diff --git a/src/external/miniaudio.h b/src/external/miniaudio.h
index 7d26cf7ee..7703643b6 100644
--- a/src/external/miniaudio.h
+++ b/src/external/miniaudio.h
@@ -1,160 +1,21 @@
/*
Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file.
-miniaudio (formerly mini_al) - v0.xx.xx - 2020-xx-xx
+miniaudio - v0.10.12 - 2020-07-04
David Reid - davidreidsoftware@gmail.com
-https://github.com/dr-soft/miniaudio
+Website: https://miniaud.io
+GitHub: https://github.com/dr-soft/miniaudio
*/
/*
-RELEASE NOTES - VERSION 0.10
-============================
-Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert
-audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies
-to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign.
-
-
-Changes to Data Conversion
---------------------------
-The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other
-situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a
-pointer to the input data directly rather than dealing with a callback.
-
-The following are the data conversion APIs that have been removed and their replacements:
-
- - ma_format_converter -> ma_convert_pcm_frames_format()
- - ma_channel_router -> ma_channel_converter
- - ma_src -> ma_resampler
- - ma_pcm_converter -> ma_data_converter
-
-The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the
-`*_process_pcm_frames()` function as a pointer to a buffer.
-
-The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel
-conversion is also simple which you can do with `ma_channel_router` via `ma_channel_router_process_pcm_frames().
-
-Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you
-call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to
-output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated.
-
-The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably
-makes it the best option if you need to do data conversion.
-
-In addition to changes to the API design, a few other changes have been made to the data conversion pipeline:
-
- - The sinc resampler has been removed. This was completely broken and never actually worked properly.
- - The linear resampler can now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with
- the `lpfCount` option, which has a maximum value of MA_MAX_RESAMPLER_LPF_FILTERS.
- - Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before
- processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however
- `ma_data_converter` will handle this for you.
-
-
-Custom Memory Allocators
-------------------------
-miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more
-flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the
-`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure.
-
-The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by
-`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same
-way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults.
-
-The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults.
-Otherwise they will use the relevant callback in the structure.
-
- - ma_malloc()
- - ma_realloc()
- - ma_free()
- - ma_aligned_malloc()
- - ma_aligned_free()
- - ma_rb_init() / ma_rb_init_ex()
- - ma_pcm_rb_init() / ma_pcm_rb_init_ex()
-
-Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom
-allocation callbacks.
-
-
-Buffer and Period Configuration Changes
----------------------------------------
-The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables
-`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by
-the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine
-latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called
-`periodSizeInFrames` and `periodSizeInMilliseconds`.
-
-These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is
-that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to
-configure latency.
-
-The following unused APIs have been removed:
-
- ma_get_default_buffer_size_in_milliseconds()
- ma_get_default_buffer_size_in_frames()
-
-The following macros have been removed:
-
- MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
- MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
-
-
-Other API Changes
------------------
-Other less major API changes have also been made in version 0.10.
-
-`ma_device_set_stop_callback()` has been removed. You now must set the stop callback via the device config just like the data callback.
-
-The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including
-sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes the same
-parameters, except an additional `ma_waveform_type` value which you would set to `ma_waveform_type_sine`. Use `ma_waveform_read_pcm_frames()` in place of
-`ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`.
-
-`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies
-the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to
-take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it make it more
-flexible, to prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added.
-
-`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API.
-
-
-Biquad and Low-Pass Filters
----------------------------
-A generic biquad filter has been added. This is used via the `ma_biquad` API. The biquad filter is used as the basis for the low-pass filter. The biquad filter
-supports 32-bit floating point samples which runs on a floating point pipeline and 16-bit signed integer samples which runs on a 32-bit fixed point pipeline.
-Both formats use transposed direct form 2.
-
-The low-pass filter is just a biquad filter. By itself it's a second order low-pass filter, but it can be extended to higher orders by chaining low-pass
-filters together. Low-pass filtering is achieved via the `ma_lpf` API. Since the low-pass filter is just a biquad filter, it supports both 32-bit floating
-point and 16-bit signed integer formats.
-
-
-Sine, Square, Triangle and Sawtooth Waveforms
----------------------------------------------
-Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old
-`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_init()` to initialize the waveform. Here you specify tyhe type of
-waveform you want to generated. You then read data using `ma_waveform_read_pcm_frames()`.
-
-
-Miscellaneous Changes
----------------------
-Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report.
-
-The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on
-the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it
-was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work,
-this has been removed from all structures.
-*/
-
-
-/*
-Introduction
-============
+1. Introduction
+===============
miniaudio is a single file library for audio playback and capture. To use it, do the following in one .c file:
```c
#define MINIAUDIO_IMPLEMENTATION
- #include "miniaudio.h
+ #include "miniaudio.h"
```
You can #include miniaudio.h in other parts of the program just like any other header.
@@ -213,15 +74,15 @@ are added to the `ma_device_config` structure. The example above uses a fairly s
takes a single parameter, which is whether or not the device is a playback, capture, duplex or loopback device (loopback devices are not supported on all
backends). The `config.playback.format` member sets the sample format which can be one of the following (all formats are native-endian):
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
| Symbol | Description | Range |
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
| ma_format_f32 | 32-bit floating point | [-1, 1] |
| ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
| ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
| ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
| ma_format_u8 | 8-bit unsigned integer | [0, 255] |
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
The `config.playback.channels` member sets the number of channels to use with the device. The channel count cannot exceed MA_MAX_CHANNELS. The
`config.sampleRate` member sets the sample rate (which must be the same for both playback and capture in full-duplex configurations). This is usually set to
@@ -256,7 +117,7 @@ from `ma_device_type_playback` to `ma_device_type_capture` when setting up the c
```c
ma_device_config config = ma_device_config_init(ma_device_type_capture);
config.capture.format = MY_FORMAT;
- config.capture.channels = MY_CHANNELS;
+ config.capture.channels = MY_CHANNEL_COUNT;
```
In the data callback you just read from the input buffer (`pInput` in the example above) and leave the output buffer alone (it will be set to NULL when the
@@ -264,14 +125,14 @@ device type is set to `ma_device_type_capture`).
These are the available device types and how you should handle the buffers in the callback:
- |-------------------------|--------------------------------------------------------|
+ +-------------------------+--------------------------------------------------------+
| Device Type | Callback Behavior |
- |-------------------------|--------------------------------------------------------|
+ +-------------------------+--------------------------------------------------------+
| ma_device_type_playback | Write to output buffer, leave input buffer untouched. |
| ma_device_type_capture | Read from input buffer, leave output buffer untouched. |
| ma_device_type_duplex | Read from input buffer, write to output buffer. |
| ma_device_type_loopback | Read from input buffer, leave output buffer untouched. |
- |-------------------------|--------------------------------------------------------|
+ +-------------------------+--------------------------------------------------------+
You will notice in the example above that the sample format and channel count is specified separately for playback and capture. This is to support different
data formats between the playback and capture devices in a full-duplex system. An example may be that you want to capture audio data as a monaural stream (one
@@ -281,14 +142,14 @@ will need to convert the data yourself. There are functions available to help yo
The example above did not specify a physical device to connect to which means it will use the operating system's default device. If you have multiple physical
devices connected and you want to use a specific one you will need to specify the device ID in the configuration, like so:
- ```
+ ```c
config.playback.pDeviceID = pMyPlaybackDeviceID; // Only if requesting a playback or duplex device.
config.capture.pDeviceID = pMyCaptureDeviceID; // Only if requesting a capture, duplex or loopback device.
```
-To retrieve the device ID you will need to perform device enumeration, however this requires the use of a new concept call the "context". Conceptually speaking
-the context sits above the device. There is one context to many devices. The purpose of the context is to represent the backend at a more global level and to
-perform operations outside the scope of an individual device. Mainly it is used for performing run-time linking against backend libraries, initializing
+To retrieve the device ID you will need to perform device enumeration, however this requires the use of a new concept called the "context". Conceptually
+speaking the context sits above the device. There is one context to many devices. The purpose of the context is to represent the backend at a more global level
+and to perform operations outside the scope of an individual device. Mainly it is used for performing run-time linking against backend libraries, initializing
backends and enumerating devices. The example below shows how to enumerate devices.
```c
@@ -305,7 +166,7 @@ backends and enumerating devices. The example below shows how to enumerate devic
// Error.
}
- // Loop over the each device info and do something with it. Here we just print the name with their index. You may want to give the user the
+ // Loop over each device info and do something with it. Here we just print the name with their index. You may want to give the user the
// opportunity to choose which device they'd prefer.
for (ma_uint32 iDevice = 0; iDevice < playbackDeviceCount; iDevice += 1) {
printf("%d - %s\n", iDevice, pPlaybackDeviceInfos[iDevice].name);
@@ -332,7 +193,7 @@ backends and enumerating devices. The example below shows how to enumerate devic
The first thing we do in this example is initialize a `ma_context` object with `ma_context_init()`. The first parameter is a pointer to a list of `ma_backend`
values which are used to override the default backend priorities. When this is NULL, as in this example, miniaudio's default priorities are used. The second
-parameter is the number of backends listed in the array pointed to by the first paramter. The third parameter is a pointer to a `ma_context_config` object
+parameter is the number of backends listed in the array pointed to by the first parameter. The third parameter is a pointer to a `ma_context_config` object
which can be NULL, in which case defaults are used. The context configuration is used for setting the logging callback, custom memory allocation callbacks,
user-defined data and some backend-specific configurations.
@@ -351,20 +212,20 @@ allocate memory for the context.
-Building
-========
+2. Building
+===========
miniaudio should work cleanly out of the box without the need to download or install any dependencies. See below for platform-specific details.
Windows
-------
-The Windows build should compile clean on all popular compilers without the need to configure any include paths nor link to any libraries.
+The Windows build should compile cleanly on all popular compilers without the need to configure any include paths nor link to any libraries.
macOS and iOS
-------------
-The macOS build should compile clean without the need to download any dependencies or link to any libraries or frameworks. The iOS build needs to be compiled
-as Objective-C (sorry) and will need to link the relevant frameworks but should Just Work with Xcode. Compiling through the command line requires linking to
--lpthread and -lm.
+The macOS build should compile cleanly without the need to download any dependencies nor link to any libraries or frameworks. The iOS build needs to be
+compiled as Objective-C (sorry) and will need to link the relevant frameworks but should Just Work with Xcode. Compiling through the command line requires
+linking to -lpthread and -lm.
Linux
-----
@@ -376,7 +237,7 @@ The BSD build only requires linking to -lpthread and -lm. NetBSD uses audio(4),
Android
-------
-AAudio is the highest priority backend on Android. This should work out out of the box without needing any kind of compiler configuration. Support for AAudio
+AAudio is the highest priority backend on Android. This should work out of the box without needing any kind of compiler configuration. Support for AAudio
starts with Android 8 which means older versions will fall back to OpenSL|ES which requires API level 16+.
Emscripten
@@ -431,14 +292,31 @@ Build Options
Disables the null backend.
#define MA_NO_DECODING
- Disables the decoding APIs.
+ Disables decoding APIs.
+
+#define MA_NO_ENCODING
+ Disables encoding APIs.
+
+#define MA_NO_WAV
+ Disables the built-in WAV decoder and encoder.
+
+#define MA_NO_FLAC
+ Disables the built-in FLAC decoder.
+
+#define MA_NO_MP3
+ Disables the built-in MP3 decoder.
#define MA_NO_DEVICE_IO
Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to use miniaudio's data conversion and/or
- decoding APIs.
+ decoding APIs.
-#define MA_NO_STDIO
- Disables file IO APIs.
+#define MA_NO_THREADING
+ Disables the ma_thread, ma_mutex, ma_semaphore and ma_event APIs. This option is useful if you only need to use miniaudio for data conversion, decoding
+ and/or encoding. Some families of APIs require threading which means the following options must also be set:
+ MA_NO_DEVICE_IO
+
+#define MA_NO_GENERATION
+ Disables generation APIs such a ma_waveform and ma_noise.
#define MA_NO_SSE2
Disables SSE2 optimizations.
@@ -465,79 +343,90 @@ Build Options
#define MA_COINIT_VALUE
Windows only. The value to pass to internal calls to CoInitializeEx(). Defaults to COINIT_MULTITHREADED.
