1229 lines
31 KiB
Go
1229 lines
31 KiB
Go
package rl
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
// Vector2Zero - Vector with components value 0.0
|
|
func Vector2Zero() Vector2 {
|
|
return NewVector2(0.0, 0.0)
|
|
}
|
|
|
|
// Vector2One - Vector with components value 1.0
|
|
func Vector2One() Vector2 {
|
|
return NewVector2(1.0, 1.0)
|
|
}
|
|
|
|
// Vector2Add - Add two vectors (v1 + v2)
|
|
func Vector2Add(v1, v2 Vector2) Vector2 {
|
|
return NewVector2(v1.X+v2.X, v1.Y+v2.Y)
|
|
}
|
|
|
|
// Vector2Subtract - Subtract two vectors (v1 - v2)
|
|
func Vector2Subtract(v1, v2 Vector2) Vector2 {
|
|
return NewVector2(v1.X-v2.X, v1.Y-v2.Y)
|
|
}
|
|
|
|
// Vector2Length - Calculate vector length
|
|
func Vector2Length(v Vector2) float32 {
|
|
return float32(math.Sqrt(float64((v.X * v.X) + (v.Y * v.Y))))
|
|
}
|
|
|
|
// Vector2DotProduct - Calculate two vectors dot product
|
|
func Vector2DotProduct(v1, v2 Vector2) float32 {
|
|
return v1.X*v2.X + v1.Y*v2.Y
|
|
}
|
|
|
|
// Vector2Distance - Calculate distance between two vectors
|
|
func Vector2Distance(v1, v2 Vector2) float32 {
|
|
return float32(math.Sqrt(float64((v1.X-v2.X)*(v1.X-v2.X) + (v1.Y-v2.Y)*(v1.Y-v2.Y))))
|
|
}
|
|
|
|
// Vector2Angle - Calculate angle from two vectors in radians
|
|
func Vector2Angle(v1, v2 Vector2) float32 {
|
|
result := math.Atan2(float64(v2.Y), float64(v2.X)) - math.Atan2(float64(v1.Y), float64(v1.X))
|
|
return float32(result)
|
|
}
|
|
|
|
// Vector2Scale - Scale vector (multiply by value)
|
|
func Vector2Scale(v Vector2, scale float32) Vector2 {
|
|
return NewVector2(v.X*scale, v.Y*scale)
|
|
}
|
|
|
|
// Vector2Multiply - Multiply vector by vector
|
|
func Vector2Multiply(v1, v2 Vector2) Vector2 {
|
|
return NewVector2(v1.X*v2.X, v1.Y*v2.Y)
|
|
}
|
|
|
|
// Vector2Negate - Negate vector
|
|
func Vector2Negate(v Vector2) Vector2 {
|
|
return NewVector2(-v.X, -v.Y)
|
|
}
|
|
|
|
// Vector2DivideV - Divide vector by vector
|
|
func Vector2DivideV(v1, v2 Vector2) Vector2 {
|
|
return NewVector2(v1.X/v2.X, v1.Y/v2.Y)
|
|
}
|
|
|
|
// Vector2Normalize - Normalize provided vector
|
|
func Vector2Normalize(v Vector2) Vector2 {
|
|
return Vector2Scale(v, 1/Vector2Length(v))
|
|
}
|
|
|
|
// Vector2Lerp - Calculate linear interpolation between two vectors
|
|
func Vector2Lerp(v1, v2 Vector2, amount float32) Vector2 {
|
|
return NewVector2(v1.X+amount*(v2.X-v1.X), v1.Y+amount*(v2.Y-v1.Y))
|
|
}
|
|
|
|
// Vector2CrossProduct - Calculate two vectors cross product
|
|
func Vector2CrossProduct(v1, v2 Vector2) float32 {
|
|
return v1.X*v2.Y - v1.Y*v2.X
|
|
}
|
|
|
|
// Vector2Cross - Calculate the cross product of a vector and a value
|
|
func Vector2Cross(value float32, vector Vector2) Vector2 {
|
|
return NewVector2(-value*vector.Y, value*vector.X)
|
|
}
|
|
|
|
// Vector2LenSqr - Returns the len square root of a vector
|
|
func Vector2LenSqr(vector Vector2) float32 {
|
|
return vector.X*vector.X + vector.Y*vector.Y
|
|
}
|
|
|
|
// Mat2Radians - Creates a matrix 2x2 from a given radians value
|
|
func Mat2Radians(radians float32) Mat2 {
|
|
c := float32(math.Cos(float64(radians)))
|
|
s := float32(math.Sin(float64(radians)))
|
|
|
|
return NewMat2(c, -s, s, c)
|
|
}
|
|
|
|
// Mat2Set - Set values from radians to a created matrix 2x2
|
|
func Mat2Set(matrix *Mat2, radians float32) {
|
|
cos := float32(math.Cos(float64(radians)))
|
|
sin := float32(math.Sin(float64(radians)))
|
|
|
|
matrix.M00 = cos
|
|
matrix.M01 = -sin
|
|
matrix.M10 = sin
|
|
matrix.M11 = cos
|
|
}
|
|
|
|
// Mat2Transpose - Returns the transpose of a given matrix 2x2
|
|
func Mat2Transpose(matrix Mat2) Mat2 {
|
|
return NewMat2(matrix.M00, matrix.M10, matrix.M01, matrix.M11)
|
|
}
|
|
|
|
// Mat2MultiplyVector2 - Multiplies a vector by a matrix 2x2
|
|
func Mat2MultiplyVector2(matrix Mat2, vector Vector2) Vector2 {
|
|
return NewVector2(matrix.M00*vector.X+matrix.M01*vector.Y, matrix.M10*vector.X+matrix.M11*vector.Y)
|
|
}
|
|
|
|
// Vector3Zero - Vector with components value 0.0
|
|
func Vector3Zero() Vector3 {
|
|
return NewVector3(0.0, 0.0, 0.0)
|
|
}
|
|
|
|
// Vector3One - Vector with components value 1.0
|
|
func Vector3One() Vector3 {
|
|
return NewVector3(1.0, 1.0, 1.0)
|
|
}
|
|
|
|
// Vector3Add - Add two vectors
|
|
func Vector3Add(v1, v2 Vector3) Vector3 {
|
|
return NewVector3(v1.X+v2.X, v1.Y+v2.Y, v1.Z+v2.Z)
|
|
}
|
|
|
|
// Vector3Multiply - Multiply vector by scalar
|
|
