10, DARKGRAY);
DrawText("Required GPU memory size (VRAM):", 40, 427, 10, DARKGRAY);
DrawText(FormatText("%4.0f KB", textureSizes[selectedFormat]), 240, 420, 20, DARKBLUE);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
for (int i = 0; i < NUM_TEXTURES; i++) UnloadTexture(sonic[i]);
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

View file

@ -0,0 +1,538 @@
/*******************************************************************************************
*
* raylib [core] example - Oculus Rift CV1
*
* Compile example using:
* gcc -o $(NAME_PART).exe $(FILE_NAME) -I..\src\external -I..\src\external\OculusSDK\LibOVR\Include /
* -L. -L..\src\external\OculusSDK\LibOVR -lLibOVRRT32_1 -lraylib -lglfw3 -lopengl32 -lgdi32 -std=c99 /
* -Wl,-allow-multiple-definition
*
* #define SUPPORT_OCULUS_RIFT_CV1 / RLGL_OCULUS_SUPPORT
* Enable Oculus Rift CV1 functionality
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#include "glad.h" // Required for: OpenGL types and functions declarations
#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality
#include <string.h> // Required for: memset()
#include <stdlib.h> // Required for: exit()
#include <stdio.h> // required for: vfprintf()
#include <stdarg.h> // Required for: va_list, va_start(), vfprintf(), va_end()
#define RLGL_OCULUS_SUPPORT // Enable Oculus Rift code
#if defined(RLGL_OCULUS_SUPPORT)
#include "OVR_CAPI_GL.h" // Oculus SDK for OpenGL
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// TraceLog message types
typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType;
#if defined(RLGL_OCULUS_SUPPORT)
// Oculus buffer type
typedef struct OculusBuffer {
ovrTextureSwapChain textureChain;
GLuint depthId;
GLuint fboId;
int width;
int height;
} OculusBuffer;
// Oculus mirror texture type
typedef struct OculusMirror {
ovrMirrorTexture texture;
GLuint fboId;
int width;
int height;
} OculusMirror;
// Oculus layer type
typedef struct OculusLayer {
ovrViewScaleDesc viewScaleDesc;
ovrLayerEyeFov eyeLayer; // layer 0
//ovrLayerQuad quadLayer; // TODO: layer 1: '2D' quad for GUI
Matrix eyeProjections[2];
int width;
int height;
} OculusLayer;
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
#if defined(RLGL_OCULUS_SUPPORT)
// OVR device variables
static ovrSession session; // Oculus session (pointer to ovrHmdStruct)
static ovrHmdDesc hmdDesc; // Oculus device descriptor parameters
static ovrGraphicsLuid luid; // Oculus locally unique identifier for the program (64 bit)
static OculusLayer layer; // Oculus drawing layer (similar to photoshop)
static OculusBuffer buffer; // Oculus internal buffers (texture chain and fbo)
static OculusMirror mirror; // Oculus mirror texture and fbo
static unsigned int frameIndex = 0; // Oculus frames counter, used to discard frames from chain
#endif
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(RLGL_OCULUS_SUPPORT)
static bool InitOculusDevice(void); // Initialize Oculus device (returns true if success)
static void CloseOculusDevice(void); // Close Oculus device
static void UpdateOculusTracking(Camera *camera); // Update Oculus head position-orientation tracking
static void BeginOculusDrawing(void); // Setup Oculus buffers for drawing
static void EndOculusDrawing(void); // Finish Oculus drawing and blit framebuffer to mirror
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height); // Load Oculus required buffers
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer); // Unload texture required buffers
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height); // Load Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror); // Unload Oculus mirror buffers
static void BlitOculusMirror(ovrSession session, OculusMirror mirror); // Copy Oculus screen buffer to mirror texture
static OculusLayer InitOculusLayer(ovrSession session); // Init Oculus layer (similar to photoshop)
static Matrix FromOvrMatrix(ovrMatrix4f ovrM); // Convert from Oculus ovrMatrix4f struct to raymath Matrix struct
#endif
static void TraceLog(int msgType, const char *text, ...);
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 1080;
int screenHeight = 600;
// NOTE: screenWidth/screenHeight should match VR device aspect ratio
InitWindow(screenWidth, screenHeight, "raylib [core] example - oculus rift");
bool vrDeviceReady = InitOculusDevice(); // Init VR device Oculus Rift CV1
if (!vrDeviceReady) InitVrSimulator(HMD_OCULUS_RIFT_CV1); // Init VR simulator if device fails
// Define the camera to look into our 3d world
Camera camera;
camera.position = (Vector3){ 5.0f, 2.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 2.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 60.0f; // Camera field-of-view Y
Vector3 cubePosition = { 0.0f, 0.0f, 0.0f };
SetCameraMode(camera, CAMERA_FIRST_PERSON); // Set first person camera mode
SetTargetFPS(90); // Set our game to run at 90 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