+#define MA_API
+ Controls how public APIs should be decorated. Defaults to `extern`.
+
+#define MA_DLL
+ If set, configures MA_API to either import or export APIs depending on whether or not the implementation is being defined. If defining the implementation,
+ MA_API will be configured to export. Otherwise it will be configured to import. This has no effect if MA_API is defined externally.
+
-Definitions
-===========
+
+3. Definitions
+==============
This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms throughout the audio space, so this
section is intended to clarify how miniaudio uses each term.
-Sample
-------
+3.1. Sample
+-----------
A sample is a single unit of audio data. If the sample format is f32, then one sample is one 32-bit floating point number.
-Frame / PCM Frame
------------------
-A frame is a groups of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame
+3.2. Frame / PCM Frame
+----------------------
+A frame is a group of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame
is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in miniaudio. Note that this is different to a compressed frame. If ever miniaudio
-needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame" or whatnot.
+needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame".
-Channel
--------
+3.3. Channel
+------------
A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual microphone in a microphone system. A
stereo stream has two channels (a left channel, and a right channel), a 5.1 surround sound system has 6 channels, etc. Some audio systems refer to a channel as
a complex audio stream that's mixed with other channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and
should not be confused.
-Sample Rate
------------
+3.4. Sample Rate
+----------------
The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are processed per second.
-Formats
--------
+3.5. Formats
+------------
Throughout miniaudio you will see references to different sample formats:
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
| Symbol | Description | Range |
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
| ma_format_f32 | 32-bit floating point | [-1, 1] |
| ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
| ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
| ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
| ma_format_u8 | 8-bit unsigned integer | [0, 255] |
- |---------------|----------------------------------------|---------------------------|
+ +---------------+----------------------------------------+---------------------------+
All formats are native-endian.
-Decoding
-========
-The `ma_decoder` API is used for reading audio files. To enable a decoder you must #include the header of the relevant backend library before the
-implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio).
-
-The table below are the supported decoding backends:
-
- |--------|-----------------|
- | Type | Backend Library |
- |--------|-----------------|
- | WAV | dr_wav.h |
- | FLAC | dr_flac.h |
- | MP3 | dr_mp3.h |
- | Vorbis | stb_vorbis.c |
- |--------|-----------------|
-
-The code below is an example of how to enable decoding backends:
+4. Decoding
+===========
+The `ma_decoder` API is used for reading audio files. Built in support is included for WAV, FLAC and MP3. Support for Vorbis is enabled via stb_vorbis which
+can be enabled by including the header section before the implementation of miniaudio, like the following:
```c
- #include "dr_flac.h" // Enables FLAC decoding.
- #include "dr_mp3.h" // Enables MP3 decoding.
- #include "dr_wav.h" // Enables WAV decoding.
+ #define STB_VORBIS_HEADER_ONLY
+ #include "extras/stb_vorbis.c" // Enables Vorbis decoding.
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h"
+
+ // The stb_vorbis implementation must come after the implementation of miniaudio.
+ #undef STB_VORBIS_HEADER_ONLY
+ #include "extras/stb_vorbis.c"
```
+A copy of stb_vorbis is included in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio).
+
+Built-in decoders are implemented via dr_wav, dr_flac and dr_mp3. These are amalgamated into the implementation section of miniaudio. You can disable the
+built-in decoders by specifying one or more of the following options before the miniaudio implementation:
+
+ ```c
+ #define MA_NO_WAV
+ #define MA_NO_FLAC
+ #define MA_NO_MP3
+ ```
+
+Disabling built-in versions of dr_wav, dr_flac and dr_mp3 is useful if you use these libraries independantly of the `ma_decoder` API.
+
A decoder can be initialized from a file with `ma_decoder_init_file()`, a block of memory with `ma_decoder_init_memory()`, or from data delivered via callbacks
with `ma_decoder_init()`. Here is an example for loading a decoder from a file:
@@ -562,10 +451,14 @@ configure the output format, channel count, sample rate and channel map:
When passing in NULL for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend.
-Data is read from the decoder as PCM frames:
+Data is read from the decoder as PCM frames. This will return the number of PCM frames actually read. If the return value is less than the requested number of
+PCM frames it means you've reached the end:
```c
ma_uint64 framesRead = ma_decoder_read_pcm_frames(pDecoder, pFrames, framesToRead);
+ if (framesRead < framesToRead) {
+ // Reached the end.
+ }
```
You can also seek to a specific frame like so:
@@ -577,6 +470,12 @@ You can also seek to a specific frame like so:
}
```
+If you want to loop back to the start, you can simply seek back to the first PCM frame:
+
+ ```c
+ ma_decoder_seek_to_pcm_frame(pDecoder, 0);
+ ```
+
When loading a decoder, miniaudio uses a trial and error technique to find the appropriate decoding backend. This can be unnecessarily inefficient if the type
is already known. In this case you can use the `_wav`, `_mp3`, etc. varients of the aforementioned initialization APIs:
@@ -594,25 +493,76 @@ The `ma_decoder_init_file()` API will try using the file extension to determine
-Sample Format Conversion
-========================
+5. Encoding
+===========
+The `ma_encoding` API is used for writing audio files. The only supported output format is WAV which is achieved via dr_wav which is amalgamated into the
+implementation section of miniaudio. This can be disabled by specifying the following option before the implementation of miniaudio:
+
+ ```c
+ #define MA_NO_WAV
+ ```
+
+An encoder can be initialized to write to a file with `ma_encoder_init_file()` or from data delivered via callbacks with `ma_encoder_init()`. Below is an
+example for initializing an encoder to output to a file.
+
+ ```c
+ ma_encoder_config config = ma_encoder_config_init(ma_resource_format_wav, FORMAT, CHANNELS, SAMPLE_RATE);
+ ma_encoder encoder;
+ ma_result result = ma_encoder_init_file("my_file.wav", &config, &encoder);
+ if (result != MA_SUCCESS) {
+ // Error
+ }
+
+ ...
+
+ ma_encoder_uninit(&encoder);
+ ```
+
+When initializing an encoder you must specify a config which is initialized with `ma_encoder_config_init()`. Here you must specify the file type, the output
+sample format, output channel count and output sample rate. The following file types are supported:
+
+ +------------------------+-------------+
+ | Enum | Description |
+ +------------------------+-------------+
+ | ma_resource_format_wav | WAV |
+ +------------------------+-------------+
+
+If the format, channel count or sample rate is not supported by the output file type an error will be returned. The encoder will not perform data conversion so
+you will need to convert it before outputting any audio data. To output audio data, use `ma_encoder_write_pcm_frames()`, like in the example below:
+
+ ```c
+ framesWritten = ma_encoder_write_pcm_frames(&encoder, pPCMFramesToWrite, framesToWrite);
+ ```
+
+Encoders must be uninitialized with `ma_encoder_uninit()`.
+
+
+6. Data Conversion
+==================
+A data conversion API is included with miniaudio which supports the majority of data conversion requirements. This supports conversion between sample formats,
+channel counts (with channel mapping) and sample rates.
+
+
+6.1. Sample Format Conversion
+-----------------------------
Conversion between sample formats is achieved with the `ma_pcm_*_to_*()`, `ma_pcm_convert()` and `ma_convert_pcm_frames_format()` APIs. Use `ma_pcm_*_to_*()`
to convert between two specific formats. Use `ma_pcm_convert()` to convert based on a `ma_format` variable. Use `ma_convert_pcm_frames_format()` to convert
PCM frames where you want to specify the frame count and channel count as a variable instead of the total sample count.
-Dithering
----------
-Dithering can be set using ditherMode parmater.
+
+6.1.1. Dithering
+----------------
+Dithering can be set using the ditherMode parameter.
The different dithering modes include the following, in order of efficiency:
- |-----------|--------------------------|
+ +-----------+--------------------------+
| Type | Enum Token |
- |-----------|--------------------------|
+ +-----------+--------------------------+
| None | ma_dither_mode_none |
| Rectangle | ma_dither_mode_rectangle |
| Triangle | ma_dither_mode_triangle |
- |-----------|--------------------------|
+ +-----------+--------------------------+
Note that even if the dither mode is set to something other than `ma_dither_mode_none`, it will be ignored for conversions where dithering is not needed.
Dithering is available for the following conversions:
@@ -629,8 +579,8 @@ Note that it is not an error to pass something other than ma_dither_mode_none fo
-Channel Conversion
-==================
+6.2. Channel Conversion
+-----------------------
Channel conversion is used for channel rearrangement and conversion from one channel count to another. The `ma_channel_converter` API is used for channel
conversion. Below is an example of initializing a simple channel converter which converts from mono to stereo.
@@ -642,7 +592,7 @@ conversion. Below is an example of initializing a simple channel converter which
}
```
-To process perform the conversion simply call `ma_channel_converter_process_pcm_frames()` like so:
+To perform the conversion simply call `ma_channel_converter_process_pcm_frames()` like so:
```c
ma_result result = ma_channel_converter_process_pcm_frames(&converter, pFramesOut, pFramesIn, frameCount);
@@ -659,13 +609,13 @@ The only formats supported are `ma_format_s16` and `ma_format_f32`. If you need
Input and output PCM frames are always interleaved. Deinterleaved layouts are not supported.
-Channel Mapping
----------------
+6.2.1. Channel Mapping
+----------------------
In addition to converting from one channel count to another, like the example above, The channel converter can also be used to rearrange channels. When
initializing the channel converter, you can optionally pass in channel maps for both the input and output frames. If the channel counts are the same, and each
-channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels with be performed. If,
-however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing
-mode which is specified when initializing the `ma_channel_converter_config` object.
+channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels will be performed. If,
+however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing mode which is
+specified when initializing the `ma_channel_converter_config` object.
When converting from mono to multi-channel, the mono channel is simply copied to each output channel. When going the other way around, the audio of each output
channel is simply averaged and copied to the mono channel.
@@ -683,9 +633,9 @@ Finally, the `ma_channel_mix_mode_custom_weights` mode can be used to use custom
Predefined channel maps can be retrieved with `ma_get_standard_channel_map()`. This takes a `ma_standard_channel_map` enum as it's first parameter, which can
be one of the following:
- |-----------------------------------|-----------------------------------------------------------|
+ +-----------------------------------+-----------------------------------------------------------+
| Name | Description |
- |-----------------------------------|-----------------------------------------------------------|
+ +-----------------------------------+-----------------------------------------------------------+
| ma_standard_channel_map_default | Default channel map used by miniaudio. See below. |
| ma_standard_channel_map_microsoft | Channel map used by Microsoft's bitfield channel maps. |
| ma_standard_channel_map_alsa | Default ALSA channel map. |
@@ -695,40 +645,40 @@ be one of the following:
| ma_standard_channel_map_sound4 | FreeBSD's sound(4). |
| ma_standard_channel_map_sndio | sndio channel map. www.sndio.org/tips.html |
| ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering |
- |-----------------------------------|-----------------------------------------------------------|
+ +-----------------------------------+-----------------------------------------------------------+
Below are the channel maps used by default in miniaudio (ma_standard_channel_map_default):
- |---------------|------------------------------|
+ +---------------+------------------------------+
| Channel Count | Mapping |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 1 (Mono) | 0: MA_CHANNEL_MONO |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 3 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_BACK_CENTER |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 5 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_BACK_LEFT |
| | 4: MA_CHANNEL_BACK_RIGHT |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_LFE |
| | 4: MA_CHANNEL_SIDE_LEFT |
| | 5: MA_CHANNEL_SIDE_RIGHT |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 7 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
@@ -736,7 +686,7 @@ Below are the channel maps used by default in miniaudio (ma_standard_channel_map
| | 4: MA_CHANNEL_BACK_CENTER |
| | 4: MA_CHANNEL_SIDE_LEFT |
| | 5: MA_CHANNEL_SIDE_RIGHT |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
@@ -745,16 +695,16 @@ Below are the channel maps used by default in miniaudio (ma_standard_channel_map
| | 5: MA_CHANNEL_BACK_RIGHT |
| | 6: MA_CHANNEL_SIDE_LEFT |
| | 7: MA_CHANNEL_SIDE_RIGHT |
- |---------------|------------------------------|
+ +---------------+------------------------------+
| Other | All channels set to 0. This |
| | is equivalent to the same |
| | mapping as the device. |
- |---------------|------------------------------|
+ +---------------+------------------------------+
-Resampling
-==========
+6.3. Resampling
+---------------
Resampling is achieved with the `ma_resampler` object. To create a resampler object, do something like the following:
```c
@@ -798,12 +748,12 @@ only configuration property that can be changed after initialization.