func Vector3Multiply(v Vector3, scalar float32) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = v.X * scalar
|
|
result.Y = v.Y * scalar
|
|
result.Z = v.Z * scalar
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3MultiplyV - Multiply vector by vector
|
|
func Vector3MultiplyV(v1, v2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = v1.X * v2.X
|
|
result.Y = v1.Y * v2.Y
|
|
result.Z = v1.Z * v2.Z
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Subtract - Subtract two vectors
|
|
func Vector3Subtract(v1, v2 Vector3) Vector3 {
|
|
return NewVector3(v1.X-v2.X, v1.Y-v2.Y, v1.Z-v2.Z)
|
|
}
|
|
|
|
// Vector3CrossProduct - Calculate two vectors cross product
|
|
func Vector3CrossProduct(v1, v2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = v1.Y*v2.Z - v1.Z*v2.Y
|
|
result.Y = v1.Z*v2.X - v1.X*v2.Z
|
|
result.Z = v1.X*v2.Y - v1.Y*v2.X
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Perpendicular - Calculate one vector perpendicular vector
|
|
func Vector3Perpendicular(v Vector3) Vector3 {
|
|
min := math.Abs(float64(v.X))
|
|
cardinalAxis := NewVector3(1.0, 0.0, 0.0)
|
|
|
|
if math.Abs(float64(v.Y)) < min {
|
|
min = math.Abs(float64(v.Y))
|
|
cardinalAxis = NewVector3(0.0, 1.0, 0.0)
|
|
}
|
|
|
|
if math.Abs(float64(v.Z)) < min {
|
|
cardinalAxis = NewVector3(0.0, 0.0, 1.0)
|
|
}
|
|
|
|
result := Vector3CrossProduct(v, cardinalAxis)
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Length - Calculate vector length
|
|
func Vector3Length(v Vector3) float32 {
|
|
return float32(math.Sqrt(float64(v.X*v.X + v.Y*v.Y + v.Z*v.Z)))
|
|
}
|
|
|
|
// Vector3DotProduct - Calculate two vectors dot product
|
|
func Vector3DotProduct(v1, v2 Vector3) float32 {
|
|
return v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z
|
|
}
|
|
|
|
// Vector3Distance - Calculate distance between two vectors
|
|
func Vector3Distance(v1, v2 Vector3) float32 {
|
|
dx := v2.X - v1.X
|
|
dy := v2.Y - v1.Y
|
|
dz := v2.Z - v1.Z
|
|
|
|
return float32(math.Sqrt(float64(dx*dx + dy*dy + dz*dz)))
|
|
}
|
|
|
|
// Vector3Angle - Calculate angle between two vectors
|
|
func Vector3Angle(v1 Vector3, v2 Vector3) float32 {
|
|
var result float32
|
|
|
|
cross := Vector3{X: v1.Y*v2.Z - v1.Z*v2.Y, Y: v1.Z*v2.X - v1.X*v2.Z, Z: v1.X*v2.Y - v1.Y*v2.X}
|
|
length := float32(math.Sqrt(float64(cross.X*cross.X + cross.Y*cross.Y + cross.Z*cross.Z)))
|
|
dot := v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z
|
|
result = float32(math.Atan2(float64(length), float64(dot)))
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Scale - Scale provided vector
|
|
func Vector3Scale(v Vector3, scale float32) Vector3 {
|
|
return NewVector3(v.X*scale, v.Y*scale, v.Z*scale)
|
|
}
|
|
|
|
// Vector3Negate - Negate provided vector (invert direction)
|
|
func Vector3Negate(v Vector3) Vector3 {
|
|
return NewVector3(-v.X, -v.Y, -v.Z)
|
|
}
|
|
|
|
// Vector3Normalize - Normalize provided vector
|
|
func Vector3Normalize(v Vector3) Vector3 {
|
|
result := v
|
|
|
|
var length, ilength float32
|
|
|
|
length = Vector3Length(v)
|
|
|
|
if length == 0 {
|
|
length = 1.0
|
|
}
|
|
|
|
ilength = 1.0 / length
|
|
|
|
result.X *= ilength
|
|
result.Y *= ilength
|
|
result.Z *= ilength
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Project - Calculate the projection of the vector v1 on to v2
|
|
func Vector3Project(v1, v2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
v1dv2 := (v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z)
|
|
v2dv2 := (v2.X*v2.X + v2.Y*v2.Y + v2.Z*v2.Z)
|
|
|
|
mag := v1dv2 / v2dv2
|
|
|
|
result.X = v2.X * mag
|
|
result.Y = v2.Y * mag
|
|
result.Z = v2.Z * mag
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Reject - Calculate the rejection of the vector v1 on to v2
|
|
func Vector3Reject(v1, v2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
v1dv2 := (v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z)
|
|
v2dv2 := (v2.X*v2.X + v2.Y*v2.Y + v2.Z*v2.Z)
|
|
|
|
mag := v1dv2 / v2dv2
|
|
|
|
result.X = v1.X - (v2.X * mag)
|
|
result.Y = v1.Y - (v2.Y * mag)
|
|
result.Z = v1.Z - (v2.Z * mag)
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Transform - Transforms a Vector3 by a given Matrix
|
|
func Vector3Transform(v Vector3, mat Matrix) Vector3 {
|
|
result := Vector3{}
|
|
|
|
x := v.X
|
|
y := v.Y
|
|
z := v.Z
|
|
|
|
result.X = mat.M0*x + mat.M4*y + mat.M8*z + mat.M12
|
|
result.Y = mat.M1*x + mat.M5*y + mat.M9*z + mat.M13
|
|