if (!vrDeviceReady) UpdateCamera(&camera); // Update camera (simulator mode)
else UpdateOculusTracking(&camera); // Update camera with device tracking data
if (IsKeyPressed(KEY_SPACE)) ToggleVrMode(); // Toggle VR mode
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
if (vrDeviceReady) BeginOculusDrawing();
else BeginVrDrawing();
Begin3dMode(camera);
DrawCube(cubePosition, 2.0f, 2.0f, 2.0f, RED);
DrawCubeWires(cubePosition, 2.0f, 2.0f, 2.0f, MAROON);
DrawGrid(40, 1.0f);
End3dMode();
if (vrDeviceReady) EndOculusDrawing();
else EndVrDrawing();
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
if (vrDeviceReady) CloseOculusDevice();
else CloseVrSimulator();
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(RLGL_OCULUS_SUPPORT)
// Set internal projection and modelview matrix depending on eyes tracking data
static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView)
{
Matrix eyeProjection = matProjection;
Matrix eyeModelView = matModelView;
glViewport(layer.eyeLayer.Viewport[eye].Pos.x, layer.eyeLayer.Viewport[eye].Pos.y,
layer.eyeLayer.Viewport[eye].Size.w, layer.eyeLayer.Viewport[eye].Size.h);
Quaternion eyeRenderPose = (Quaternion){ layer.eyeLayer.RenderPose[eye].Orientation.x,
layer.eyeLayer.RenderPose[eye].Orientation.y,
layer.eyeLayer.RenderPose[eye].Orientation.z,
layer.eyeLayer.RenderPose[eye].Orientation.w };
QuaternionInvert(&eyeRenderPose);
Matrix eyeOrientation = QuaternionToMatrix(eyeRenderPose);
Matrix eyeTranslation = MatrixTranslate(-layer.eyeLayer.RenderPose[eye].Position.x,
-layer.eyeLayer.RenderPose[eye].Position.y,
-layer.eyeLayer.RenderPose[eye].Position.z);
Matrix eyeView = MatrixMultiply(eyeTranslation, eyeOrientation); // Matrix containing eye-head movement
eyeModelView = MatrixMultiply(matModelView, eyeView); // Combine internal camera matrix (modelview) wih eye-head movement
eyeProjection = layer.eyeProjections[eye];
}
// Initialize Oculus device (returns true if success)
static bool InitOculusDevice(void)
{
bool oculusReady = false;
ovrResult result = ovr_Initialize(NULL);
if (OVR_FAILURE(result)) TraceLog(WARNING, "OVR: Could not initialize Oculus device");
else
{
result = ovr_Create(&session, &luid);
if (OVR_FAILURE(result))
{
TraceLog(WARNING, "OVR: Could not create Oculus session");
ovr_Shutdown();
}
else
{
hmdDesc = ovr_GetHmdDesc(session);
TraceLog(INFO, "OVR: Product Name: %s", hmdDesc.ProductName);
TraceLog(INFO, "OVR: Manufacturer: %s", hmdDesc.Manufacturer);
TraceLog(INFO, "OVR: Product ID: %i", hmdDesc.ProductId);
TraceLog(INFO, "OVR: Product Type: %i", hmdDesc.Type);
//TraceLog(INFO, "OVR: Serial Number: %s", hmdDesc.SerialNumber);
TraceLog(INFO, "OVR: Resolution: %ix%i", hmdDesc.Resolution.w, hmdDesc.Resolution.h);
// NOTE: Oculus mirror is set to defined screenWidth and screenHeight...
// ...ideally, it should be (hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2)
// Initialize Oculus Buffers
layer = InitOculusLayer(session);
buffer = LoadOculusBuffer(session, layer.width, layer.height);
mirror = LoadOculusMirror(session, hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2); // NOTE: hardcoded...
layer.eyeLayer.ColorTexture[0] = buffer.textureChain; //SetOculusLayerTexture(eyeLayer, buffer.textureChain);
// Recenter OVR tracking origin
ovr_RecenterTrackingOrigin(session);
oculusReady = true;
}
}
return oculusReady;
}
// Close Oculus device (and unload buffers)
static void CloseOculusDevice(void)
{
UnloadOculusMirror(session, mirror); // Unload Oculus mirror buffer
UnloadOculusBuffer(session, buffer); // Unload Oculus texture buffers
ovr_Destroy(session); // Free Oculus session data
ovr_Shutdown(); // Close Oculus device connection
}
// Update Oculus head position-orientation tracking
static void UpdateOculusTracking(Camera *camera)
{
frameIndex++;
ovrPosef eyePoses[2];
ovr_GetEyePoses(session, frameIndex, ovrTrue, layer.viewScaleDesc.HmdToEyeOffset, eyePoses, &layer.eyeLayer.SensorSampleTime);
layer.eyeLayer.RenderPose[0] = eyePoses[0];
layer.eyeLayer.RenderPose[1] = eyePoses[1];
// TODO: Update external camera with eyePoses data (position, orientation)
// NOTE: We can simplify to simple camera if we consider IPD and HMD device configuration again later
// it will be useful for the user to draw, lets say, billboards oriented to camera
// Get session status information
ovrSessionStatus sessionStatus;
ovr_GetSessionStatus(session, &sessionStatus);
if (sessionStatus.ShouldQuit) TraceLog(WARNING, "OVR: Session should quit...");
if (sessionStatus.ShouldRecenter) ovr_RecenterTrackingOrigin(session);
//if (sessionStatus.HmdPresent) // HMD is present.
//if (sessionStatus.DisplayLost) // HMD was unplugged or the display driver was manually disabled or encountered a TDR.
//if (sessionStatus.HmdMounted) // HMD is on the user's head.
//if (sessionStatus.IsVisible) // the game or experience has VR focus and is visible in the HMD.