The miniaudio resampler supports multiple algorithms:
- |-----------|------------------------------|
+ +-----------+------------------------------+
| Algorithm | Enum Token |
- |-----------|------------------------------|
+ +-----------+------------------------------+
| Linear | ma_resample_algorithm_linear |
| Speex | ma_resample_algorithm_speex |
- |-----------|------------------------------|
+ +-----------+------------------------------+
Because Speex is not public domain it is strictly opt-in and the code is stored in separate files. if you opt-in to the Speex backend you will need to consider
it's license, the text of which can be found in it's source files in "extras/speex_resampler". Details on how to opt-in to the Speex resampler is explained in
@@ -828,23 +778,21 @@ Due to the nature of how resampling works, the resampler introduces some latency
with `ma_resampler_get_input_latency()` and `ma_resampler_get_output_latency()`.
-Resampling Algorithms
----------------------
+6.3.1. Resampling Algorithms
+----------------------------
The choice of resampling algorithm depends on your situation and requirements. The linear resampler is the most efficient and has the least amount of latency,
-but at the expense of poorer quality. The Speex resampler is higher quality, but slower with more latency. It also performs several heap applications
-internally for memory management.
+but at the expense of poorer quality. The Speex resampler is higher quality, but slower with more latency. It also performs several heap allocations internally
+for memory management.
-Linear Resampling
------------------
+6.3.1.1. Linear Resampling
+--------------------------
The linear resampler is the fastest, but comes at the expense of poorer quality. There is, however, some control over the quality of the linear resampler which
may make it a suitable option depending on your requirements.
The linear resampler performs low-pass filtering before or after downsampling or upsampling, depending on the sample rates you're converting between. When
decreasing the sample rate, the low-pass filter will be applied before downsampling. When increasing the rate it will be performed after upsampling. By default
-a second order low-pass filter will be applied. To improve quality you can chain low-pass filters together, up to a maximum of `MA_MAX_RESAMPLER_LPF_FILTERS`.
-This comes at the expense of increased computational cost and latency. You can also disable filtering altogether by setting the filter count to 0. The filter
-count is controlled with the `lpfCount` config variable.
+a fourth order low-pass filter will be applied. This can be configured via the `lpfOrder` configuration variable. Setting this to 0 will disable filtering.
The low-pass filter has a cutoff frequency which defaults to half the sample rate of the lowest of the input and output sample rates (Nyquist Frequency). This
can be controlled with the `lpfNyquistFactor` config variable. This defaults to 1, and should be in the range of 0..1, although a value of 0 does not make
@@ -855,15 +803,15 @@ and is a purely perceptual configuration.
The API for the linear resampler is the same as the main resampler API, only it's called `ma_linear_resampler`.
-Speex Resampling
-----------------
+6.3.1.2. Speex Resampling
+-------------------------
The Speex resampler is made up of third party code which is released under the BSD license. Because it is licensed differently to miniaudio, which is public
domain, it is strictly opt-in and all of it's code is stored in separate files. If you opt-in to the Speex resampler you must consider the license text in it's
source files. To opt-in, you must first #include the following file before the implementation of miniaudio.h:
#include "extras/speex_resampler/ma_speex_resampler.h"
-Both the header and implementation is contained within the same file. To implementation can be included in your program like so:
+Both the header and implementation is contained within the same file. The implementation can be included in your program like so:
#define MINIAUDIO_SPEEX_RESAMPLER_IMPLEMENTATION
#include "extras/speex_resampler/ma_speex_resampler.h"
@@ -872,13 +820,12 @@ Note that even if you opt-in to the Speex backend, miniaudio won't use it unless
initializing. If you try to use the Speex resampler without opting in, initialization of the `ma_resampler` object will fail with `MA_NO_BACKEND`.
The only configuration option to consider with the Speex resampler is the `speex.quality` config variable. This is a value between 0 and 10, with 0 being
-the worst/fastest and 10 being the best/slowest. The default value is 3.
+the fastest with the poorest quality and 10 being the slowest with the highest quality. The default value is 3.
-
-General Data Conversion
-=======================
+6.4. General Data Conversion
+----------------------------
The `ma_data_converter` API can be used to wrap sample format conversion, channel conversion and resampling into one operation. This is what miniaudio uses
internally to convert between the format requested when the device was initialized and the format of the backend's native device. The API for general data
conversion is very similar to the resampling API. Create a `ma_data_converter` object like this:
@@ -904,7 +851,7 @@ channel maps and resampling quality. Something like the following may be more su
config.sampleRateIn = inputSampleRate;
config.sampleRateOut = outputSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_flac, config.channelCountIn, config.channelMapIn);
- config.resampling.linear.lpfCount = MA_MAX_RESAMPLER_LPF_FILTERS;
+ config.resampling.linear.lpfOrder = MA_MAX_FILTER_ORDER;
```
Do the following to uninitialize the data converter:
@@ -928,10 +875,10 @@ The following example shows how data can be processed
The data converter supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization.
-The sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the
-only configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config`
-is set to MA_TRUE. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The
-resampling algorithm cannot be changed after initialization.
+Sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the only
+configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config` is
+set to MA_TRUE. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The resampling
+algorithm cannot be changed after initialization.
Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process
frames, use `ma_data_converter_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number
@@ -948,9 +895,11 @@ input rate and the output rate with `ma_data_converter_get_input_latency()` and
+7. Filtering
+============
-Biquad Filtering
-================
+7.1. Biquad Filtering
+---------------------
Biquad filtering is achieved with the `ma_biquad` API. Example:
```c
@@ -980,18 +929,27 @@ Filtering can be applied in-place by passing in the same pointer for both the in
```
If you need to change the values of the coefficients, but maintain the values in the registers you can do so with `ma_biquad_reinit()`. This is useful if you
-need to change the properties of the filter while keeping the values of registers valid to avoid glitching or whatnot. Do not use `ma_biquad_init()` for this
-as it will do a full initialization which involves clearing the registers to 0. Note that changing the format or channel count after initialization is invalid
-and will result in an error.
+need to change the properties of the filter while keeping the values of registers valid to avoid glitching. Do not use `ma_biquad_init()` for this as it will
+do a full initialization which involves clearing the registers to 0. Note that changing the format or channel count after initialization is invalid and will
+result in an error.
+7.2. Low-Pass Filtering
+-----------------------
+Low-pass filtering is achieved with the following APIs:
-Low-Pass, High-Pass and Band-Pass Filtering
-===========================================
-Low-pass, high-pass and band-pass filtering is achieved with the `ma_lpf`, `ma_hpf` and `ma_bpf` APIs respective. Low-pass filter example:
+ +---------+------------------------------------------+
+ | API | Description |
+ +---------+------------------------------------------+
+ | ma_lpf1 | First order low-pass filter |
+ | ma_lpf2 | Second order low-pass filter |
+ | ma_lpf | High order low-pass filter (Butterworth) |
+ +---------+------------------------------------------+
+
+Low-pass filter example:
```c
- ma_lpf_config config = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency);
+ ma_lpf_config config = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order);
ma_result result = ma_lpf_init(&config, &lpf);
if (result != MA_SUCCESS) {
// Error.
@@ -1011,11 +969,11 @@ Filtering can be applied in-place by passing in the same pointer for both the in
ma_lpf_process_pcm_frames(&lpf, pMyData, pMyData, frameCount);
```
-These filters are implemented as a biquad filter. If you need to increase the filter order, simply chain multiple filters together.
+The maximum filter order is limited to MA_MAX_FILTER_ORDER which is set to 8. If you need more, you can chain first and second order filters together.
```c
for (iFilter = 0; iFilter < filterCount; iFilter += 1) {
- ma_lpf_process_pcm_frames(&lpf[iFilter], pMyData, pMyData, frameCount);
+ ma_lpf2_process_pcm_frames(&lpf2[iFilter], pMyData, pMyData, frameCount);
}
```
@@ -1023,34 +981,253 @@ If you need to change the configuration of the filter, but need to maintain the
useful if you need to change the sample rate and/or cutoff frequency dynamically while maintaing smooth transitions. Note that changing the format or channel
count after initialization is invalid and will result in an error.
-The example code above is for low-pass filters, but the same applies for high-pass and band-pass filters, only you should use the `ma_hpf` and `ma_bpf` APIs
-instead.
+The `ma_lpf` object supports a configurable order, but if you only need a first order filter you may want to consider using `ma_lpf1`. Likewise, if you only
+need a second order filter you can use `ma_lpf2`. The advantage of this is that they're lighter weight and a bit more efficient.
+
+If an even filter order is specified, a series of second order filters will be processed in a chain. If an odd filter order is specified, a first order filter
+will be applied, followed by a series of second order filters in a chain.
+
+
+7.3. High-Pass Filtering
+------------------------
+High-pass filtering is achieved with the following APIs:
+
+ +---------+-------------------------------------------+
+ | API | Description |
+ +---------+-------------------------------------------+
+ | ma_hpf1 | First order high-pass filter |
+ | ma_hpf2 | Second order high-pass filter |
+ | ma_hpf | High order high-pass filter (Butterworth) |
+ +---------+-------------------------------------------+
+
+High-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_hpf1`, `ma_hpf2` and `ma_hpf`. See example code for low-pass filters
+for example usage.
+
+
+7.4. Band-Pass Filtering
+------------------------
+Band-pass filtering is achieved with the following APIs:
+
+ +---------+-------------------------------+
+ | API | Description |
+ +---------+-------------------------------+
+ | ma_bpf2 | Second order band-pass filter |
+ | ma_bpf | High order band-pass filter |
+ +---------+-------------------------------+
+
+Band-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_bpf2` and `ma_hpf`. See example code for low-pass filters for example
+usage. Note that the order for band-pass filters must be an even number which means there is no first order band-pass filter, unlike low-pass and high-pass
+filters.
+
+
+7.5. Notch Filtering
+--------------------
+Notch filtering is achieved with the following APIs:
+
+ +-----------+------------------------------------------+
+ | API | Description |
+ +-----------+------------------------------------------+
+ | ma_notch2 | Second order notching filter |
+ +-----------+------------------------------------------+
+
+
+7.6. Peaking EQ Filtering
+-------------------------
+Peaking filtering is achieved with the following APIs:
+
+ +----------+------------------------------------------+
+ | API | Description |
+ +----------+------------------------------------------+
+ | ma_peak2 | Second order peaking filter |
+ +----------+------------------------------------------+
+
+
+7.7. Low Shelf Filtering
+------------------------
+Low shelf filtering is achieved with the following APIs:
+
+ +-------------+------------------------------------------+
+ | API | Description |
+ +-------------+------------------------------------------+
+ | ma_loshelf2 | Second order low shelf filter |
+ +-------------+------------------------------------------+
+
+Where a high-pass filter is used to eliminate lower frequencies, a low shelf filter can be used to just turn them down rather than eliminate them entirely.
+
+
+7.8. High Shelf Filtering
+-------------------------
+High shelf filtering is achieved with the following APIs:
+
+ +-------------+------------------------------------------+
+ | API | Description |
+ +-------------+------------------------------------------+
+ | ma_hishelf2 | Second order high shelf filter |
+ +-------------+------------------------------------------+
+
+The high shelf filter has the same API as the low shelf filter, only you would use `ma_hishelf` instead of `ma_loshelf`. Where a low shelf filter is used to
+adjust the volume of low frequencies, the high shelf filter does the same thing for high frequencies.
-Waveforms
-=========
+
+8. Waveform and Noise Generation
+================================
+
+8.1. Waveforms
+--------------
miniaudio supports generation of sine, square, triangle and sawtooth waveforms. This is achieved with the `ma_waveform` API. Example:
```c
+ ma_waveform_config config = ma_waveform_config_init(FORMAT, CHANNELS, SAMPLE_RATE, ma_waveform_type_sine, amplitude, frequency);
+
ma_waveform waveform;
- ma_result result = ma_waveform_init(ma_waveform_type_sine, amplitude, frequency, sampleRate, &waveform);
+ ma_result result = ma_waveform_init(&config, &waveform);
if (result != MA_SUCCESS) {
// Error.