result.Z = mat.M2*x + mat.M6*y + mat.M10*z + mat.M14
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3RotateByQuaternion - Transform a vector by quaternion rotation
|
|
func Vector3RotateByQuaternion(v Vector3, q Quaternion) Vector3 {
|
|
var result Vector3
|
|
|
|
result.X = v.X*(q.X*q.X+q.W*q.W-q.Y*q.Y-q.Z*q.Z) + v.Y*(2*q.X*q.Y-2*q.W*q.Z) + v.Z*(2*q.X*q.Z+2*q.W*q.Y)
|
|
result.Y = v.X*(2*q.W*q.Z+2*q.X*q.Y) + v.Y*(q.W*q.W-q.X*q.X+q.Y*q.Y-q.Z*q.Z) + v.Z*(-2*q.W*q.X+2*q.Y*q.Z)
|
|
result.Z = v.X*(-2*q.W*q.Y+2*q.X*q.Z) + v.Y*(2*q.W*q.X+2*q.Y*q.Z) + v.Z*(q.W*q.W-q.X*q.X-q.Y*q.Y+q.Z*q.Z)
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3RotateByAxisAngle - Rotates a vector around an axis
|
|
func Vector3RotateByAxisAngle(v Vector3, axis Vector3, angle float32) Vector3 {
|
|
// Using Euler-Rodrigues Formula
|
|
// Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
|
|
|
|
result := v
|
|
|
|
// Vector3Normalize(axis);
|
|
length := float32(math.Sqrt(float64(axis.X*axis.X + axis.Y*axis.Y + axis.Z*axis.Z)))
|
|
if length == 0.0 {
|
|
length = 1.0
|
|
}
|
|
ilength := 1.0 / length
|
|
axis.X *= ilength
|
|
axis.Y *= ilength
|
|
axis.Z *= ilength
|
|
|
|
angle /= 2.0
|
|
a := float32(math.Sin(float64(angle)))
|
|
b := axis.X * a
|
|
c := axis.Y * a
|
|
d := axis.Z * a
|
|
a = float32(math.Cos(float64(angle)))
|
|
w := NewVector3(b, c, d)
|
|
|
|
// Vector3CrossProduct(w, v)
|
|
wv := NewVector3(w.Y*v.Z-w.Z*v.Y, w.Z*v.X-w.X*v.Z, w.X*v.Y-w.Y*v.X)
|
|
|
|
// Vector3CrossProduct(w, wv)
|
|
wwv := NewVector3(w.Y*wv.Z-w.Z*wv.Y, w.Z*wv.X-w.X*wv.Z, w.X*wv.Y-w.Y*wv.X)
|
|
|
|
// Vector3Scale(wv, 2*a)
|
|
a *= 2
|
|
wv.X *= a
|
|
wv.Y *= a
|
|
wv.Z *= a
|
|
|
|
// Vector3Scale(wwv, 2)
|
|
wwv.X *= 2
|
|
wwv.Y *= 2
|
|
wwv.Z *= 2
|
|
|
|
result.X += wv.X
|
|
result.Y += wv.Y
|
|
result.Z += wv.Z
|
|
|
|
result.X += wwv.X
|
|
result.Y += wwv.Y
|
|
result.Z += wwv.Z
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Lerp - Calculate linear interpolation between two vectors
|
|
func Vector3Lerp(v1, v2 Vector3, amount float32) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = v1.X + amount*(v2.X-v1.X)
|
|
result.Y = v1.Y + amount*(v2.Y-v1.Y)
|
|
result.Z = v1.Z + amount*(v2.Z-v1.Z)
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Reflect - Calculate reflected vector to normal
|
|
func Vector3Reflect(vector, normal Vector3) Vector3 {
|
|
// I is the original vector
|
|
// N is the normal of the incident plane
|
|
// R = I - (2*N*( DotProduct[ I,N] ))
|
|
|
|
result := Vector3{}
|
|
|
|
dotProduct := Vector3DotProduct(vector, normal)
|
|
|
|
result.X = vector.X - (2.0*normal.X)*dotProduct
|
|
result.Y = vector.Y - (2.0*normal.Y)*dotProduct
|
|
result.Z = vector.Z - (2.0*normal.Z)*dotProduct
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Min - Return min value for each pair of components
|
|
func Vector3Min(vec1, vec2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = float32(math.Min(float64(vec1.X), float64(vec2.X)))
|
|
result.Y = float32(math.Min(float64(vec1.Y), float64(vec2.Y)))
|
|
result.Z = float32(math.Min(float64(vec1.Z), float64(vec2.Z)))
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Max - Return max value for each pair of components
|
|
func Vector3Max(vec1, vec2 Vector3) Vector3 {
|
|
result := Vector3{}
|
|
|
|
result.X = float32(math.Max(float64(vec1.X), float64(vec2.X)))
|
|
result.Y = float32(math.Max(float64(vec1.Y), float64(vec2.Y)))
|
|
result.Z = float32(math.Max(float64(vec1.Z), float64(vec2.Z)))
|
|
|
|
return result
|
|
}
|
|
|
|
// Vector3Barycenter - Barycenter coords for p in triangle abc
|
|
func Vector3Barycenter(p, a, b, c Vector3) Vector3 {
|
|
v0 := Vector3Subtract(b, a)
|
|
v1 := Vector3Subtract(c, a)
|
|
v2 := Vector3Subtract(p, a)
|
|
d00 := Vector3DotProduct(v0, v0)
|
|
d01 := Vector3DotProduct(v0, v1)
|
|
d11 := Vector3DotProduct(v1, v1)
|
|
d20 := Vector3DotProduct(v2, v0)
|
|
d21 := Vector3DotProduct(v2, v1)
|
|
|
|
denom := d00*d11 - d01*d01
|
|
|
|
result := Vector3{}
|
|
|
|
result.Y = (d11*d20 - d01*d21) / denom
|
|
result.Z = (d00*d21 - d01*d20) / denom
|
|
result.X = 1.0 - (result.Z + result.Y)
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixDeterminant - Compute matrix determinant
|
|
func MatrixDeterminant(mat Matrix) float32 {
|
|
var result float32
|
|
|
|
a00 := mat.M0
|
|
a01 := mat.M1
|
|
a02 := mat.M2
|
|
a03 := mat.M3
|
|
a10 := mat.M4
|
|
a11 := mat.M5
|
|
a12 := mat.M6
|
|