}
// Setup Oculus buffers for drawing
static void BeginOculusDrawing(void)
{
GLuint currentTexId;
int currentIndex;
ovr_GetTextureSwapChainCurrentIndex(session, buffer.textureChain, &currentIndex);
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, currentIndex, &currentTexId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, currentTexId, 0);
//glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, buffer.depthId, 0); // Already binded
}
// Finish Oculus drawing and blit framebuffer to mirror
static void EndOculusDrawing(void)
{
// Unbind current framebuffer (Oculus buffer)
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
ovr_CommitTextureSwapChain(session, buffer.textureChain);
ovrLayerHeader *layers = &layer.eyeLayer.Header;
ovr_SubmitFrame(session, frameIndex, &layer.viewScaleDesc, &layers, 1);
// Blit mirror texture to back buffer
BlitOculusMirror(session, mirror);
}
// Load Oculus required buffers: texture-swap-chain, fbo, texture-depth
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height)
{
OculusBuffer buffer;
buffer.width = width;
buffer.height = height;
// Create OVR texture chain
ovrTextureSwapChainDesc desc = {};
desc.Type = ovrTexture_2D;
desc.ArraySize = 1;
desc.Width = width;
desc.Height = height;
desc.MipLevels = 1;
desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB; // Requires glEnable(GL_FRAMEBUFFER_SRGB);
desc.SampleCount = 1;
desc.StaticImage = ovrFalse;
ovrResult result = ovr_CreateTextureSwapChainGL(session, &desc, &buffer.textureChain);
if (!OVR_SUCCESS(result)) TraceLog(WARNING, "OVR: Failed to create swap textures buffer");
int textureCount = 0;
ovr_GetTextureSwapChainLength(session, buffer.textureChain, &textureCount);
if (!OVR_SUCCESS(result) || !textureCount) TraceLog(WARNING, "OVR: Unable to count swap chain textures");
for (int i = 0; i < textureCount; ++i)
{
GLuint chainTexId;
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, i, &chainTexId);
glBindTexture(GL_TEXTURE_2D, chainTexId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
glBindTexture(GL_TEXTURE_2D, 0);
/*
// Setup framebuffer object (using depth texture)
glGenFramebuffers(1, &buffer.fboId);
glGenTextures(1, &buffer.depthId);
glBindTexture(GL_TEXTURE_2D, buffer.depthId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, buffer.width, buffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
*/
// Setup framebuffer object (using depth renderbuffer)
glGenFramebuffers(1, &buffer.fboId);
glGenRenderbuffers(1, &buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glBindRenderbuffer(GL_RENDERBUFFER, buffer.depthId);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, buffer.width, buffer.height);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
return buffer;
}
// Unload texture required buffers
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer)
{
if (buffer.textureChain)
{
ovr_DestroyTextureSwapChain(session, buffer.textureChain);
buffer.textureChain = NULL;
}
if (buffer.depthId != 0) glDeleteTextures(1, &buffer.depthId);
if (buffer.fboId != 0) glDeleteFramebuffers(1, &buffer.fboId);
}
// Load Oculus mirror buffers
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height)
{
OculusMirror mirror;
mirror.width = width;
mirror.height = height;
ovrMirrorTextureDesc mirrorDesc;
memset(&mirrorDesc, 0, sizeof(mirrorDesc));
mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
mirrorDesc.Width = mirror.width;
mirrorDesc.Height = mirror.height;
if (!OVR_SUCCESS(ovr_CreateMirrorTextureGL(session, &mirrorDesc, &mirror.texture))) TraceLog(WARNING, "Could not create mirror texture");
glGenFramebuffers(1, &mirror.fboId);
return mirror;
}
// Unload Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror)
{
if (mirror.fboId != 0) glDeleteFramebuffers(1, &mirror.fboId);
if (mirror.texture) ovr_DestroyMirrorTexture(session, mirror.texture);
}
// Copy Oculus screen buffer to mirror texture
static void BlitOculusMirror(ovrSession session, OculusMirror mirror)
{
GLuint mirrorTextureId;
ovr_GetMirrorTextureBufferGL(session, mirror.texture, &mirrorTextureId);
glBindFramebuffer(GL_READ_FRAMEBUFFER, mirror.fboId);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTextureId, 0);
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: glBlitFramebuffer() requires extension: GL_EXT_framebuffer_blit (not available in OpenGL ES 2.0)
glBlitFramebuffer(0, 0, mirror.width, mirror.height, 0, mirror.height, mirror.width, 0, GL_COLOR_BUFFER_BIT, GL_NEAREST);
#endif
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
}
// Init Oculus layer (similar to photoshop)
static OculusLayer InitOculusLayer(ovrSession session)
{
OculusLayer layer = { 0 };
layer.viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;
memset(&layer.eyeLayer, 0, sizeof(ovrLayerEyeFov));
layer.eyeLayer.Header.Type = ovrLayerType_EyeFov;
layer.eyeLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
ovrEyeRenderDesc eyeRenderDescs[2];
for (int eye = 0; eye < 2; eye++)
{
eyeRenderDescs[eye] = ovr_GetRenderDesc(session, eye, hmdDesc.DefaultEyeFov[eye]);
ovrMatrix4f ovrPerspectiveProjection = ovrMatrix4f_Projection(eyeRenderDescs[eye].Fov, 0.01f, 10000.0f, ovrProjection_None); //ovrProjection_ClipRangeOpenGL);
layer.eyeProjections[eye] = FromOvrMatrix(ovrPerspectiveProjection); // NOTE: struct ovrMatrix4f { float M[4][4] } --> struct Matrix
layer.viewScaleDesc.HmdToEyeOffset[eye] = eyeRenderDescs[eye].HmdToEyeOffset;
layer.eyeLayer.Fov[eye] = eyeRenderDescs[eye].Fov;
ovrSizei eyeSize = ovr_GetFovTextureSize(session, eye, layer.eyeLayer.Fov[eye], 1.0f);
layer.eyeLayer.Viewport[eye].Size = eyeSize;
layer.eyeLayer.Viewport[eye].Pos.x = layer.width;
layer.eyeLayer.Viewport[eye].Pos.y = 0;
layer.height = eyeSize.h; //std::max(renderTargetSize.y, (uint32_t)eyeSize.h);
layer.width += eyeSize.w;
}
return layer;
}
// Convert from Oculus ovrMatrix4f struct to raymath Matrix struct
static Matrix FromOvrMatrix(ovrMatrix4f ovrmat)
{
Matrix rmat;
rmat.m0 = ovrmat.M[0][0];
rmat.m1 = ovrmat.M[1][0];
rmat.m2 = ovrmat.M[2][0];
rmat.m3 = ovrmat.M[3][0];
rmat.m4 = ovrmat.M[0][1];
rmat.m5 = ovrmat.M[1][1];
rmat.m6 = ovrmat.M[2][1];
rmat.m7 = ovrmat.M[3][1];
rmat.m8 = ovrmat.M[0][2];
rmat.m9 = ovrmat.M[1][2];
rmat.m10 = ovrmat.M[2][2];
rmat.m11 = ovrmat.M[3][2];
rmat.m12 = ovrmat.M[0][3];
rmat.m13 = ovrmat.M[1][3];
rmat.m14 = ovrmat.M[2][3];
rmat.m15 = ovrmat.M[3][3];
MatrixTranspose(&rmat);
return rmat;
}
#endif
// Output a trace log message
// NOTE: Expected msgType: (0)Info, (1)Error, (2)Warning
static void TraceLog(int msgType, const char *text, ...)