}
...
- ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount, FORMAT, CHANNELS);
+ ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount);
```
The amplitude, frequency and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()` and
`ma_waveform_set_sample_rate()` respectively.
+You can reverse the waveform by setting the amplitude to a negative value. You can use this to control whether or not a sawtooth has a positive or negative
+ramp, for example.
+
+Below are the supported waveform types:
+
+ +---------------------------+
+ | Enum Name |
+ +---------------------------+
+ | ma_waveform_type_sine |
+ | ma_waveform_type_square |
+ | ma_waveform_type_triangle |
+ | ma_waveform_type_sawtooth |
+ +---------------------------+
-Ring Buffers
-============
+
+8.2. Noise
+----------
+miniaudio supports generation of white, pink and Brownian noise via the `ma_noise` API. Example:
+
+ ```c
+ ma_noise_config config = ma_noise_config_init(FORMAT, CHANNELS, ma_noise_type_white, SEED, amplitude);
+
+ ma_noise noise;
+ ma_result result = ma_noise_init(&config, &noise);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+
+ ...
+
+ ma_noise_read_pcm_frames(&noise, pOutput, frameCount);
+ ```
+
+The noise API uses simple LCG random number generation. It supports a custom seed which is useful for things like automated testing requiring reproducibility.
+Setting the seed to zero will default to MA_DEFAULT_LCG_SEED.
+
+By default, the noise API will use different values for different channels. So, for example, the left side in a stereo stream will be different to the right
+side. To instead have each channel use the same random value, set the `duplicateChannels` member of the noise config to true, like so:
+
+ ```c
+ config.duplicateChannels = MA_TRUE;
+ ```
+
+Below are the supported noise types.
+
+ +------------------------+
+ | Enum Name |
+ +------------------------+
+ | ma_noise_type_white |
+ | ma_noise_type_pink |
+ | ma_noise_type_brownian |
+ +------------------------+
+
+
+
+9. Audio Buffers
+================
+miniaudio supports reading from a buffer of raw audio data via the `ma_audio_buffer` API. This can read from both memory that's managed by the application, but
+can also handle the memory management for you internally. The way memory is managed is flexible and should support most use cases.
+
+Audio buffers are initialised using the standard configuration system used everywhere in miniaudio:
+
+ ```c
+ ma_audio_buffer_config config = ma_audio_buffer_config_init(format, channels, sizeInFrames, pExistingData, &allocationCallbacks);
+ ma_audio_buffer buffer;
+ result = ma_audio_buffer_init(&config, &buffer);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+
+ ...
+
+ ma_audio_buffer_uninit(&buffer);
+ ```
+
+In the example above, the memory pointed to by `pExistingData` will _not_ be copied which is how an application can handle memory allocations themselves. If
+you would rather make a copy of the data, use `ma_audio_buffer_init_copy()`. To uninitialize the buffer, use `ma_audio_buffer_uninit()`.
+
+Sometimes it can be convenient to allocate the memory for the `ma_audio_buffer` structure _and_ the raw audio data in a contiguous block of memory. That is,
+the raw audio data will be located immediately after the `ma_audio_buffer` structure. To do this, use `ma_audio_buffer_alloc_and_init()`:
+
+ ```c
+ ma_audio_buffer* pBuffer
+ result = ma_audio_buffer_alloc_and_init(&config, &pBuffer);
+ if (result != MA_SUCCESS) {
+ // Error
+ }
+
+ ...
+
+ ma_audio_buffer_uninit_and_free(&buffer);
+ ```
+
+If you initialize the buffer with `ma_audio_buffer_alloc_and_init()` you should uninitialize it with `ma_audio_buffer_uninit_and_free()`.
+
+An audio buffer has a playback cursor just like a decoder. As you read frames from the buffer, the cursor moves forward. It does not automatically loop back to
+the start. To do this, you should inspect the number of frames returned by `ma_audio_buffer_read_pcm_frames()` to determine if the end has been reached, which
+you can know by comparing it with the requested frame count you specified when you called the function. If the return value is less it means the end has been
+reached. In this case you can seem back to the start with `ma_audio_buffer_seek_to_pcm_frame(pAudioBuffer, 0)`. Below is an example for reading data from an
+audio buffer.
+
+ ```c
+ ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames(pAudioBuffer, pFramesOut, desiredFrameCount, isLooping);
+ if (framesRead < desiredFrameCount) {
+ // If not looping, this means the end has been reached. This should never happen in looping mode with valid input.
+ }
+ ```
+
+Sometimes you may want to avoid the cost of data movement between the internal buffer and the output buffer as it's just a copy operation. Instead you can use
+memory mapping to retrieve a pointer to a segment of data:
+
+ ```c
+ void* pMappedFrames;
+ ma_uint64 frameCount = frameCountToTryMapping;
+ ma_result result = ma_audio_buffer_map(pAudioBuffer, &pMappedFrames, &frameCount);
+ if (result == MA_SUCCESS) {
+ // Map was successful. The value in frameCount will be how many frames were _actually_ mapped, which may be less due to the end of the buffer being reached.
+ ma_copy_pcm_frames(pFramesOut, pMappedFrames, frameCount, pAudioBuffer->format, pAudioBuffer->channels);
+
+ // You must unmap the buffer.
+ ma_audio_buffer_unmap(pAudioBuffer, frameCount);
+ }
+ ```
+
+When you use memory mapping, the read cursor is increment by the frame count passed in to `ma_audio_buffer_unmap()`. If you decide not to process every frame
+you can pass in a value smaller than the value returned by `ma_audio_buffer_map()`. The disadvantage to using memory mapping is that it does not handle looping
+for you. You can determine if the buffer is at the end for the purpose of looping with `ma_audio_buffer_at_end()`.
+
+
+
+10. Ring Buffers
+================
miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed via the `ma_rb` and `ma_pcm_rb` APIs. The `ma_rb` API operates
on bytes, whereas the `ma_pcm_rb` operates on PCM frames. They are otherwise identical as `ma_pcm_rb` is just a wrapper around `ma_rb`.
@@ -1090,23 +1267,23 @@ If you want to correct for drift between the write pointer and the read pointer
the consumer thread, and the write pointer forward by the producer thread. If there is too much space between the pointers, move the read pointer forward. If
there is too little space between the pointers, move the write pointer forward.
-You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the sample, only you will use the `ma_rb`
+You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the same, only you will use the `ma_rb`
functions instead of `ma_pcm_rb` and instead of frame counts you'll pass around byte counts.
-The maximum size of the buffer in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) due to the most significant bit being used to encode a flag and the internally
+The maximum size of the buffer in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) due to the most significant bit being used to encode a loop flag and the internally
managed buffers always being aligned to MA_SIMD_ALIGNMENT.
Note that the ring buffer is only thread safe when used by a single consumer thread and single producer thread.
-Backends
-========
+11. Backends
+============
The following backends are supported by miniaudio.
- |-------------|-----------------------|--------------------------------------------------------|
+ +-------------+-----------------------+--------------------------------------------------------+
| Name | Enum Name | Supported Operating Systems |
- |-------------|-----------------------|--------------------------------------------------------|
+ +-------------+-----------------------+--------------------------------------------------------+
| WASAPI | ma_backend_wasapi | Windows Vista+ |
| DirectSound | ma_backend_dsound | Windows XP+ |
| WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) |
@@ -1121,25 +1298,25 @@ The following backends are supported by miniaudio.
| OpenSL|ES | ma_backend_opensl | Android (API level 16+) |
| Web Audio | ma_backend_webaudio | Web (via Emscripten) |
| Null | ma_backend_null | Cross Platform (not used on Web) |
- |-------------|-----------------------|--------------------------------------------------------|
+ +-------------+-----------------------+--------------------------------------------------------+
Some backends have some nuance details you may want to be aware of.
-WASAPI
-------
+11.1. WASAPI
+------------
- Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the device's native sample rate. To work around
this, set wasapi.noAutoConvertSRC to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the
- AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's lower quality internal resampler being used
- instead which will in turn enable the use of low-latency shared mode.
+ AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's internal resampler being used instead which
+ will in turn enable the use of low-latency shared mode.
-PulseAudio
-----------
+11.2. PulseAudio
+----------------
- If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki:
https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling
Alternatively, consider using a different backend such as ALSA.
-Android
--------
+11.3. Android
+-------------
- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest:
- With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES.
@@ -1148,8 +1325,8 @@ Android
- The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in resampler is to take advantage of any
potential device-specific optimizations the driver may implement.
-UWP
----
+11.4. UWP
+---------
- UWP only supports default playback and capture devices.
- UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest):
@@ -1159,7 +1336,7 @@ UWP
-Web Audio / Emscripten
+11.5. Web Audio / Emscripten
----------------------
- You cannot use -std=c* compiler flags, nor -ansi. This only applies to the Emscripten build.
- The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act as a factory for device objects.
@@ -1170,8 +1347,8 @@ Web Audio / Emscripten
-Miscellaneous Notes
-===================
+12. Miscellaneous Notes
+=======================
- Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI and Core Audio, however other backends such as
PulseAudio may naturally support it, though not all have been tested.
- The contents of the output buffer passed into the data callback will always be pre-initialized to zero unless the noPreZeroedOutputBuffer config variable in
@@ -1190,9 +1367,18 @@ Miscellaneous Notes
extern "C" {
#endif
+#define MA_STRINGIFY(x) #x
+#define MA_XSTRINGIFY(x) MA_STRINGIFY(x)
+
+#define MA_VERSION_MAJOR 0
+#define MA_VERSION_MINOR 10
+#define MA_VERSION_REVISION 12
+#define MA_VERSION_STRING MA_XSTRINGIFY(MA_VERSION_MAJOR) "." MA_XSTRINGIFY(MA_VERSION_MINOR) "." MA_XSTRINGIFY(MA_VERSION_REVISION)
+
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable:4201) /* nonstandard extension used: nameless struct/union */
+ #pragma warning(disable:4214) /* nonstandard extension used: bit field types other than int */
#pragma warning(disable:4324) /* structure was padded due to alignment specifier */
#else
#pragma GCC diagnostic push
@@ -1213,7 +1399,6 @@ extern "C" {
#else
#define MA_POSIX
#include /* Unfortunate #include, but needed for pthread_t, pthread_mutex_t and pthread_cond_t types. */
- #include
#ifdef __unix__
#define MA_UNIX
@@ -1242,7 +1427,7 @@ extern "C" {
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
- #pragma GCC diagnostic ignored "-Wlong-long"
+ #pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
typedef signed __int8 ma_int8;
@@ -1333,22 +1518,64 @@ typedef ma_uint16 wchar_t;
#define MA_INLINE
#endif
-#if defined(_MSC_VER)
- #if _MSC_VER >= 1400
- #define MA_ALIGN(alignment) __declspec(align(alignment))
+#if !defined(MA_API)
+ #if defined(MA_DLL)
+ #if defined(_WIN32)
+ #define MA_DLL_IMPORT __declspec(dllimport)
+ #define MA_DLL_EXPORT __declspec(dllexport)
+ #define MA_DLL_PRIVATE static
+ #else
+ #if defined(__GNUC__) && __GNUC__ >= 4
+ #define MA_DLL_IMPORT __attribute__((visibility("default")))
+ #define MA_DLL_EXPORT __attribute__((visibility("default")))
+ #define MA_DLL_PRIVATE __attribute__((visibility("hidden")))
+ #else
+ #define MA_DLL_IMPORT
+ #define MA_DLL_EXPORT
+ #define MA_DLL_PRIVATE static
+ #endif
+ #endif
+
+ #if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION)
+ #define MA_API MA_DLL_EXPORT
+ #else
+ #define MA_API MA_DLL_IMPORT
+ #endif
+ #define MA_PRIVATE MA_DLL_PRIVATE
+ #else
+ #define MA_API extern
+ #define MA_PRIVATE static
#endif
-#elif !defined(__DMC__)
- #define MA_ALIGN(alignment) __attribute__((aligned(alignment)))
-#endif
-#ifndef MA_ALIGN
- #define MA_ALIGN(alignment)
#endif
/* SIMD alignment in bytes. Currently set to 64 bytes in preparation for future AVX-512 optimizations. */
#define MA_SIMD_ALIGNMENT 64
-/* Logging levels */
+/*
+Logging Levels
+==============
+A log level will automatically include the lower levels. For example, verbose logging will enable everything. The warning log level will only include warnings
+and errors, but will ignore informational and verbose logging. If you only want to handle a specific log level, implement a custom log callback (see
+ma_context_init() for details) and interrogate the `logLevel` parameter.