a13 := mat.M7
|
|
a20 := mat.M8
|
|
a21 := mat.M9
|
|
a22 := mat.M10
|
|
a23 := mat.M11
|
|
a30 := mat.M12
|
|
a31 := mat.M13
|
|
a32 := mat.M14
|
|
a33 := mat.M15
|
|
|
|
result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
|
|
a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
|
|
a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
|
|
a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
|
|
a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
|
|
a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixTrace - Returns the trace of the matrix (sum of the values along the diagonal)
|
|
func MatrixTrace(mat Matrix) float32 {
|
|
return mat.M0 + mat.M5 + mat.M10 + mat.M15
|
|
}
|
|
|
|
// MatrixTranspose - Transposes provided matrix
|
|
func MatrixTranspose(mat Matrix) Matrix {
|
|
var result Matrix
|
|
|
|
result.M0 = mat.M0
|
|
result.M1 = mat.M4
|
|
result.M2 = mat.M8
|
|
result.M3 = mat.M12
|
|
result.M4 = mat.M1
|
|
result.M5 = mat.M5
|
|
result.M6 = mat.M9
|
|
result.M7 = mat.M13
|
|
result.M8 = mat.M2
|
|
result.M9 = mat.M6
|
|
result.M10 = mat.M10
|
|
result.M11 = mat.M14
|
|
result.M12 = mat.M3
|
|
result.M13 = mat.M7
|
|
result.M14 = mat.M11
|
|
result.M15 = mat.M15
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixInvert - Invert provided matrix
|
|
func MatrixInvert(mat Matrix) Matrix {
|
|
var result Matrix
|
|
|
|
a00 := mat.M0
|
|
a01 := mat.M1
|
|
a02 := mat.M2
|
|
a03 := mat.M3
|
|
a10 := mat.M4
|
|
a11 := mat.M5
|
|
a12 := mat.M6
|
|
a13 := mat.M7
|
|
a20 := mat.M8
|
|
a21 := mat.M9
|
|
a22 := mat.M10
|
|
a23 := mat.M11
|
|
a30 := mat.M12
|
|
a31 := mat.M13
|
|
a32 := mat.M14
|
|
a33 := mat.M15
|
|
|
|
b00 := a00*a11 - a01*a10
|
|
b01 := a00*a12 - a02*a10
|
|
b02 := a00*a13 - a03*a10
|
|
b03 := a01*a12 - a02*a11
|
|
b04 := a01*a13 - a03*a11
|
|
b05 := a02*a13 - a03*a12
|
|
b06 := a20*a31 - a21*a30
|
|
b07 := a20*a32 - a22*a30
|
|
b08 := a20*a33 - a23*a30
|
|
b09 := a21*a32 - a22*a31
|
|
b10 := a21*a33 - a23*a31
|
|
b11 := a22*a33 - a23*a32
|
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching)
|
|
invDet := 1.0 / (b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06)
|
|
|
|
result.M0 = (a11*b11 - a12*b10 + a13*b09) * invDet
|
|
result.M1 = (-a01*b11 + a02*b10 - a03*b09) * invDet
|
|
result.M2 = (a31*b05 - a32*b04 + a33*b03) * invDet
|
|
result.M3 = (-a21*b05 + a22*b04 - a23*b03) * invDet
|
|
result.M4 = (-a10*b11 + a12*b08 - a13*b07) * invDet
|
|
result.M5 = (a00*b11 - a02*b08 + a03*b07) * invDet
|
|
result.M6 = (-a30*b05 + a32*b02 - a33*b01) * invDet
|
|
result.M7 = (a20*b05 - a22*b02 + a23*b01) * invDet
|
|
result.M8 = (a10*b10 - a11*b08 + a13*b06) * invDet
|
|
result.M9 = (-a00*b10 + a01*b08 - a03*b06) * invDet
|
|
result.M10 = (a30*b04 - a31*b02 + a33*b00) * invDet
|
|
result.M11 = (-a20*b04 + a21*b02 - a23*b00) * invDet
|
|
result.M12 = (-a10*b09 + a11*b07 - a12*b06) * invDet
|
|
result.M13 = (a00*b09 - a01*b07 + a02*b06) * invDet
|
|
result.M14 = (-a30*b03 + a31*b01 - a32*b00) * invDet
|
|
result.M15 = (a20*b03 - a21*b01 + a22*b00) * invDet
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixNormalize - Normalize provided matrix
|
|
func MatrixNormalize(mat Matrix) Matrix {
|
|
var result Matrix
|
|
|
|
det := MatrixDeterminant(mat)
|
|
|
|
result.M0 /= det
|
|
result.M1 /= det
|
|
result.M2 /= det
|
|
result.M3 /= det
|
|
result.M4 /= det
|
|
result.M5 /= det
|
|
result.M6 /= det
|
|
result.M7 /= det
|
|
result.M8 /= det
|
|
result.M9 /= det
|
|
result.M10 /= det
|
|
result.M11 /= det
|
|
result.M12 /= det
|
|
result.M13 /= det
|
|
result.M14 /= det
|
|
result.M15 /= det
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixIdentity - Returns identity matrix
|
|
func MatrixIdentity() Matrix {
|
|
return NewMatrix(
|
|
1.0, 0.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0,
|
|
0.0, 0.0, 0.0, 1.0)
|
|
}
|
|
|
|
// MatrixAdd - Add two matrices
|
|
func MatrixAdd(left, right Matrix) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
result.M0 = left.M0 + right.M0
|
|
result.M1 = left.M1 + right.M1
|
|
result.M2 = left.M2 + right.M2
|
|
result.M3 = left.M3 + right.M3
|
|
result.M4 = left.M4 + right.M4
|
|
result.M5 = left.M5 + right.M5
|
|
result.M6 = left.M6 + right.M6
|
|
result.M7 = left.M7 + right.M7
|
|
result.M8 = left.M8 + right.M8
|
|
result.M9 = left.M9 + right.M9
|
|
result.M10 = left.M10 + right.M10
|
|
result.M11 = left.M11 + right.M11
|
|
result.M12 = left.M12 + right.M12
|
|