{
va_list args;
va_start(args, text);
switch (msgType)
{
case INFO: fprintf(stdout, "INFO: "); break;
case ERROR: fprintf(stdout, "ERROR: "); break;
case WARNING: fprintf(stdout, "WARNING: "); break;
case DEBUG: fprintf(stdout, "DEBUG: "); break;
default: break;
}
vfprintf(stdout, text, args);
fprintf(stdout, "\n");
va_end(args);
if (msgType == ERROR) exit(1);
}

View file

@ -0,0 +1,135 @@
/*******************************************************************************************
*
* raylib example - particles trail blending
*
* This example has been created using raylib 1.3 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#define MAX_PARTICLES 200
// Particle structure with basic data
typedef struct {
Vector2 position;
Color color;
float alpha;
float size;
float rotation;
bool active; // NOTE: Use it to activate/deactive particle
} Particle;
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [textures] example - particles trail blending");
// Particles pool, reuse them!
Particle mouseTail[MAX_PARTICLES];
// Initialize particles
for (int i = 0; i < MAX_PARTICLES; i++)
{
mouseTail[i].position = (Vector2){ 0, 0 };
mouseTail[i].color = (Color){ GetRandomValue(0, 255), GetRandomValue(0, 255), GetRandomValue(0, 255), 255 };
mouseTail[i].alpha = 1.0f;
mouseTail[i].size = (float)GetRandomValue(1, 30)/20.0f;
mouseTail[i].rotation = GetRandomValue(0, 360);
mouseTail[i].active = false;
}
float gravity = 3.0f;
Texture2D smoke = LoadTexture("resources/smoke.png");
int blending = BLEND_ALPHA;
SetTargetFPS(60);
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
// Activate one particle every frame and Update active particles
// NOTE: Particles initial position should be mouse position when activated
// NOTE: Particles fall down with gravity and rotation... and disappear after 2 seconds (alpha = 0)
// NOTE: When a particle disappears, active = false and it can be reused.
for (int i = 0; i < MAX_PARTICLES; i++)
{
if (!mouseTail[i].active)
{
mouseTail[i].active = true;
mouseTail[i].alpha = 1.0f;
mouseTail[i].position = GetMousePosition();
i = MAX_PARTICLES;
}
}
for (int i = 0; i < MAX_PARTICLES; i++)
{
if (mouseTail[i].active)
{
mouseTail[i].position.y += gravity;
mouseTail[i].alpha -= 0.01f;
if (mouseTail[i].alpha <= 0.0f) mouseTail[i].active = false;
mouseTail[i].rotation += 5.0f;
}
}
if (IsKeyPressed(KEY_SPACE))
{
if (blending == BLEND_ALPHA) blending = BLEND_ADDITIVE;
else blending = BLEND_ALPHA;
}
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(DARKGRAY);
BeginBlendMode(blending);
// Draw active particles
for (int i = 0; i < MAX_PARTICLES; i++)
{
if (mouseTail[i].active) DrawTexturePro(smoke, (Rectangle){ 0, 0, smoke.width, smoke.height },
(Rectangle){ mouseTail[i].position.x, mouseTail[i].position.y, smoke.width*mouseTail[i].size, smoke.height*mouseTail[i].size },
(Vector2){ smoke.width*mouseTail[i].size/2, smoke.height*mouseTail[i].size/2 }, mouseTail[i].rotation,
Fade(mouseTail[i].color, mouseTail[i].alpha));
}
EndBlendMode();
DrawText("PRESS SPACE to CHANGE BLENDING MODE", 180, 20, 20, BLACK);
if (blending == BLEND_ALPHA) DrawText("ALPHA BLENDING", 290, screenHeight - 40, 20, BLACK);
else DrawText("ADDITIVE BLENDING", 280, screenHeight - 40, 20, RAYWHITE);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadTexture(smoke);
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,152 @@
#version 100
precision mediump float;
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;
uniform vec4 colAmbient;
uniform vec4 colDiffuse;
uniform vec4 colSpecular;
uniform float glossiness;
uniform int useNormal;
uniform int useSpecular;
uniform mat4 modelMatrix;
uniform vec3 viewDir;
struct Light {
int enabled;
int type;
vec3 position;
vec3 direction;
vec4 diffuse;
float intensity;
float radius;
float coneAngle;
};
const int maxLights = 8;
uniform Light lights[maxLights];
vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1.0));
vec3 surfaceToLight = l.position - surfacePos;
// Diffuse shading
float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0);
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
// Specular shading
float spec = 0.0;
if (diff > 0.0)
{
vec3 h = normalize(-l.direction + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
return (diff*l.diffuse.rgb + spec*colSpecular.rgb);
}
vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s)
{
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
// Specular shading
float spec = 0.0;
if (diff > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
// Combine results
return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);
}
vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 lightToSurface = normalize(surfacePos - l.position);
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
// Spot attenuation
float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0);
attenuation = dot(lightToSurface, -lightDir);
float lightToSurfaceAngle = degrees(acos(attenuation));
if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
// Combine diffuse and attenuation
float diffAttenuation = diff*attenuation;
// Specular shading
float spec = 0.0;
if (diffAttenuation > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));
}
void main()
{
// Calculate fragment normal in screen space
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
mat3 normalMatrix = mat3(modelMatrix);
vec3 normal = normalize(normalMatrix*fragNormal);
// Normalize normal and view direction vectors
vec3 n = normalize(normal);
vec3 v = normalize(viewDir);
// Calculate diffuse texture color fetching
vec4 texelColor = texture2D(texture0, fragTexCoord);
vec3 lighting = colAmbient.rgb;
// Calculate normal texture color fetching or set to maximum normal value by default
if (useNormal == 1)
{
n *= texture2D(texture1, fragTexCoord).rgb;
n = normalize(n);