+
+By default the log level will be set to MA_LOG_LEVEL_ERROR, but you can change this by defining MA_LOG_LEVEL before the implementation of miniaudio.
+
+MA_LOG_LEVEL_VERBOSE
+ Mainly intended for debugging. This will enable all log levels and can be triggered from within the data callback so care must be taken when enabling this
+ in production environments.
+
+MA_LOG_LEVEL_INFO
+ Informational logging. Useful for debugging. This will also enable warning and error logs. This will never be called from within the data callback.
+
+MA_LOG_LEVEL_WARNING
+ Warnings. You should enable this in you development builds and action them when encounted. This will also enable error logs. These logs usually indicate a
+ potential problem or misconfiguration, but still allow you to keep running. This will never be called from within the data callback.
+
+MA_LOG_LEVEL_ERROR
+ Error logging. This will be fired when an operation fails and is subsequently aborted. This can be fired from within the data callback, in which case the
+ device will be stopped. You should always have this log level enabled.
+*/
#define MA_LOG_LEVEL_VERBOSE 4
#define MA_LOG_LEVEL_INFO 3
#define MA_LOG_LEVEL_WARNING 2
@@ -1421,15 +1648,59 @@ typedef ma_uint8 ma_channel;
typedef int ma_result;
#define MA_SUCCESS 0
-
-/* General errors. */
-#define MA_ERROR -1 /* A generic error. */
+#define MA_ERROR -1 /* A generic error. */
#define MA_INVALID_ARGS -2
#define MA_INVALID_OPERATION -3
#define MA_OUT_OF_MEMORY -4
-#define MA_ACCESS_DENIED -5
-#define MA_TOO_LARGE -6
-#define MA_TIMEOUT -7
+#define MA_OUT_OF_RANGE -5
+#define MA_ACCESS_DENIED -6
+#define MA_DOES_NOT_EXIST -7
+#define MA_ALREADY_EXISTS -8
+#define MA_TOO_MANY_OPEN_FILES -9
+#define MA_INVALID_FILE -10
+#define MA_TOO_BIG -11
+#define MA_PATH_TOO_LONG -12
+#define MA_NAME_TOO_LONG -13
+#define MA_NOT_DIRECTORY -14
+#define MA_IS_DIRECTORY -15
+#define MA_DIRECTORY_NOT_EMPTY -16
+#define MA_END_OF_FILE -17
+#define MA_NO_SPACE -18
+#define MA_BUSY -19
+#define MA_IO_ERROR -20
+#define MA_INTERRUPT -21
+#define MA_UNAVAILABLE -22
+#define MA_ALREADY_IN_USE -23
+#define MA_BAD_ADDRESS -24
+#define MA_BAD_SEEK -25
+#define MA_BAD_PIPE -26
+#define MA_DEADLOCK -27
+#define MA_TOO_MANY_LINKS -28
+#define MA_NOT_IMPLEMENTED -29
+#define MA_NO_MESSAGE -30
+#define MA_BAD_MESSAGE -31
+#define MA_NO_DATA_AVAILABLE -32
+#define MA_INVALID_DATA -33
+#define MA_TIMEOUT -34
+#define MA_NO_NETWORK -35
+#define MA_NOT_UNIQUE -36
+#define MA_NOT_SOCKET -37
+#define MA_NO_ADDRESS -38
+#define MA_BAD_PROTOCOL -39
+#define MA_PROTOCOL_UNAVAILABLE -40
+#define MA_PROTOCOL_NOT_SUPPORTED -41
+#define MA_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define MA_ADDRESS_FAMILY_NOT_SUPPORTED -43
+#define MA_SOCKET_NOT_SUPPORTED -44
+#define MA_CONNECTION_RESET -45
+#define MA_ALREADY_CONNECTED -46
+#define MA_NOT_CONNECTED -47
+#define MA_CONNECTION_REFUSED -48
+#define MA_NO_HOST -49
+#define MA_IN_PROGRESS -50
+#define MA_CANCELLED -51
+#define MA_MEMORY_ALREADY_MAPPED -52
+#define MA_AT_END -53
/* General miniaudio-specific errors. */
#define MA_FORMAT_NOT_SUPPORTED -100
@@ -1441,27 +1712,16 @@ typedef int ma_result;
#define MA_INVALID_DEVICE_CONFIG -106
/* State errors. */
-#define MA_DEVICE_BUSY -200
-#define MA_DEVICE_NOT_INITIALIZED -201
+#define MA_DEVICE_NOT_INITIALIZED -200
+#define MA_DEVICE_ALREADY_INITIALIZED -201
#define MA_DEVICE_NOT_STARTED -202
-#define MA_DEVICE_UNAVAILABLE -203
+#define MA_DEVICE_NOT_STOPPED -203
/* Operation errors. */
-#define MA_FAILED_TO_MAP_DEVICE_BUFFER -300
-#define MA_FAILED_TO_UNMAP_DEVICE_BUFFER -301
-#define MA_FAILED_TO_INIT_BACKEND -302
-#define MA_FAILED_TO_READ_DATA_FROM_CLIENT -303
-#define MA_FAILED_TO_READ_DATA_FROM_DEVICE -304
-#define MA_FAILED_TO_SEND_DATA_TO_CLIENT -305
-#define MA_FAILED_TO_SEND_DATA_TO_DEVICE -306
-#define MA_FAILED_TO_OPEN_BACKEND_DEVICE -307
-#define MA_FAILED_TO_START_BACKEND_DEVICE -308
-#define MA_FAILED_TO_STOP_BACKEND_DEVICE -309
-#define MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE -310
-#define MA_FAILED_TO_CREATE_MUTEX -311
-#define MA_FAILED_TO_CREATE_EVENT -312
-#define MA_FAILED_TO_CREATE_SEMAPHORE -313
-#define MA_FAILED_TO_CREATE_THREAD -314
+#define MA_FAILED_TO_INIT_BACKEND -300
+#define MA_FAILED_TO_OPEN_BACKEND_DEVICE -301
+#define MA_FAILED_TO_START_BACKEND_DEVICE -302
+#define MA_FAILED_TO_STOP_BACKEND_DEVICE -303
/* Standard sample rates. */
@@ -1481,10 +1741,16 @@ typedef int ma_result;
#define MA_SAMPLE_RATE_384000 384000
#define MA_MIN_CHANNELS 1
+#ifndef MA_MAX_CHANNELS
#define MA_MAX_CHANNELS 32
+#endif
#define MA_MIN_SAMPLE_RATE MA_SAMPLE_RATE_8000
#define MA_MAX_SAMPLE_RATE MA_SAMPLE_RATE_384000
+#ifndef MA_MAX_FILTER_ORDER
+#define MA_MAX_FILTER_ORDER 8
+#endif
+
typedef enum
{
ma_stream_format_pcm = 0
@@ -1555,6 +1821,81 @@ typedef struct
void (* onFree)(void* p, void* pUserData);
} ma_allocation_callbacks;
+typedef struct
+{
+ ma_int32 state;
+} ma_lcg;
+
+
+#ifndef MA_NO_THREADING
+/* Thread priorties should be ordered such that the default priority of the worker thread is 0. */
+typedef enum
+{
+ ma_thread_priority_idle = -5,
+ ma_thread_priority_lowest = -4,
+ ma_thread_priority_low = -3,
+ ma_thread_priority_normal = -2,
+ ma_thread_priority_high = -1,
+ ma_thread_priority_highest = 0,
+ ma_thread_priority_realtime = 1,
+ ma_thread_priority_default = 0
+} ma_thread_priority;
+
+#if defined(MA_WIN32)
+typedef ma_handle ma_thread;
+#endif
+#if defined(MA_POSIX)
+typedef pthread_t ma_thread;
+#endif
+
+#if defined(MA_WIN32)
+typedef ma_handle ma_mutex;
+#endif
+#if defined(MA_POSIX)
+typedef pthread_mutex_t ma_mutex;
+#endif
+
+#if defined(MA_WIN32)
+typedef ma_handle ma_event;
+#endif
+#if defined(MA_POSIX)
+typedef struct
+{
+ ma_uint32 value;
+ pthread_mutex_t lock;
+ pthread_cond_t cond;
+} ma_event;
+#endif /* MA_POSIX */
+
+#if defined(MA_WIN32)
+typedef ma_handle ma_semaphore;
+#endif
+#if defined(MA_POSIX)
+typedef struct
+{
+ int value;
+ pthread_mutex_t lock;
+ pthread_cond_t cond;
+} ma_semaphore;
+#endif /* MA_POSIX */
+#else
+/* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */
+#ifndef MA_NO_DEVICE_IO
+#error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO";
+#endif
+#endif /* MA_NO_THREADING */
+
+
+/*
+Retrieves the version of miniaudio as separated integers. Each component can be NULL if it's not required.
+*/
+MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision);
+
+/*
+Retrieves the version of miniaudio as a string which can be useful for logging purposes.