result.M13 = left.M13 + right.M13
|
|
result.M14 = left.M14 + right.M14
|
|
result.M15 = left.M15 + right.M15
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixSubtract - Subtract two matrices (left - right)
|
|
func MatrixSubtract(left, right Matrix) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
result.M0 = left.M0 - right.M0
|
|
result.M1 = left.M1 - right.M1
|
|
result.M2 = left.M2 - right.M2
|
|
result.M3 = left.M3 - right.M3
|
|
result.M4 = left.M4 - right.M4
|
|
result.M5 = left.M5 - right.M5
|
|
result.M6 = left.M6 - right.M6
|
|
result.M7 = left.M7 - right.M7
|
|
result.M8 = left.M8 - right.M8
|
|
result.M9 = left.M9 - right.M9
|
|
result.M10 = left.M10 - right.M10
|
|
result.M11 = left.M11 - right.M11
|
|
result.M12 = left.M12 - right.M12
|
|
result.M13 = left.M13 - right.M13
|
|
result.M14 = left.M14 - right.M14
|
|
result.M15 = left.M15 - right.M15
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixTranslate - Returns translation matrix
|
|
func MatrixTranslate(x, y, z float32) Matrix {
|
|
return NewMatrix(
|
|
1.0, 0.0, 0.0, x,
|
|
0.0, 1.0, 0.0, y,
|
|
0.0, 0.0, 1.0, z,
|
|
0, 0, 0, 1.0)
|
|
}
|
|
|
|
// MatrixRotate - Returns rotation matrix for an angle around an specified axis (angle in radians)
|
|
func MatrixRotate(axis Vector3, angle float32) Matrix {
|
|
var result Matrix
|
|
|
|
mat := MatrixIdentity()
|
|
|
|
x := axis.X
|
|
y := axis.Y
|
|
z := axis.Z
|
|
|
|
length := float32(math.Sqrt(float64(x*x + y*y + z*z)))
|
|
|
|
if length != 1.0 && length != 0.0 {
|
|
length = 1.0 / length
|
|
x *= length
|
|
y *= length
|
|
z *= length
|
|
}
|
|
|
|
sinres := float32(math.Sin(float64(angle)))
|
|
cosres := float32(math.Cos(float64(angle)))
|
|
t := 1.0 - cosres
|
|
|
|
// Cache some matrix values (speed optimization)
|
|
a00 := mat.M0
|
|
a01 := mat.M1
|
|
a02 := mat.M2
|
|
a03 := mat.M3
|
|
a10 := mat.M4
|
|
a11 := mat.M5
|
|
a12 := mat.M6
|
|
a13 := mat.M7
|
|
a20 := mat.M8
|
|
a21 := mat.M9
|
|
a22 := mat.M10
|
|
a23 := mat.M11
|
|
|
|
// Construct the elements of the rotation matrix
|
|
b00 := x*x*t + cosres
|
|
b01 := y*x*t + z*sinres
|
|
b02 := z*x*t - y*sinres
|
|
b10 := x*y*t - z*sinres
|
|
b11 := y*y*t + cosres
|
|
b12 := z*y*t + x*sinres
|
|
b20 := x*z*t + y*sinres
|
|
b21 := y*z*t - x*sinres
|
|
b22 := z*z*t + cosres
|
|
|
|
// Perform rotation-specific matrix multiplication
|
|
result.M0 = a00*b00 + a10*b01 + a20*b02
|
|
result.M1 = a01*b00 + a11*b01 + a21*b02
|
|
result.M2 = a02*b00 + a12*b01 + a22*b02
|
|
result.M3 = a03*b00 + a13*b01 + a23*b02
|
|
result.M4 = a00*b10 + a10*b11 + a20*b12
|
|
result.M5 = a01*b10 + a11*b11 + a21*b12
|
|
result.M6 = a02*b10 + a12*b11 + a22*b12
|
|
result.M7 = a03*b10 + a13*b11 + a23*b12
|
|
result.M8 = a00*b20 + a10*b21 + a20*b22
|
|
result.M9 = a01*b20 + a11*b21 + a21*b22
|
|
result.M10 = a02*b20 + a12*b21 + a22*b22
|
|
result.M11 = a03*b20 + a13*b21 + a23*b22
|
|
result.M12 = mat.M12
|
|
result.M13 = mat.M13
|
|
result.M14 = mat.M14
|
|
result.M15 = mat.M15
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixRotateX - Returns x-rotation matrix (angle in radians)
|
|
func MatrixRotateX(angle float32) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
cosres := float32(math.Cos(float64(angle)))
|
|
sinres := float32(math.Sin(float64(angle)))
|
|
|
|
result.M5 = cosres
|
|
result.M6 = -sinres
|
|
result.M9 = sinres
|
|
result.M10 = cosres
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixRotateY - Returns y-rotation matrix (angle in radians)
|
|
func MatrixRotateY(angle float32) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
cosres := float32(math.Cos(float64(angle)))
|
|
sinres := float32(math.Sin(float64(angle)))
|
|
|
|
result.M0 = cosres
|
|
result.M2 = sinres
|
|
result.M8 = -sinres
|
|
result.M10 = cosres
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixRotateZ - Returns z-rotation matrix (angle in radians)
|
|
func MatrixRotateZ(angle float32) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
cosres := float32(math.Cos(float64(angle)))
|
|
sinres := float32(math.Sin(float64(angle)))
|
|
|
|
result.M0 = cosres
|
|
result.M1 = -sinres
|
|
result.M4 = sinres
|
|
result.M5 = cosres
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixRotateXYZ - Get xyz-rotation matrix (angles in radians)
|
|
func MatrixRotateXYZ(ang Vector3) Matrix {
|
|
result := MatrixIdentity()
|
|
|
|
cosz := float32(math.Cos(float64(-ang.Z)))
|
|
sinz := float32(math.Sin(float64(-ang.Z)))