}
// Calculate specular texture color fetching or set to maximum specular value by default
float spec = 1.0;
if (useSpecular == 1) spec = texture2D(texture2, fragTexCoord).r;
for (int i = 0; i < maxLights; i++)
{
// Check if light is enabled
if (lights[i].enabled == 1)
{
// Calculate lighting based on light type
if(lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec);
else if(lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec);
else if(lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec);
// NOTE: It seems that too many ComputeLight*() operations inside for loop breaks the shader on RPI
}
}
// Calculate final fragment color
gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a);
}

View file

@ -0,0 +1,23 @@
#version 100
attribute vec3 vertexPosition;
attribute vec3 vertexNormal;
attribute vec2 vertexTexCoord;
attribute vec4 vertexColor;
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
uniform mat4 mvpMatrix;
void main()
{
fragPosition = vertexPosition;
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
fragNormal = vertexNormal;
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0);
}

View file

@ -0,0 +1,150 @@
#version 330
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragNormal;
out vec4 finalColor;
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;
uniform vec4 colAmbient;
uniform vec4 colDiffuse;
uniform vec4 colSpecular;
uniform float glossiness;
uniform int useNormal;
uniform int useSpecular;
uniform mat4 modelMatrix;
uniform vec3 viewDir;
struct Light {
int enabled;
int type;
vec3 position;
vec3 direction;
vec4 diffuse;
float intensity;
float radius;
float coneAngle;
};
const int maxLights = 8;
uniform Light lights[maxLights];
vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 surfaceToLight = l.position - surfacePos;
// Diffuse shading
float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0);
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
// Specular shading
float spec = 0.0;
if (diff > 0.0)
{
vec3 h = normalize(-l.direction + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
return (diff*l.diffuse.rgb + spec*colSpecular.rgb);
}
vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s)
{
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
// Specular shading
float spec = 0.0;
if (diff > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
// Combine results
return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);
}
vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 lightToSurface = normalize(surfacePos - l.position);
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
// Spot attenuation
float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0);
attenuation = dot(lightToSurface, -lightDir);
float lightToSurfaceAngle = degrees(acos(attenuation));
if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
// Combine diffuse and attenuation
float diffAttenuation = diff*attenuation;
// Specular shading
float spec = 0.0;
if (diffAttenuation > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
}
return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));
}
void main()
{
// Calculate fragment normal in screen space
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
mat3 normalMatrix = mat3(modelMatrix);
vec3 normal = normalize(normalMatrix*fragNormal);
// Normalize normal and view direction vectors
vec3 n = normalize(normal);
vec3 v = normalize(viewDir);
// Calculate diffuse texture color fetching
vec4 texelColor = texture(texture0, fragTexCoord);
vec3 lighting = colAmbient.rgb;
// Calculate normal texture color fetching or set to maximum normal value by default
if (useNormal == 1)
{
n *= texture(texture1, fragTexCoord).rgb;
n = normalize(n);
}
// Calculate specular texture color fetching or set to maximum specular value by default
float spec = 1.0;
if (useSpecular == 1) spec = texture(texture2, fragTexCoord).r;
for (int i = 0; i < maxLights; i++)
{
// Check if light is enabled
if (lights[i].enabled == 1)
{
// Calculate lighting based on light type
if (lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec);
else if (lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec);
else if (lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec);
}
}
// Calculate final fragment color
finalColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a);
}

View file

@ -0,0 +1,23 @@
#version 330
in vec3 vertexPosition;
in vec3 vertexNormal;
in vec2 vertexTexCoord;
in vec4 vertexColor;
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
uniform mat4 mvpMatrix;
void main()
{
fragPosition = vertexPosition;
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
fragNormal = vertexNormal;
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0);
}

View file

@ -1,393 +0,0 @@
/*******************************************************************************************
*
* raylib [rlgl] example - Oculus minimum sample
*
* NOTE: This example requires OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders but it can also be used.
*
* Compile rlgl module using:
* gcc -c rlgl.c -Wall -std=c99 -DRLGL_STANDALONE -DRAYMATH_IMPLEMENTATION -DGRAPHICS_API_OPENGL_33 -DRLGL_OCULUS_SUPPORT
*
* NOTE 1: rlgl module requires the following header-only files:
* external/glad.h - OpenGL extensions loader (stripped to only required extensions)
* shader_standard.h - Standard shader for materials and lighting
* shader_distortion.h - Distortion shader for VR
* raymath.h - Vector and matrix math functions
*
* NOTE 2: rlgl requires LibOVR (Oculus PC SDK) to support Oculus Rift CV1
*
* Compile example using:
* gcc -o rlgl_oculus_rift.exe rlgl_oculus_rift.c rlgl.o -L. -lLibOVRRT32_1 -lglfw3 -lopengl32 -lgdi32 -std=c99
*
* NOTE: Example must be linked against LibOVRRT32_1.dll that comes with Oculus Rift runtime.