+*/
+MA_API const char* ma_version_string();
+
/**************************************************************************************************************************************************************
@@ -1579,7 +1920,7 @@ typedef struct
double a2;
} ma_biquad_config;
-ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2);
+MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2);
typedef struct
{
@@ -1594,10 +1935,10 @@ typedef struct
ma_biquad_coefficient r2[MA_MAX_CHANNELS];
} ma_biquad;
-ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ);
-ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ);
-ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
-ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ);
+MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ);
+MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ);
+MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ);
/**************************************************************************************************************************************************************
@@ -1611,19 +1952,61 @@ typedef struct
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
-} ma_lpf_config;
+ double q;
+} ma_lpf1_config, ma_lpf2_config;
-ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
+MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
+MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
- ma_biquad bq; /* The low-pass filter is implemented as a biquad filter. */
+ ma_format format;
+ ma_uint32 channels;
+ ma_biquad_coefficient a;
+ ma_biquad_coefficient r1[MA_MAX_CHANNELS];
+} ma_lpf1;
+
+MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, ma_lpf1* pLPF);
+MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF);
+MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_lpf1_get_latency(ma_lpf1* pLPF);
+
+typedef struct
+{
+ ma_biquad bq; /* The second order low-pass filter is implemented as a biquad filter. */
+} ma_lpf2;
+
+MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, ma_lpf2* pLPF);
+MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF);
+MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_lpf2_get_latency(ma_lpf2* pLPF);
+
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+ ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
+} ma_lpf_config;
+
+MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 lpf1Count;
+ ma_uint32 lpf2Count;
+ ma_lpf1 lpf1[1];
+ ma_lpf2 lpf2[MA_MAX_FILTER_ORDER/2];
} ma_lpf;
-ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF);
-ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF);
-ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
-ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF);
+MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF);
+MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF);
+MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF);
/**************************************************************************************************************************************************************
@@ -1637,19 +2020,61 @@ typedef struct
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
-} ma_hpf_config;
+ double q;
+} ma_hpf1_config, ma_hpf2_config;
-ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
+MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
+MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
- ma_biquad bq; /* The high-pass filter is implemented as a biquad filter. */
+ ma_format format;
+ ma_uint32 channels;
+ ma_biquad_coefficient a;
+ ma_biquad_coefficient r1[MA_MAX_CHANNELS];
+} ma_hpf1;
+
+MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, ma_hpf1* pHPF);
+MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF);
+MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_hpf1_get_latency(ma_hpf1* pHPF);
+
+typedef struct
+{
+ ma_biquad bq; /* The second order high-pass filter is implemented as a biquad filter. */
+} ma_hpf2;
+
+MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, ma_hpf2* pHPF);
+MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF);
+MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF);
+
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+ ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
+} ma_hpf_config;
+
+MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 hpf1Count;
+ ma_uint32 hpf2Count;
+ ma_hpf1 hpf1[1];
+ ma_hpf2 hpf2[MA_MAX_FILTER_ORDER/2];
} ma_hpf;
-ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF);
-ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF);
-ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
-ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF);
+MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF);
+MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF);
+MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF);
/**************************************************************************************************************************************************************
@@ -1663,19 +2088,157 @@ typedef struct
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
-} ma_bpf_config;
+ double q;
+} ma_bpf2_config;
-ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
+MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
- ma_biquad bq; /* The band-pass filter is implemented as a biquad filter. */
+ ma_biquad bq; /* The second order band-pass filter is implemented as a biquad filter. */
+} ma_bpf2;
+
+MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, ma_bpf2* pBPF);
+MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF);
+MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_bpf2_get_latency(ma_bpf2* pBPF);
+
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+ ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
+} ma_bpf_config;
+
+MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 bpf2Count;
+ ma_bpf2 bpf2[MA_MAX_FILTER_ORDER/2];
} ma_bpf;
-ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF);
-ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF);
-ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
-ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF);
+MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF);
+MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF);
+MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF);
+
+
+/**************************************************************************************************************************************************************
+
+Notching Filter
+
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double q;
+ double frequency;
+} ma_notch2_config;
+
+MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency);
+
+typedef struct
+{
+ ma_biquad bq;
+} ma_notch2;
+
+MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, ma_notch2* pFilter);
+MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter);
+MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_notch2_get_latency(ma_notch2* pFilter);
+
+
+/**************************************************************************************************************************************************************
+
+Peaking EQ Filter
+
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double gainDB;
+ double q;
+ double frequency;
+} ma_peak2_config;
+
+MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency);
+
+typedef struct
+{
+ ma_biquad bq;
+} ma_peak2;
+
+MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, ma_peak2* pFilter);
+MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter);
+MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_peak2_get_latency(ma_peak2* pFilter);
+
+
+/**************************************************************************************************************************************************************
+
+Low Shelf Filter
+
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double gainDB;
+ double shelfSlope;
+ double frequency;
+} ma_loshelf2_config;
+
+MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency);
+
+typedef struct
+{
+ ma_biquad bq;
+} ma_loshelf2;
+
+MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter);
+MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter);
+MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_loshelf2_get_latency(ma_loshelf2* pFilter);
+
+
+/**************************************************************************************************************************************************************
+
+High Shelf Filter
+
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double gainDB;
+ double shelfSlope;
+ double frequency;
+} ma_hishelf2_config;
+
+MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency);
+
+typedef struct
+{
+ ma_biquad bq;
+} ma_hishelf2;
+
+MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter);
+MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter);
+MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_uint32 ma_hishelf2_get_latency(ma_hishelf2* pFilter);
+
/************************************************************************************************************************************************************
@@ -1694,21 +2257,17 @@ This section contains the APIs for data conversion. You will find everything her
Resampling
**************************************************************************************************************************************************************/
-#ifndef MA_MAX_RESAMPLER_LPF_FILTERS
-#define MA_MAX_RESAMPLER_LPF_FILTERS 4
-#endif
-
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRateIn;
ma_uint32 sampleRateOut;
- ma_uint32 lpfCount; /* How many low-pass filters to chain together. A single low-pass filter is second order. Setting this to 0 will disable low-pass filtering. */
+ ma_uint32 lpfOrder; /* The low-pass filter order. Setting this to 0 will disable low-pass filtering. */
double lpfNyquistFactor; /* 0..1. Defaults to 1. 1 = Half the sampling frequency (Nyquist Frequency), 0.5 = Quarter the sampling frequency (half Nyquest Frequency), etc. */
} ma_linear_resampler_config;
-ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
typedef struct
{
@@ -1727,18 +2286,18 @@ typedef struct
float f32[MA_MAX_CHANNELS];
ma_int16 s16[MA_MAX_CHANNELS];
} x1; /* The next input frame. */
- ma_lpf lpf[MA_MAX_RESAMPLER_LPF_FILTERS];
+ ma_lpf lpf;
} ma_linear_resampler;
-ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler);
-void ma_linear_resampler_uninit(ma_linear_resampler* pResampler);
-ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
-ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
-ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut);
-ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount);
-ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount);
-ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler);
-ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler);
+MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler);
+MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler);
+MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
+MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut);
+MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount);
+MA_API ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount);
+MA_API ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler);
+MA_API ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler);
typedef enum
{
@@ -1755,7 +2314,7 @@ typedef struct
ma_resample_algorithm algorithm;
struct
{
- ma_uint32 lpfCount;
+ ma_uint32 lpfOrder;
double lpfNyquistFactor;
} linear;
struct
@@ -1764,7 +2323,7 @@ typedef struct
} speex;
} ma_resampler_config;
-ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm);
+MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm);
typedef struct
{
@@ -1782,12 +2341,12 @@ typedef struct
/*
Initializes a new resampler object from a config.
*/
-ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler);
+MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler);
/*
Uninitializes a resampler.
*/
-void ma_resampler_uninit(ma_resampler* pResampler);
+MA_API void ma_resampler_uninit(ma_resampler* pResampler);
/*
Converts the given input data.
@@ -1811,20 +2370,20 @@ It is an error for [pFramesOut] to be non-NULL and [pFrameCountOut] to be NULL.
It is an error for both [pFrameCountOut] and [pFrameCountIn] to be NULL.
*/
-ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
+MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
/*
Sets the input and output sample sample rate.
*/
-ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
/*
Sets the input and output sample rate as a ratio.
The ration is in/out.
*/
-ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio);
+MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio);
/*
@@ -1834,24 +2393,24 @@ number of output frames.
The returned value does not include cached input frames. It only returns the number of extra frames that would need to be
read from the input buffer in order to output the specified number of output frames.
*/
-ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount);
+MA_API ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount);
/*
Calculates the number of whole output frames that would be output after fully reading and consuming the specified number of
input frames.
*/
-ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount);
+MA_API ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount);
/*
Retrieves the latency introduced by the resampler in input frames.
*/
-ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler);
+MA_API ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler);
/*
Retrieves the latency introduced by the resampler in output frames.
*/
-ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler);
+MA_API ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler);
@@ -1871,7 +2430,7 @@ typedef struct
float weights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */
} ma_channel_converter_config;
-ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode);
+MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode);
typedef struct
{
@@ -1893,9 +2452,9 @@ typedef struct
ma_uint8 shuffleTable[MA_MAX_CHANNELS];
} ma_channel_converter;
-ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter);
-void ma_channel_converter_uninit(ma_channel_converter* pConverter);
-ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter);
+MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter);
+MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
/**************************************************************************************************************************************************************
@@ -1922,7 +2481,7 @@ typedef struct
ma_bool32 allowDynamicSampleRate;
struct
{
- ma_uint32 lpfCount;
+ ma_uint32 lpfOrder;
double lpfNyquistFactor;
} linear;
struct
@@ -1932,8 +2491,8 @@ typedef struct
} resampling;
} ma_data_converter_config;
-ma_data_converter_config ma_data_converter_config_init_default(void);
-ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+MA_API ma_data_converter_config ma_data_converter_config_init_default(void);
+MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
typedef struct
{
@@ -1947,15 +2506,15 @@ typedef struct
ma_bool32 isPassthrough : 1;
} ma_data_converter;
-ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter);
-void ma_data_converter_uninit(ma_data_converter* pConverter);
-ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
-ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
-ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut);
-ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount);
-ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount);
-ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter);
-ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
+MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter);
+MA_API void ma_data_converter_uninit(ma_data_converter* pConverter);
+MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
+MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut);
+MA_API ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount);
+MA_API ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount);
+MA_API ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter);
+MA_API ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
/************************************************************************************************************************************************************
@@ -1963,38 +2522,38 @@ ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
Format Conversion
************************************************************************************************************************************************************/
-void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode);
-void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode);
+MA_API void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode);
+MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode);
/*
Deinterleaves an interleaved buffer.
*/
-void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames);
+MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames);
/*
Interleaves a group of deinterleaved buffers.
*/
-void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames);
+MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames);
/************************************************************************************************************************************************************
@@ -2005,12 +2564,12 @@ Channel Maps
/*
Helper for retrieving a standard channel map.
*/
-void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]);
+MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Copies a channel map.
*/
-void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels);
+MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels);
/*
@@ -2023,24 +2582,24 @@ Invalid channel maps:
- A channel map with no channels
- A channel map with more than one channel and a mono channel
*/
-ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
+MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Helper for comparing two channel maps for equality.
This assumes the channel count is the same between the two.
*/
-ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]);
+MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]);
/*
Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE).
*/
-ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
+MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Helper for determining whether or not a channel is present in the given channel map.
*/
-ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition);
+MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition);
/************************************************************************************************************************************************************
@@ -2058,8 +2617,8 @@ A return value of 0 indicates an error.
This function is useful for one-off bulk conversions, but if you're streaming data you should use the ma_data_converter APIs instead.
*/
-ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn);
-ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig);
+MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn);
+MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig);
/************************************************************************************************************************************************************
@@ -2080,23 +2639,23 @@ typedef struct
ma_allocation_callbacks allocationCallbacks;
} ma_rb;
-ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
-ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
-void ma_rb_uninit(ma_rb* pRB);
-void ma_rb_reset(ma_rb* pRB);
-ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
-ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
-ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
-ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
-ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes);
-ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes);
-ma_int32 ma_rb_pointer_distance(ma_rb* pRB); /* Returns the distance between the write pointer and the read pointer. Should never be negative for a correct program. Will return the number of bytes that can be read before the read pointer hits the write pointer. */
-ma_uint32 ma_rb_available_read(ma_rb* pRB);
-ma_uint32 ma_rb_available_write(ma_rb* pRB);
-size_t ma_rb_get_subbuffer_size(ma_rb* pRB);
-size_t ma_rb_get_subbuffer_stride(ma_rb* pRB);
-size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex);
-void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer);
+MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
+MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
+MA_API void ma_rb_uninit(ma_rb* pRB);
+MA_API void ma_rb_reset(ma_rb* pRB);
+MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
+MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
+MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
+MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
+MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes);
+MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes);
+MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB); /* Returns the distance between the write pointer and the read pointer. Should never be negative for a correct program. Will return the number of bytes that can be read before the read pointer hits the write pointer. */
+MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB);
+MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB);
+MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB);
+MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB);
+MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex);
+MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer);
typedef struct
@@ -2106,23 +2665,23 @@ typedef struct
ma_uint32 channels;
} ma_pcm_rb;
-ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
-ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
-void ma_pcm_rb_uninit(ma_pcm_rb* pRB);
-void ma_pcm_rb_reset(ma_pcm_rb* pRB);
-ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
-ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
-ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
-ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
-ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
-ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
-ma_int32 ma_pcm_rb_pointer_disance(ma_pcm_rb* pRB); /* Return value is in frames. */
-ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB);
-ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB);
-ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB);
-ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB);
-ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex);
-void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer);
+MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
+MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
+MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB);
+MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB);
+MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
+MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
+MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
+MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
+MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
+MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
+MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB); /* Return value is in frames. */
+MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB);
+MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB);
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB);
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB);
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex);
+MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer);
/************************************************************************************************************************************************************
@@ -2130,41 +2689,45 @@ void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void
Miscellaneous Helpers
************************************************************************************************************************************************************/
+/*
+Retrieves a human readable description of the given result code.
+*/
+MA_API const char* ma_result_description(ma_result result);
/*
malloc(). Calls MA_MALLOC().
*/
-void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
+MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
realloc(). Calls MA_REALLOC().
*/
-void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
+MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
free(). Calls MA_FREE().
*/
-void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
+MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Performs an aligned malloc, with the assumption that the alignment is a power of 2.
*/
-void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks);
+MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Free's an aligned malloc'd buffer.
*/
-void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
+MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Retrieves a friendly name for a format.
*/
-const char* ma_get_format_name(ma_format format);
+MA_API const char* ma_get_format_name(ma_format format);
/*
Blends two frames in floating point format.
*/
-void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels);
+MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels);
/*
Retrieves the size of a sample in bytes for the given format.
@@ -2174,13 +2737,13 @@ This API is efficient and is implemented using a lookup table.
Thread Safety: SAFE
This API is pure.
*/
-ma_uint32 ma_get_bytes_per_sample(ma_format format);
+MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format);
static MA_INLINE ma_uint32 ma_get_bytes_per_frame(ma_format format, ma_uint32 channels) { return ma_get_bytes_per_sample(format) * channels; }
/*
Converts a log level to a string.