|
|
cosy := float32(math.Cos(float64(-ang.Y)))
|
|
siny := float32(math.Sin(float64(-ang.Y)))
|
|
cosx := float32(math.Cos(float64(-ang.X)))
|
|
sinx := float32(math.Sin(float64(-ang.X)))
|
|
|
|
result.M0 = cosz * cosy
|
|
result.M4 = (cosz * siny * sinx) - (sinz * cosx)
|
|
result.M8 = (cosz * siny * cosx) + (sinz * sinx)
|
|
|
|
result.M1 = sinz * cosy
|
|
result.M5 = (sinz * siny * sinx) + (cosz * cosx)
|
|
result.M9 = (sinz * siny * cosx) - (cosz * sinx)
|
|
|
|
result.M2 = -siny
|
|
result.M6 = cosy * sinx
|
|
result.M10 = cosy * cosx
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixScale - Returns scaling matrix
|
|
func MatrixScale(x, y, z float32) Matrix {
|
|
result := NewMatrix(
|
|
x, 0.0, 0.0, 0.0,
|
|
0.0, y, 0.0, 0.0,
|
|
0.0, 0.0, z, 0.0,
|
|
0.0, 0.0, 0.0, 1.0)
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixMultiply - Returns two matrix multiplication
|
|
func MatrixMultiply(left, right Matrix) Matrix {
|
|
var result Matrix
|
|
|
|
result.M0 = left.M0*right.M0 + left.M1*right.M4 + left.M2*right.M8 + left.M3*right.M12
|
|
result.M1 = left.M0*right.M1 + left.M1*right.M5 + left.M2*right.M9 + left.M3*right.M13
|
|
result.M2 = left.M0*right.M2 + left.M1*right.M6 + left.M2*right.M10 + left.M3*right.M14
|
|
result.M3 = left.M0*right.M3 + left.M1*right.M7 + left.M2*right.M11 + left.M3*right.M15
|
|
result.M4 = left.M4*right.M0 + left.M5*right.M4 + left.M6*right.M8 + left.M7*right.M12
|
|
result.M5 = left.M4*right.M1 + left.M5*right.M5 + left.M6*right.M9 + left.M7*right.M13
|
|
result.M6 = left.M4*right.M2 + left.M5*right.M6 + left.M6*right.M10 + left.M7*right.M14
|
|
result.M7 = left.M4*right.M3 + left.M5*right.M7 + left.M6*right.M11 + left.M7*right.M15
|
|
result.M8 = left.M8*right.M0 + left.M9*right.M4 + left.M10*right.M8 + left.M11*right.M12
|
|
result.M9 = left.M8*right.M1 + left.M9*right.M5 + left.M10*right.M9 + left.M11*right.M13
|
|
result.M10 = left.M8*right.M2 + left.M9*right.M6 + left.M10*right.M10 + left.M11*right.M14
|
|
result.M11 = left.M8*right.M3 + left.M9*right.M7 + left.M10*right.M11 + left.M11*right.M15
|
|
result.M12 = left.M12*right.M0 + left.M13*right.M4 + left.M14*right.M8 + left.M15*right.M12
|
|
result.M13 = left.M12*right.M1 + left.M13*right.M5 + left.M14*right.M9 + left.M15*right.M13
|
|
result.M14 = left.M12*right.M2 + left.M13*right.M6 + left.M14*right.M10 + left.M15*right.M14
|
|
result.M15 = left.M12*right.M3 + left.M13*right.M7 + left.M14*right.M11 + left.M15*right.M15
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixFrustum - Returns perspective projection matrix
|
|
func MatrixFrustum(left, right, bottom, top, near, far float32) Matrix {
|
|
var result Matrix
|
|
|
|
rl := right - left
|
|
tb := top - bottom
|
|
fn := far - near
|
|
|
|
result.M0 = (near * 2.0) / rl
|
|
result.M1 = 0.0
|
|
result.M2 = 0.0
|
|
result.M3 = 0.0
|
|
|
|
result.M4 = 0.0
|
|
result.M5 = (near * 2.0) / tb
|
|
result.M6 = 0.0
|
|
result.M7 = 0.0
|
|
|
|
result.M8 = right + left/rl
|
|
result.M9 = top + bottom/tb
|
|
result.M10 = -(far + near) / fn
|
|
result.M11 = -1.0
|
|
|
|
result.M12 = 0.0
|
|
result.M13 = 0.0
|
|
result.M14 = -(far * near * 2.0) / fn
|
|
result.M15 = 0.0
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixPerspective - Returns perspective projection matrix
|
|
func MatrixPerspective(fovy, aspect, near, far float32) Matrix {
|
|
top := near * float32(math.Tan(float64(fovy*Pi)/360.0))
|
|
right := top * aspect
|
|
|
|
return MatrixFrustum(-right, right, -top, top, near, far)
|
|
}
|
|
|
|
// MatrixOrtho - Returns orthographic projection matrix
|
|
func MatrixOrtho(left, right, bottom, top, near, far float32) Matrix {
|
|
var result Matrix
|
|
|
|
rl := right - left
|
|
tb := top - bottom
|
|
fn := far - near
|
|
|
|
result.M0 = 2.0 / rl
|
|
result.M1 = 0.0
|
|
result.M2 = 0.0
|
|
result.M3 = 0.0
|
|
result.M4 = 0.0
|
|
result.M5 = 2.0 / tb
|
|
result.M6 = 0.0
|
|
result.M7 = 0.0
|
|
result.M8 = 0.0
|
|
result.M9 = 0.0
|
|
result.M10 = -2.0 / fn
|
|
result.M11 = 0.0
|
|
result.M12 = -(left + right) / rl
|
|
result.M13 = -(top + bottom) / tb
|
|
result.M14 = -(far + near) / fn
|
|
result.M15 = 1.0
|
|
|
|
return result
|
|
}
|
|
|
|
// MatrixLookAt - Returns camera look-at matrix (view matrix)
|
|
func MatrixLookAt(eye, target, up Vector3) Matrix {
|
|
var result Matrix
|
|
|
|
z := Vector3Subtract(eye, target)
|
|
z = Vector3Normalize(z)
|
|
x := Vector3CrossProduct(up, z)