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <GLFW/glfw3.h> // Windows/Context and inputs management
#define RLGL_STANDALONE
#include "rlgl.h" // rlgl library: OpenGL 1.1 immediate-mode style coding
#define RED (Color){ 230, 41, 55, 255 } // Red
#define RAYWHITE (Color){ 245, 245, 245, 255 } // My own White (raylib logo)
#define DARKGRAY (Color){ 80, 80, 80, 255 } // Dark Gray
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void ErrorCallback(int error, const char* description);
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods);
// Drawing functions (uses rlgl functionality)
static void DrawGrid(int slices, float spacing);
static void DrawCube(Vector3 position, float width, float height, float length, Color color);
static void DrawCubeWires(Vector3 position, float width, float height, float length, Color color);
static void DrawRectangleV(Vector2 position, Vector2 size, Color color);
//----------------------------------------------------------------------------------
// Main Entry point
//----------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 1080; // Mirror screen width (set to hmdDesc.Resolution.w/2)
int screenHeight = 600; // Mirror screen height (set to hmdDesc.Resolution.h/2)
// NOTE: Mirror screen size can be set to any desired resolution!
// GLFW3 Initialization + OpenGL 3.3 Context + Extensions
//--------------------------------------------------------
glfwSetErrorCallback(ErrorCallback);
if (!glfwInit())
{
TraceLog(WARNING, "GLFW3: Can not initialize GLFW");
return 1;
}
else TraceLog(INFO, "GLFW3: GLFW initialized successfully");
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_DEPTH_BITS, 16);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, GL_TRUE);
GLFWwindow *window = glfwCreateWindow(screenWidth, screenHeight, "rlgl oculus rift", NULL, NULL);
if (!window)
{
glfwTerminate();
return 2;
}
else TraceLog(INFO, "GLFW3: Window created successfully");
glfwSetKeyCallback(window, KeyCallback);
glfwMakeContextCurrent(window);
glfwSwapInterval(0);
// Load OpenGL 3.3 supported extensions
rlglLoadExtensions(glfwGetProcAddress);
//--------------------------------------------------------
// Initialize OpenGL context (states and resources)
rlglInit(screenWidth, screenHeight);
rlClearColor(245, 245, 245, 255); // Define clear color
rlEnableDepthTest(); // Enable DEPTH_TEST for 3D
// Define custom camera to initialize projection and view matrices
Camera camera;
camera.position = (Vector3){ 5.0f, 5.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 0.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 45.0f; // Camera field-of-view Y
// Initialize viewport and internal projection/modelview matrices
rlViewport(0, 0, screenWidth, screenHeight);
rlMatrixMode(RL_PROJECTION); // Switch to PROJECTION matrix
rlLoadIdentity(); // Reset current matrix (PROJECTION)
// Setup perspective projection
float aspect = (float)screenWidth/(float)screenHeight;
double top = 0.01*tan(camera.fovy*PI/360.0);
double right = top*aspect;
rlFrustum(-right, right, -top, top, 0.01, 1000.0);
rlMatrixMode(RL_MODELVIEW); // Switch back to MODELVIEW matrix
rlLoadIdentity(); // Reset current matrix (MODELVIEW)
// Setup Camera view
Matrix cameraView = MatrixLookAt(camera.position, camera.target, camera.up);
rlMultMatrixf(MatrixToFloat(cameraView)); // Multiply MODELVIEW matrix by view matrix (camera)
InitOculusDevice(); // Initialize Oculus Rift CV1
Vector3 cubePosition = { 0.0f, 0.0f, 0.0f };
//--------------------------------------------------------------------------------------
// Main game loop
while (!glfwWindowShouldClose(window))
{
// Update
//----------------------------------------------------------------------------------
UpdateOculusTracking(&camera);
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginOculusDrawing();
rlClearScreenBuffers(); // Clear current framebuffer(s)
DrawCube(cubePosition, 2.0f, 2.0f, 2.0f, RED);
DrawCubeWires(cubePosition, 2.0f, 2.0f, 2.0f, RAYWHITE);
DrawGrid(10, 1.0f);
// NOTE: Internal buffers drawing (3D data)
rlglDraw();
EndOculusDrawing();
glfwSwapBuffers(window);
glfwPollEvents();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
CloseOculusDevice(); // Close Oculus device and clear resources
rlglClose(); // Unload rlgl internal buffers and default shader/texture
glfwDestroyWindow(window); // Close window
glfwTerminate(); // Free GLFW3 resources
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definitions
//----------------------------------------------------------------------------------
// GLFW3: Error callback
static void ErrorCallback(int error, const char* description)
{
TraceLog(ERROR, description);
}
// GLFW3: Keyboard callback
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
// Draw rectangle using rlgl OpenGL 1.1 style coding (translated to OpenGL 3.3 internally)
static void DrawRectangleV(Vector2 position, Vector2 size, Color color)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
static void DrawGrid(int slices, float spacing)
{
int halfSlices = slices / 2;
rlBegin(RL_LINES);
for(int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Be careful! Function order matters (rotate -> scale -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlScalef(2.0f, 2.0f, 2.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Back Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Top Face -------------------------------------------------------
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
// Bottom Face ----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
// Right face -----------------------------------------------------
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
// Left Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
// Back Face ------------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
// Top Face -------------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
// Bottom Face ---------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
rlEnd();
rlPopMatrix();
}

View file

@ -0,0 +1,483 @@
/*******************************************************************************************
*
* raylib [shaders] example - Standard lighting (materials and lights)
*
* NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version.