*/
-const char* ma_log_level_to_string(ma_uint32 logLevel);
+MA_API const char* ma_log_level_to_string(ma_uint32 logLevel);
@@ -2313,109 +2876,6 @@ typedef enum
ma_backend_null /* <-- Must always be the last item. Lowest priority, and used as the terminator for backend enumeration. */
} ma_backend;
-/* Thread priorties should be ordered such that the default priority of the worker thread is 0. */
-typedef enum
-{
- ma_thread_priority_idle = -5,
- ma_thread_priority_lowest = -4,
- ma_thread_priority_low = -3,
- ma_thread_priority_normal = -2,
- ma_thread_priority_high = -1,
- ma_thread_priority_highest = 0,
- ma_thread_priority_realtime = 1,
- ma_thread_priority_default = 0
-} ma_thread_priority;
-
-typedef struct
-{
- ma_context* pContext;
-
- union
- {
-#ifdef MA_WIN32
- struct
- {
- /*HANDLE*/ ma_handle hThread;
- } win32;
-#endif
-#ifdef MA_POSIX
- struct
- {
- pthread_t thread;
- } posix;
-#endif
- int _unused;
- };
-} ma_thread;
-
-typedef struct
-{
- ma_context* pContext;
-
- union
- {
-#ifdef MA_WIN32
- struct
- {
- /*HANDLE*/ ma_handle hMutex;
- } win32;
-#endif
-#ifdef MA_POSIX
- struct
- {
- pthread_mutex_t mutex;
- } posix;
-#endif
- int _unused;
- };
-} ma_mutex;
-
-typedef struct
-{
- ma_context* pContext;
-
- union
- {
-#ifdef MA_WIN32
- struct
- {
- /*HANDLE*/ ma_handle hEvent;
- } win32;
-#endif
-#ifdef MA_POSIX
- struct
- {
- pthread_mutex_t mutex;
- pthread_cond_t condition;
- ma_uint32 value;
- } posix;
-#endif
- int _unused;
- };
-} ma_event;
-
-typedef struct
-{
- ma_context* pContext;
-
- union
- {
-#ifdef MA_WIN32
- struct
- {
- /*HANDLE*/ ma_handle hSemaphore;
- } win32;
-#endif
-#ifdef MA_POSIX
- struct
- {
- sem_t semaphore;
- } posix;
-#endif
- int _unused;
- };
-} ma_semaphore;
-
/*
The callback for processing audio data from the device.
@@ -2620,7 +3080,7 @@ typedef struct
ma_resample_algorithm algorithm;
struct
{
- ma_uint32 lpfCount;
+ ma_uint32 lpfOrder;
} linear;
struct
{
@@ -2629,7 +3089,7 @@ typedef struct
} resampling;
struct
{
- ma_device_id* pDeviceID;
+ const ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
@@ -2637,7 +3097,7 @@ typedef struct
} playback;
struct
{
- ma_device_id* pDeviceID;
+ const ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
@@ -2653,7 +3113,10 @@ typedef struct
} wasapi;
struct
{
- ma_bool32 noMMap; /* Disables MMap mode. */
+ ma_bool32 noMMap; /* Disables MMap mode. */
+ ma_bool32 noAutoFormat; /* Opens the ALSA device with SND_PCM_NO_AUTO_FORMAT. */
+ ma_bool32 noAutoChannels; /* Opens the ALSA device with SND_PCM_NO_AUTO_CHANNELS. */
+ ma_bool32 noAutoResample; /* Opens the ALSA device with SND_PCM_NO_AUTO_RESAMPLE. */
} alsa;
struct
{
@@ -2666,6 +3129,7 @@ typedef struct
{
ma_log_proc logCallback;
ma_thread_priority threadPriority;
+ size_t threadStackSize;
void* pUserData;
ma_allocation_callbacks allocationCallbacks;
struct
@@ -2717,6 +3181,7 @@ struct ma_context
ma_backend backend; /* DirectSound, ALSA, etc. */
ma_log_proc logCallback;
ma_thread_priority threadPriority;
+ size_t threadStackSize;
void* pUserData;
ma_allocation_callbacks allocationCallbacks;
ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */
@@ -3113,7 +3578,7 @@ struct ma_device
ma_resample_algorithm algorithm;
struct
{
- ma_uint32 lpfCount;
+ ma_uint32 lpfOrder;
} linear;
struct
{
@@ -3206,7 +3671,6 @@ struct ma_device
/*HANDLE*/ ma_handle hEventPlayback;
/*HANDLE*/ ma_handle hEventCapture;
ma_uint32 fragmentSizeInFrames;
- ma_uint32 fragmentSizeInBytes;
ma_uint32 iNextHeaderPlayback; /* [0,periods). Used as an index into pWAVEHDRPlayback. */
ma_uint32 iNextHeaderCapture; /* [0,periods). Used as an index into pWAVEHDRCapture. */
ma_uint32 headerFramesConsumedPlayback; /* The number of PCM frames consumed in the buffer in pWAVEHEADER[iNextHeader]. */
@@ -3381,7 +3845,7 @@ See Also
--------
ma_context_init()
*/
-ma_context_config ma_context_config_init(void);
+MA_API ma_context_config ma_context_config_init(void);
/*
Initializes a context.
@@ -3468,7 +3932,7 @@ can then be set directly on the structure. Below are the members of the `ma_cont
callbacks will be used for anything tied to the context, including devices.
alsa.useVerboseDeviceEnumeration
- ALSA will typically enumerate many different devices which can be intrusive and unuser-friendly. To combat this, miniaudio will enumerate only unique
+ ALSA will typically enumerate many different devices which can be intrusive and not user-friendly. To combat this, miniaudio will enumerate only unique
card/device pairs by default. The problem with this is that you lose a bit of flexibility and control. Setting alsa.useVerboseDeviceEnumeration makes
it so the ALSA backend includes all devices. Defaults to false.
@@ -3577,7 +4041,7 @@ See Also
ma_context_config_init()
ma_context_uninit()
*/
-ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext);
+MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext);
/*
Uninitializes a context.
@@ -3602,7 +4066,14 @@ See Also
--------
ma_context_init()
*/
-ma_result ma_context_uninit(ma_context* pContext);
+MA_API ma_result ma_context_uninit(ma_context* pContext);
+
+/*
+Retrieves the size of the ma_context object.
+
+This is mainly for the purpose of bindings to know how much memory to allocate.
+*/
+MA_API size_t ma_context_sizeof(void);
/*
Enumerates over every device (both playback and capture).
@@ -3669,7 +4140,7 @@ See Also
--------
ma_context_get_devices()
*/
-ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData);
+MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData);
/*
Retrieves basic information about every active playback and/or capture device.
@@ -3720,7 +4191,7 @@ See Also
--------
ma_context_get_devices()
*/
-ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount);
+MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount);
/*
Retrieves information about a device of the given type, with the specified ID and share mode.
@@ -3766,7 +4237,7 @@ the requested share mode is unsupported.
This leaves pDeviceInfo unmodified in the result of an error.
*/
-ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo);
+MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo);
/*
Determines if the given context supports loopback mode.
@@ -3782,7 +4253,7 @@ Return Value
------------
MA_TRUE if the context supports loopback mode; MA_FALSE otherwise.
*/
-ma_bool32 ma_context_is_loopback_supported(ma_context* pContext);
+MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext);
@@ -3850,7 +4321,7 @@ See Also
ma_device_init()
ma_device_init_ex()
*/
-ma_device_config ma_device_config_init(ma_device_type deviceType);
+MA_API ma_device_config ma_device_config_init(ma_device_type deviceType);
/*
@@ -3861,13 +4332,12 @@ from a microphone. Whether or not you should send or receive data from the devic
playback, capture, full-duplex or loopback. (Note that loopback mode is only supported on select backends.) Sending and receiving audio data to and from the
device is done via a callback which is fired by miniaudio at periodic time intervals.
-The frequency at which data is deilvered to and from a device depends on the size of it's period which is defined by a buffer size and a period count. The size
-of the buffer can be defined in terms of PCM frames or milliseconds, whichever is more convenient. The size of a period is the size of this buffer, divided by
-the period count. Generally speaking, the smaller the period, the lower the latency at the expense of higher CPU usage and increased risk of glitching due to
-the more frequent and granular data deliver intervals. The size of a period will depend on your requirements, but miniaudio's defaults should work fine for
-most scenarios. If you're building a game you should leave this fairly small, whereas if you're building a simple media player you can make it larger. Note
-that the period size you request is actually just a hint - miniaudio will tell the backend what you want, but the backend is ultimately responsible for what it
-gives you. You cannot assume you will get exactly what you ask for.
+The frequency at which data is delivered to and from a device depends on the size of it's period. The size of the period can be defined in terms of PCM frames
+or milliseconds, whichever is more convenient. Generally speaking, the smaller the period, the lower the latency at the expense of higher CPU usage and
+increased risk of glitching due to the more frequent and granular data deliver intervals. The size of a period will depend on your requirements, but
+miniaudio's defaults should work fine for most scenarios. If you're building a game you should leave this fairly small, whereas if you're building a simple
+media player you can make it larger. Note that the period size you request is actually just a hint - miniaudio will tell the backend what you want, but the
+backend is ultimately responsible for what it gives you. You cannot assume you will get exactly what you ask for.
When delivering data to and from a device you need to make sure it's in the correct format which you can set through the device configuration. You just set the
format that you want to use and miniaudio will perform all of the necessary conversion for you internally. When delivering data to and from the callback you
@@ -3940,7 +4410,7 @@ then be set directly on the structure. Below are the members of the `ma_device_c
noPreZeroedOutputBuffer
When set to true, the contents of the output buffer passed into the data callback will be left undefined. When set to false (default), the contents of
- the output buffer will be cleared the zero. You can use this to avoid the overhead of zeroing out the buffer if you know can guarantee that your data
+ the output buffer will be cleared the zero. You can use this to avoid the overhead of zeroing out the buffer if you can guarantee that your data
callback will write to every sample in the output buffer, or if you are doing your own clearing.
noClip
@@ -3960,12 +4430,12 @@ then be set directly on the structure. Below are the members of the `ma_device_c
resampling.algorithm
The resampling algorithm to use when miniaudio needs to perform resampling between the rate specified by `sampleRate` and the device's native rate. The
- default value is `ma_resample_algorithm_linear`, and the quality can be configured with `resampling.linear.lpfCount`.
+ default value is `ma_resample_algorithm_linear`, and the quality can be configured with `resampling.linear.lpfOrder`.
- resampling.linear.lpfCount
- The linear resampler applies a low-pass filter as part of it's procesing for anti-aliasing. This setting controls the quality of the filter. The higher
- the value, the better the quality. Setting this to 0 will disable low-pass filtering altogether. The maximum value is `MA_MAX_RESAMPLER_LPF_FILTERS`.
- The default value is `min(2, MA_MAX_RESAMPLER_LPF_FILTERS)`.
+ resampling.linear.lpfOrder
+ The linear resampler applies a low-pass filter as part of it's procesing for anti-aliasing. This setting controls the order of the filter. The higher
+ the value, the better the quality, in general. Setting this to 0 will disable low-pass filtering altogether. The maximum value is
+ `MA_MAX_FILTER_ORDER`. The default value is `min(4, MA_MAX_FILTER_ORDER)`.
playback.pDeviceID
A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's
@@ -3985,11 +4455,12 @@ then be set directly on the structure. Below are the members of the `ma_device_c
playback.shareMode
The preferred share mode to use for playback. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
- exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired.
+ exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to
+ ma_share_mode_shared and reinitializing.
- playback.pDeviceID
- A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's
- default playback device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
+ capture.pDeviceID
+ A pointer to a `ma_device_id` structure containing the ID of the capture device to initialize. Setting this NULL (default) will use the system's
+ default capture device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
capture.format
The sample format to use for capture. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after
@@ -4005,7 +4476,8 @@ then be set directly on the structure. Below are the members of the `ma_device_c
capture.shareMode
The preferred share mode to use for capture. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
- exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired.
+ exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to
+ ma_share_mode_shared and reinitializing.
wasapi.noAutoConvertSRC
WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false.
@@ -4023,6 +4495,15 @@ then be set directly on the structure. Below are the members of the `ma_device_c
alsa.noMMap
ALSA only. When set to true, disables MMap mode. Defaults to false.
+ alsa.noAutoFormat
+ ALSA only. When set to true, disables ALSA's automatic format conversion by including the SND_PCM_NO_AUTO_FORMAT flag. Defaults to false.