|
|
x = Vector3Normalize(x)
|
|
y := Vector3CrossProduct(z, x)
|
|
y = Vector3Normalize(y)
|
|
|
|
result.M0 = x.X
|
|
result.M1 = x.Y
|
|
result.M2 = x.Z
|
|
result.M3 = -((x.X * eye.X) + (x.Y * eye.Y) + (x.Z * eye.Z))
|
|
result.M4 = y.X
|
|
result.M5 = y.Y
|
|
result.M6 = y.Z
|
|
result.M7 = -((y.X * eye.X) + (y.Y * eye.Y) + (y.Z * eye.Z))
|
|
result.M8 = z.X
|
|
result.M9 = z.Y
|
|
result.M10 = z.Z
|
|
result.M11 = -((z.X * eye.X) + (z.Y * eye.Y) + (z.Z * eye.Z))
|
|
result.M12 = 0.0
|
|
result.M13 = 0.0
|
|
result.M14 = 0.0
|
|
result.M15 = 1.0
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionLength - Compute the length of a quaternion
|
|
func QuaternionLength(quat Quaternion) float32 {
|
|
return float32(math.Sqrt(float64(quat.X*quat.X + quat.Y*quat.Y + quat.Z*quat.Z + quat.W*quat.W)))
|
|
}
|
|
|
|
// QuaternionNormalize - Normalize provided quaternion
|
|
func QuaternionNormalize(q Quaternion) Quaternion {
|
|
result := q
|
|
|
|
length := QuaternionLength(q)
|
|
|
|
if length != 0.0 {
|
|
result.X /= length
|
|
result.Y /= length
|
|
result.Z /= length
|
|
result.W /= length
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionInvert - Invert provided quaternion
|
|
func QuaternionInvert(quat Quaternion) Quaternion {
|
|
result := quat
|
|
|
|
length := QuaternionLength(quat)
|
|
lengthSq := length * length
|
|
|
|
if lengthSq != 0.0 {
|
|
i := 1.0 / lengthSq
|
|
|
|
result.X *= -i
|
|
result.Y *= -i
|
|
result.Z *= -i
|
|
result.W *= i
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionMultiply - Calculate two quaternion multiplication
|
|
func QuaternionMultiply(q1, q2 Quaternion) Quaternion {
|
|
var result Quaternion
|
|
|
|
qax := q1.X
|
|
qay := q1.Y
|
|
qaz := q1.Z
|
|
qaw := q1.W
|
|
qbx := q2.X
|
|
qby := q2.Y
|
|
qbz := q2.Z
|
|
qbw := q2.W
|
|
|
|
result.X = qax*qbw + qaw*qbx + qay*qbz - qaz*qby
|
|
result.Y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz
|
|
result.Z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx
|
|
result.W = qaw*qbw - qax*qbx - qay*qby - qaz*qbz
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionSlerp - Calculates spherical linear interpolation between two quaternions
|
|
func QuaternionSlerp(q1, q2 Quaternion, amount float32) Quaternion {
|
|
var result Quaternion
|
|
|
|
cosHalfTheta := q1.X*q2.X + q1.Y*q2.Y + q1.Z*q2.Z + q1.W*q2.W
|
|
|
|
if math.Abs(float64(cosHalfTheta)) >= 1.0 {
|
|
result = q1
|
|
} else {
|
|
halfTheta := float32(math.Acos(float64(cosHalfTheta)))
|
|
sinHalfTheta := float32(math.Sqrt(float64(1.0 - cosHalfTheta*cosHalfTheta)))
|
|
|
|
if math.Abs(float64(sinHalfTheta)) < 0.001 {
|
|
result.X = q1.X*0.5 + q2.X*0.5
|
|
result.Y = q1.Y*0.5 + q2.Y*0.5
|
|
result.Z = q1.Z*0.5 + q2.Z*0.5
|
|
result.W = q1.W*0.5 + q2.W*0.5
|
|
} else {
|
|
ratioA := float32(math.Sin(float64((1-amount)*halfTheta))) / sinHalfTheta
|
|
ratioB := float32(math.Sin(float64(amount*halfTheta))) / sinHalfTheta
|
|
|
|
result.X = q1.X*ratioA + q2.X*ratioB
|
|
result.Y = q1.Y*ratioA + q2.Y*ratioB
|
|
result.Z = q1.Z*ratioA + q2.Z*ratioB
|
|
result.W = q1.W*ratioA + q2.W*ratioB
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionFromMatrix - Returns a quaternion for a given rotation matrix
|
|
func QuaternionFromMatrix(matrix Matrix) Quaternion {
|
|
var result Quaternion
|
|
|
|
trace := MatrixTrace(matrix)
|
|
|
|
if trace > 0.0 {
|
|
s := float32(math.Sqrt(float64(trace+1)) * 2.0)
|
|
invS := 1.0 / s
|
|
|
|
result.W = s * 0.25
|
|
result.X = (matrix.M6 - matrix.M9) * invS
|
|
result.Y = (matrix.M8 - matrix.M2) * invS
|
|
result.Z = (matrix.M1 - matrix.M4) * invS
|
|
} else {
|
|
m00 := matrix.M0
|
|
m11 := matrix.M5
|
|
m22 := matrix.M10
|
|
|
|
if m00 > m11 && m00 > m22 {
|
|
s := float32(math.Sqrt(float64(1.0+m00-m11-m22)) * 2.0)
|
|
invS := 1.0 / s
|
|
|
|
result.W = (matrix.M6 - matrix.M9) * invS
|
|
result.X = s * 0.25
|
|
result.Y = (matrix.M4 + matrix.M1) * invS
|
|
result.Z = (matrix.M8 + matrix.M2) * invS
|
|
} else if m11 > m22 {
|
|
s := float32(math.Sqrt(float64(1.0+m11-m00-m22)) * 2.0)
|
|
invS := 1.0 / s
|
|
|
|
result.W = (matrix.M8 - matrix.M2) * invS
|
|
result.X = (matrix.M4 + matrix.M1) * invS
|
|
result.Y = s * 0.25
|
|
result.Z = (matrix.M9 + matrix.M6) * invS
|
|
} else {
|
|
s := float32(math.Sqrt(float64(1.0+m22-m00-m11)) * 2.0)
|
|
invS := 1.0 / s
|
|
|
|
result.W = (matrix.M1 - matrix.M4) * invS
|
|
result.X = (matrix.M8 + matrix.M2) * invS
|
|