*
* NOTE: Shaders used in this example are #version 330 (OpenGL 3.3), to test this example
* on OpenGL ES 2.0 platforms (Android, Raspberry Pi, HTML5), use #version 100 shaders
* raylib comes with shaders ready for both versions, check raylib/shaders install folder
*
* This example has been created using raylib 1.7 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016-2017 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#include <stdlib.h> // Required for: NULL
#include <string.h> // Required for: strcpy()
#include <math.h> // Required for: vector math
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_LIGHTS 8 // Max lights supported by standard shader
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Light type
typedef struct LightData {
unsigned int id; // Light unique id
bool enabled; // Light enabled
int type; // Light type: LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT
Vector3 position; // Light position
Vector3 target; // Light direction: LIGHT_DIRECTIONAL and LIGHT_SPOT (cone direction target)
float radius; // Light attenuation radius light intensity reduced with distance (world distance)
Color diffuse; // Light diffuse color
float intensity; // Light intensity level
float coneAngle; // Light cone max angle: LIGHT_SPOT
} LightData, *Light;
// Light types
typedef enum { LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT } LightType;
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static Light lights[MAX_LIGHTS]; // Lights pool
static int lightsCount = 0; // Enabled lights counter
static int lightsLocs[MAX_LIGHTS][8]; // Lights location points in shader: 8 possible points per light:
// enabled, type, position, target, radius, diffuse, intensity, coneAngle
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
static Light CreateLight(int type, Vector3 position, Color diffuse); // Create a new light, initialize it and add to pool
static void DestroyLight(Light light); // Destroy a light and take it out of the list
static void DrawLight(Light light); // Draw light in 3D world
static void GetShaderLightsLocations(Shader shader); // Get shader locations for lights (up to MAX_LIGHTS)
static void SetShaderLightsValues(Shader shader); // Set shader uniform values for lights
// Vector3 math functions
static float VectorLength(const Vector3 v); // Calculate vector lenght
static void VectorNormalize(Vector3 *v); // Normalize provided vector
static Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
//https://www.gamedev.net/topic/655969-speed-gluniform-vs-uniform-buffer-objects/
//https://www.reddit.com/r/opengl/comments/4ri20g/is_gluniform_more_expensive_than_glprogramuniform/
//http://cg.alexandra.dk/?p=3778 - AZDO
//https://developer.apple.com/library/content/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html
//------------------------------------------------------------------------------------
// Program main entry point
//------------------------------------------------------------------------------------
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
SetConfigFlags(FLAG_MSAA_4X_HINT); // Enable Multi Sampling Anti Aliasing 4x (if available)
InitWindow(screenWidth, screenHeight, "raylib [shaders] example - model shader");
// Define the camera to look into our 3d world
Camera camera = {{ 4.0f, 4.0f, 4.0f }, { 0.0f, 1.5f, 0.0f }, { 0.0f, 1.0f, 0.0f }, 45.0f };
Vector3 position = { 0.0f, 0.0f, 0.0f }; // Set model position
Model dwarf = LoadModel("resources/model/dwarf.obj"); // Load OBJ model
Material material;// = LoadStandardMaterial();
material.shader = LoadShader("resources/shaders/glsl330/standard.vs",
"resources/shaders/glsl330/standard.fs");
// Try to get lights location points (if available)
GetShaderLightsLocations(material.shader);
material.texDiffuse = LoadTexture("resources/model/dwarf_diffuse.png"); // Load model diffuse texture
material.texNormal = LoadTexture("resources/model/dwarf_normal.png"); // Load model normal texture
material.texSpecular = LoadTexture("resources/model/dwarf_specular.png"); // Load model specular texture
material.colDiffuse = WHITE;
material.colAmbient = (Color){0, 0, 10, 255};
material.colSpecular = WHITE;
material.glossiness = 50.0f;
dwarf.material = material; // Apply material to model
Light spotLight = CreateLight(LIGHT_SPOT, (Vector3){3.0f, 5.0f, 2.0f}, (Color){255, 255, 255, 255});
spotLight->target = (Vector3){0.0f, 0.0f, 0.0f};
spotLight->intensity = 2.0f;
spotLight->diffuse = (Color){255, 100, 100, 255};
spotLight->coneAngle = 60.0f;
Light dirLight = CreateLight(LIGHT_DIRECTIONAL, (Vector3){0.0f, -3.0f, -3.0f}, (Color){255, 255, 255, 255});
dirLight->target = (Vector3){1.0f, -2.0f, -2.0f};
dirLight->intensity = 2.0f;
dirLight->diffuse = (Color){100, 255, 100, 255};
Light pointLight = CreateLight(LIGHT_POINT, (Vector3){0.0f, 4.0f, 5.0f}, (Color){255, 255, 255, 255});
pointLight->intensity = 2.0f;
pointLight->diffuse = (Color){100, 100, 255, 255};
pointLight->radius = 3.0f;
// Set shader lights values for enabled lights
// NOTE: If values are not changed in real time, they can be set at initialization!!!