result.Y = (matrix.M9 + matrix.M6) * invS
|
|
result.Z = s * 0.25
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionToMatrix - Returns a matrix for a given quaternion
|
|
func QuaternionToMatrix(q Quaternion) Matrix {
|
|
var result Matrix
|
|
|
|
x := q.X
|
|
y := q.Y
|
|
z := q.Z
|
|
w := q.W
|
|
|
|
x2 := x + x
|
|
y2 := y + y
|
|
z2 := z + z
|
|
|
|
xx := x * x2
|
|
xy := x * y2
|
|
xz := x * z2
|
|
|
|
yy := y * y2
|
|
yz := y * z2
|
|
zz := z * z2
|
|
|
|
wx := w * x2
|
|
wy := w * y2
|
|
wz := w * z2
|
|
|
|
result.M0 = 1.0 - (yy + zz)
|
|
result.M1 = xy - wz
|
|
result.M2 = xz + wy
|
|
result.M3 = 0.0
|
|
result.M4 = xy + wz
|
|
result.M5 = 1.0 - (xx + zz)
|
|
result.M6 = yz - wx
|
|
result.M7 = 0.0
|
|
result.M8 = xz - wy
|
|
result.M9 = yz + wx
|
|
result.M10 = 1.0 - (xx + yy)
|
|
result.M11 = 0.0
|
|
result.M12 = 0.0
|
|
result.M13 = 0.0
|
|
result.M14 = 0.0
|
|
result.M15 = 1.0
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionFromAxisAngle - Returns rotation quaternion for an angle and axis
|
|
func QuaternionFromAxisAngle(axis Vector3, angle float32) Quaternion {
|
|
result := NewQuaternion(0.0, 0.0, 0.0, 1.0)
|
|
|
|
if Vector3Length(axis) != 0.0 {
|
|
angle *= 0.5
|
|
}
|
|
|
|
axis = Vector3Normalize(axis)
|
|
|
|
sinres := float32(math.Sin(float64(angle)))
|
|
cosres := float32(math.Cos(float64(angle)))
|
|
|
|
result.X = axis.X * sinres
|
|
result.Y = axis.Y * sinres
|
|
result.Z = axis.Z * sinres
|
|
result.W = cosres
|
|
|
|
result = QuaternionNormalize(result)
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionToAxisAngle - Returns the rotation angle and axis for a given quaternion
|
|
func QuaternionToAxisAngle(q Quaternion, outAxis *Vector3, outAngle *float32) {
|
|
if math.Abs(float64(q.W)) > 1.0 {
|
|
q = QuaternionNormalize(q)
|
|
}
|
|
|
|
resAxis := NewVector3(0.0, 0.0, 0.0)
|
|
|
|
resAngle := 2.0 * float32(math.Acos(float64(q.W)))
|
|
den := float32(math.Sqrt(float64(1.0 - q.W*q.W)))
|
|
|
|
if den > 0.0001 {
|
|
resAxis.X = q.X / den
|
|
resAxis.Y = q.Y / den
|
|
resAxis.Z = q.Z / den
|
|
} else {
|
|
// This occurs when the angle is zero.
|
|
// Not a problem: just set an arbitrary normalized axis.
|
|
resAxis.X = 1.0
|
|
}
|
|
|
|
*outAxis = resAxis
|
|
*outAngle = resAngle
|
|
}
|
|
|
|
// QuaternionFromEuler - Get the quaternion equivalent to Euler angles
|
|
// NOTE: Rotation order is ZYX
|
|
func QuaternionFromEuler(pitch, yaw, roll float32) Quaternion {
|
|
var result Quaternion
|
|
|
|
x0 := float32(math.Cos(float64(pitch * 0.5)))
|
|
x1 := float32(math.Sin(float64(pitch * 0.5)))
|
|
y0 := float32(math.Cos(float64(yaw * 0.5)))
|
|
y1 := float32(math.Sin(float64(yaw * 0.5)))
|
|
z0 := float32(math.Cos(float64(roll * 0.5)))
|
|
z1 := float32(math.Sin(float64(roll * 0.5)))
|
|
|
|
result.X = x1*y0*z0 - x0*y1*z1
|
|
result.Y = x0*y1*z0 + x1*y0*z1
|
|
result.Z = x0*y0*z1 - x1*y1*z0
|
|
result.W = x0*y0*z0 + x1*y1*z1
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionToEuler - Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
|
|
// NOTE: Angles are returned in a Vector3 struct in radians
|
|
func QuaternionToEuler(q Quaternion) Vector3 {
|
|
var result Vector3
|
|
|
|
// Roll (x-axis rotation)
|
|
x0 := 2.0 * (q.W*q.X + q.Y*q.Z)
|
|
x1 := 1.0 - 2.0*(q.X*q.X+q.Y*q.Y)
|
|
result.X = float32(math.Atan2(float64(x0), float64(x1)))
|
|
|
|
// Pitch (y-axis rotation)
|
|
y0 := 2.0 * (q.W*q.Y - q.Z*q.X)
|
|
y0 = Clamp(y0, -1.0, 1.0)
|
|
result.Y = float32(math.Asin(float64(y0)))
|
|
|
|
// Yaw (z-axis rotation)
|
|
z0 := 2.0 * (q.W*q.Z + q.X*q.Y)
|
|
z1 := 1.0 - 2.0*(q.Y*q.Y+q.Z*q.Z)
|
|
result.Z = float32(math.Atan2(float64(z0), float64(z1)))
|
|
|
|
return result
|
|
}
|
|
|
|
// QuaternionTransform - Transform a quaternion given a transformation matrix
|
|
func QuaternionTransform(q Quaternion, mat Matrix) Quaternion {
|
|
var result Quaternion
|
|
|
|
x := q.X
|
|
y := q.Y
|
|
z := q.Z
|
|
w := q.W
|
|
|
|
result.X = mat.M0*x + mat.M4*y + mat.M8*z + mat.M12*w
|
|
result.Y = mat.M1*x + mat.M5*y + mat.M9*z + mat.M13*w
|
|
result.Z = mat.M2*x + mat.M6*y + mat.M10*z + mat.M14*w
|
|
result.W = mat.M3*x + mat.M7*y + mat.M11*z + mat.M15*w
|
|
|
|
return result
|
|
}
|
|
|
|
// Clamp - Clamp float value
|
|
func Clamp(value, min, max float32) float32 {
|
|
var res float32
|
|
if value < min {
|
|
res = min
|
|
} else {
|
|
res = value
|
|
}
|
|
|
|
if res > max {
|
|
return max
|
|
}
|
|
|
|
return res
|
|
}
|