SetShaderLightsValues(material.shader);
//SetShaderActive(0);
// Setup orbital camera
SetCameraMode(camera, CAMERA_ORBITAL); // Set an orbital camera mode
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdateCamera(&camera); // Update camera
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
Begin3dMode(camera);
DrawModel(dwarf, position, 2.0f, WHITE); // Draw 3d model with texture
DrawLight(spotLight); // Draw spot light
DrawLight(dirLight); // Draw directional light
DrawLight(pointLight); // Draw point light
DrawGrid(10, 1.0f); // Draw a grid
End3dMode();
DrawText("(c) Dwarf 3D model by David Moreno", screenWidth - 200, screenHeight - 20, 10, GRAY);
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadMaterial(material); // Unload material and assigned textures
UnloadModel(dwarf); // Unload model
// Destroy all created lights
DestroyLight(pointLight);
DestroyLight(dirLight);
DestroyLight(spotLight);
// Unload lights
if (lightsCount > 0)
{
for (int i = 0; i < lightsCount; i++) free(lights[i]);
lightsCount = 0;
}
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}
//--------------------------------------------------------------------------------------------
// Module Functions Definitions
//--------------------------------------------------------------------------------------------
// Create a new light, initialize it and add to pool
Light CreateLight(int type, Vector3 position, Color diffuse)
{
Light light = NULL;
if (lightsCount < MAX_LIGHTS)
{
// Allocate dynamic memory
light = (Light)malloc(sizeof(LightData));
// Initialize light values with generic values
light->id = lightsCount;
light->type = type;
light->enabled = true;
light->position = position;
light->target = (Vector3){ 0.0f, 0.0f, 0.0f };
light->intensity = 1.0f;
light->diffuse = diffuse;
// Add new light to the array
lights[lightsCount] = light;
// Increase enabled lights count
lightsCount++;
}
else
{
// NOTE: Returning latest created light to avoid crashes
light = lights[lightsCount];
}
return light;
}
// Destroy a light and take it out of the list
void DestroyLight(Light light)
{
if (light != NULL)
{
int lightId = light->id;
// Free dynamic memory allocation
free(lights[lightId]);
// Remove *obj from the pointers array
for (int i = lightId; i < lightsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < lightsCount)
{
lights[i] = lights[i + 1];
lights[i]->id = lights[i + 1]->id;
}
}
// Decrease enabled physic objects count
lightsCount--;
}
}
// Draw light in 3D world
void DrawLight(Light light)
{
switch (light->type)
{
case LIGHT_POINT:
{
DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 0, 0, 0 }, 0.0f, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 1, 0, 0 }, 90.0f, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 0, 1, 0 },90.0f, (light->enabled ? light->diffuse : GRAY));
} break;
case LIGHT_DIRECTIONAL:
{
DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY));
DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY));
DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY));
} break;
case LIGHT_SPOT:
{
DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY));
Vector3 dir = VectorSubtract(light->target, light->position);
VectorNormalize(&dir);
DrawCircle3D(light->position, 0.5f, dir, 0.0f, (light->enabled ? light->diffuse : GRAY));
//DrawCylinderWires(light->position, 0.0f, 0.3f*light->coneAngle/50, 0.6f, 5, (light->enabled ? light->diffuse : GRAY));
DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY));
} break;
default: break;
}
}
// Get shader locations for lights (up to MAX_LIGHTS)
static void GetShaderLightsLocations(Shader shader)
{
char locName[32] = "lights[x].\0";
char locNameUpdated[64];
for (int i = 0; i < MAX_LIGHTS; i++)
{
locName[7] = '0' + i;
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "enabled\0");
lightsLocs[i][0] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "type\0");
lightsLocs[i][1] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "position\0");
lightsLocs[i][2] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "direction\0");
lightsLocs[i][3] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "radius\0");
lightsLocs[i][4] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "diffuse\0");
lightsLocs[i][5] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "intensity\0");
lightsLocs[i][6] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "coneAngle\0");
lightsLocs[i][7] = GetShaderLocation(shader, locNameUpdated);
}
}
// Set shader uniform values for lights
// NOTE: It would be far easier with shader UBOs but are not supported on OpenGL ES 2.0
// TODO: Replace glUniform1i(), glUniform1f(), glUniform3f(), glUniform4f():
//SetShaderValue(Shader shader, int uniformLoc, float *value, int size)
//SetShaderValuei(Shader shader, int uniformLoc, int *value, int size)
static void SetShaderLightsValues(Shader shader)
{
int tempInt[8] = { 0 };
float tempFloat[8] = { 0.0f };
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (i < lightsCount)
{
tempInt[0] = lights[i]->enabled;
SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], lights[i]->enabled);
tempInt[0] = lights[i]->type;
SetShaderValuei(shader, lightsLocs[i][1], tempInt, 1); //glUniform1i(lightsLocs[i][1], lights[i]->type);
tempFloat[0] = (float)lights[i]->diffuse.r/255.0f;
tempFloat[1] = (float)lights[i]->diffuse.g/255.0f;
tempFloat[2] = (float)lights[i]->diffuse.b/255.0f;
tempFloat[3] = (float)lights[i]->diffuse.a/255.0f;
SetShaderValue(shader, lightsLocs[i][5], tempFloat, 4);
//glUniform4f(lightsLocs[i][5], (float)lights[i]->diffuse.r/255, (float)lights[i]->diffuse.g/255, (float)lights[i]->diffuse.b/255, (float)lights[i]->diffuse.a/255);
tempFloat[0] = lights[i]->intensity;
SetShaderValue(shader, lightsLocs[i][6], tempFloat, 1);
switch (lights[i]->type)
{
case LIGHT_POINT:
{
tempFloat[0] = lights[i]->position.x;
tempFloat[1] = lights[i]->position.y;
tempFloat[2] = lights[i]->position.z;
SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3);
tempFloat[0] = lights[i]->radius;
SetShaderValue(shader, lightsLocs[i][4], tempFloat, 1);
//glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
//glUniform1f(lightsLocs[i][4], lights[i]->radius);
} break;
case LIGHT_DIRECTIONAL:
{
Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position);
VectorNormalize(&direction);
tempFloat[0] = direction.x;
tempFloat[1] = direction.y;
tempFloat[2] = direction.z;
SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3);
//glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z);
} break;
case LIGHT_SPOT:
{
tempFloat[0] = lights[i]->position.x;
tempFloat[1] = lights[i]->position.y;
tempFloat[2] = lights[i]->position.z;
SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3);
//glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position);
VectorNormalize(&direction);
tempFloat[0] = direction.x;
tempFloat[1] = direction.y;
tempFloat[2] = direction.z;
SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3);
//glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z);
tempFloat[0] = lights[i]->coneAngle;
SetShaderValue(shader, lightsLocs[i][7], tempFloat, 1);
//glUniform1f(lightsLocs[i][7], lights[i]->coneAngle);
} break;
default: break;
}
}
else
{
tempInt[0] = 0;
SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], 0); // Light disabled
}
}
}
// Calculate vector lenght
float VectorLength(const Vector3 v)
{
float length;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
return length;
}
// Normalize provided vector
void VectorNormalize(Vector3 *v)
{
float length, ilength;
length = VectorLength(*v);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
v->x *= ilength;
v->y *= ilength;
v->z *= ilength;
}
// Substract two vectors
Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
{
Vector3 result;
result.x = v1.x - v2.x;
result.y = v1.y - v2.y;
result.z = v1.z - v2.z;
return result;
}