+
+ alsa.noAutoChannels
+ ALSA only. When set to true, disables ALSA's automatic channel conversion by including the SND_PCM_NO_AUTO_CHANNELS flag. Defaults to false.
+
+ alsa.noAutoResample
+ ALSA only. When set to true, disables ALSA's automatic resampling by including the SND_PCM_NO_AUTO_RESAMPLE flag. Defaults to false.
+
pulse.pStreamNamePlayback
PulseAudio only. Sets the stream name for playback.
@@ -4032,6 +4513,8 @@ then be set directly on the structure. Below are the members of the `ma_device_c
Once initialized, the device's config is immutable. If you need to change the config you will need to initialize a new device.
+After initializing the device it will be in a stopped state. To start it, use `ma_device_start()`.
+
If both `periodSizeInFrames` and `periodSizeInMilliseconds` are set to zero, it will default to `MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY` or
`MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE`, depending on whether or not `performanceProfile` is set to `ma_performance_profile_low_latency` or
`ma_performance_profile_conservative`.
@@ -4042,11 +4525,9 @@ config) which is the most reliable option. Some backends do not have a practical
for example) in which case it just acts as a hint. Unless you have special requirements you should try avoiding exclusive mode as it's intrusive to the user.
Starting with Windows 10, miniaudio will use low-latency shared mode where possible which may make exclusive mode unnecessary.
-After initializing the device it will be in a stopped state. To start it, use `ma_device_start()`.
-
-When sending or receiving data to/from a device, miniaudio will internally perform a format conversion to convert between the format specified by pConfig and
-the format used internally by the backend. If you pass in 0 for the sample format, channel count, sample rate _and_ channel map, data transmission will run on
-an optimized pass-through fast path. You can retrieve the format, channel count and sample rate by inspecting the `playback/capture.format`,
+When sending or receiving data to/from a device, miniaudio will internally perform a format conversion to convert between the format specified by the config
+and the format used internally by the backend. If you pass in 0 for the sample format, channel count, sample rate _and_ channel map, data transmission will run
+on an optimized pass-through fast path. You can retrieve the format, channel count and sample rate by inspecting the `playback/capture.format`,
`playback/capture.channels` and `sampleRate` members of the device object.
When compiling for UWP you must ensure you call this function on the main UI thread because the operating system may need to present the user with a message
@@ -4058,7 +4539,7 @@ If these fail it will try falling back to the "hw" device.
Example 1 - Simple Initialization
---------------------------------
-This example shows how to initialize a simple playback default using a standard configuration. If you are just needing to do simple playback from the default
+This example shows how to initialize a simple playback device using a standard configuration. If you are just needing to do simple playback from the default
playback device this is usually all you need.
```c
@@ -4079,7 +4560,7 @@ if (result != MA_SUCCESS) {
Example 2 - Advanced Initialization
-----------------------------------
-This example show how you might do some more advanced initialization. In this hypothetical example we want to control the latency by setting the buffer size
+This example shows how you might do some more advanced initialization. In this hypothetical example we want to control the latency by setting the buffer size
and period count. We also want to allow the user to be able to choose which device to output from which means we need a context so we can perform device
enumeration.
@@ -4126,7 +4607,7 @@ ma_context_init()
ma_context_get_devices()
ma_context_enumerate_devices()
*/
-ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice);
+MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice);
/*
Initializes a device without a context, with extra parameters for controlling the configuration of the internal self-managed context.
@@ -4184,7 +4665,7 @@ ma_device_uninit()
ma_device_config_init()
ma_context_init()
*/
-ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice);
+MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice);
/*
Uninitializes a device.
@@ -4218,7 +4699,7 @@ See Also
ma_device_init()
ma_device_stop()
*/
-void ma_device_uninit(ma_device* pDevice);
+MA_API void ma_device_uninit(ma_device* pDevice);
/*
Starts the device. For playback devices this begins playback. For capture devices it begins recording.
@@ -4261,7 +4742,7 @@ See Also
--------
ma_device_stop()
*/
-ma_result ma_device_start(ma_device* pDevice);
+MA_API ma_result ma_device_start(ma_device* pDevice);
/*
Stops the device. For playback devices this stops playback. For capture devices it stops recording.
@@ -4309,7 +4790,7 @@ See Also
--------
ma_device_start()
*/
-ma_result ma_device_stop(ma_device* pDevice);
+MA_API ma_result ma_device_stop(ma_device* pDevice);
/*
Determines whether or not the device is started.
@@ -4342,7 +4823,7 @@ See Also
ma_device_start()
ma_device_stop()
*/
-ma_bool32 ma_device_is_started(ma_device* pDevice);
+MA_API ma_bool32 ma_device_is_started(ma_device* pDevice);
/*
Sets the master volume factor for the device.
@@ -4390,7 +4871,7 @@ ma_device_get_master_volume()
ma_device_set_master_volume_gain_db()
ma_device_get_master_volume_gain_db()
*/
-ma_result ma_device_set_master_volume(ma_device* pDevice, float volume);
+MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume);
/*
Retrieves the master volume factor for the device.
@@ -4433,7 +4914,7 @@ ma_device_set_master_volume()
ma_device_set_master_volume_gain_db()
ma_device_get_master_volume_gain_db()
*/
-ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume);
+MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume);
/*
Sets the master volume for the device as gain in decibels.
@@ -4480,7 +4961,7 @@ ma_device_get_master_volume_gain_db()
ma_device_set_master_volume()
ma_device_get_master_volume()
*/
-ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB);
+MA_API ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB);
/*
Retrieves the master gain in decibels.
@@ -4523,9 +5004,67 @@ ma_device_set_master_volume_gain_db()
ma_device_set_master_volume()
ma_device_get_master_volume()
*/
-ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB);
+MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB);
+/*
+Retrieves a friendly name for a backend.
+*/
+MA_API const char* ma_get_backend_name(ma_backend backend);
+
+/*
+Determines whether or not loopback mode is support by a backend.
+*/
+MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend);
+
+#endif /* MA_NO_DEVICE_IO */
+
+
+#ifndef MA_NO_THREADING
+/*
+Creates a mutex.
+
+A mutex must be created from a valid context. A mutex is initially unlocked.
+*/
+MA_API ma_result ma_mutex_init(ma_mutex* pMutex);
+
+/*
+Deletes a mutex.
+*/
+MA_API void ma_mutex_uninit(ma_mutex* pMutex);
+
+/*
+Locks a mutex with an infinite timeout.
+*/
+MA_API void ma_mutex_lock(ma_mutex* pMutex);
+
+/*
+Unlocks a mutex.
+*/
+MA_API void ma_mutex_unlock(ma_mutex* pMutex);
+
+
+/*
+Initializes an auto-reset event.
+*/
+MA_API ma_result ma_event_init(ma_event* pEvent);
+
+/*
+Uninitializes an auto-reset event.
+*/
+MA_API void ma_event_uninit(ma_event* pEvent);
+
+/*
+Waits for the specified auto-reset event to become signalled.
+*/
+MA_API ma_result ma_event_wait(ma_event* pEvent);
+
+/*
+Signals the specified auto-reset event.
+*/
+MA_API ma_result ma_event_signal(ma_event* pEvent);
+#endif /* MA_NO_THREADING */
+
/************************************************************************************************************************************************************
@@ -4533,115 +5072,220 @@ Utiltities
************************************************************************************************************************************************************/
-/*
-Creates a mutex.
-
-A mutex must be created from a valid context. A mutex is initially unlocked.
-*/
-ma_result ma_mutex_init(ma_context* pContext, ma_mutex* pMutex);
-
-/*
-Deletes a mutex.
-*/
-void ma_mutex_uninit(ma_mutex* pMutex);
-
-/*
-Locks a mutex with an infinite timeout.
-*/
-void ma_mutex_lock(ma_mutex* pMutex);
-
-/*
-Unlocks a mutex.
-*/
-void ma_mutex_unlock(ma_mutex* pMutex);
-
-
-/*
-Retrieves a friendly name for a backend.
-*/
-const char* ma_get_backend_name(ma_backend backend);
-
-/*
-Determines whether or not loopback mode is support by a backend.
-*/
-ma_bool32 ma_is_loopback_supported(ma_backend backend);
-
-
/*
Adjust buffer size based on a scaling factor.
This just multiplies the base size by the scaling factor, making sure it's a size of at least 1.
*/
-ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale);
+MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale);
/*
Calculates a buffer size in milliseconds from the specified number of frames and sample rate.
*/
-ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate);
+MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate);
/*
Calculates a buffer size in frames from the specified number of milliseconds and sample rate.
*/
-ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate);
+MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate);
+
+/*
+Copies PCM frames from one buffer to another.
+*/
+MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
/*
Copies silent frames into the given buffer.
+
+Remarks
+-------
+For all formats except `ma_format_u8`, the output buffer will be filled with 0. For `ma_format_u8` it will be filled with 128. The reason for this is that it
+makes more sense for the purpose of mixing to initialize it to the center point.
*/
-void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels);
+MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
+static MA_INLINE void ma_zero_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { ma_silence_pcm_frames(p, frameCount, format, channels); }
+
+
+/*
+Offsets a pointer by the specified number of PCM frames.
+*/
+MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
+MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
+
/*
Clips f32 samples.
*/
-void ma_clip_samples_f32(float* p, ma_uint32 sampleCount);
-MA_INLINE void ma_clip_pcm_frames_f32(float* p, ma_uint32 frameCount, ma_uint32 channels) { ma_clip_samples_f32(p, frameCount*channels); }
+MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount);
+static MA_INLINE void ma_clip_pcm_frames_f32(float* p, ma_uint64 frameCount, ma_uint32 channels) { ma_clip_samples_f32(p, frameCount*channels); }
/*
Helper for applying a volume factor to samples.
Note that the source and destination buffers can be the same, in which case it'll perform the operation in-place.
*/
-void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor);
-void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor);
-void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor);
-void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor);
-void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor);
+MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor);
+MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor);
+MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor);
+MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor);
+MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor);
-void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor);
-void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor);
-void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor);
-void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor);
-void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor);
+MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor);
+MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor);
+MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor);
+MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor);
+MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
-void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
+MA_API void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
/*
Helper for converting a linear factor to gain in decibels.
*/
-float ma_factor_to_gain_db(float factor);
+MA_API float ma_factor_to_gain_db(float factor);
/*
Helper for converting gain in decibels to a linear factor.
*/
-float ma_gain_db_to_factor(float gain);
+MA_API float ma_gain_db_to_factor(float gain);
-#endif /* MA_NO_DEVICE_IO */
+
+typedef void ma_data_source;
+
+typedef struct
+{
+ ma_result (* onRead)(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead);
+ ma_result (* onSeek)(ma_data_source* pDataSource, ma_uint64 frameIndex);
+ ma_result (* onMap)(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
+ ma_result (* onUnmap)(ma_data_source* pDataSource, ma_uint64 frameCount);
+ ma_result (* onGetDataFormat)(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels);
+} ma_data_source_callbacks;
+
+MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop); /* Must support pFramesOut = NULL in which case a forward seek should be performed. */
+MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop); /* Can only seek forward. Equivalent to ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount); */
+MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex);
+MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount);
+MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
+MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels);
+
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint64 sizeInFrames;
+ const void* pData; /* If set to NULL, will allocate a block of memory for you. */
+ ma_allocation_callbacks allocationCallbacks;
+} ma_audio_buffer_config;
+
+MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks);
+
+typedef struct
+{
+ ma_data_source_callbacks ds;
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint64 cursor;
+ ma_uint64 sizeInFrames;
+ const void* pData;
+ ma_allocation_callbacks allocationCallbacks;
+ ma_bool32 ownsData; /* Used to control whether or not miniaudio owns the data buffer. If set to true, pData will be freed in ma_audio_buffer_uninit(). */
+ ma_uint8 _pExtraData[1]; /* For allocating a buffer with the memory located directly after the other memory of the structure. */
+} ma_audio_buffer;
+
+MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer);
+MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer);
+MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer); /* Always copies the data. Doesn't make sense to use this otherwise. Use ma_audio_buffer_uninit_and_free() to uninit. */
+MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer);
+MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer);
+MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop);
+MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex);
+MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount);
+MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
+MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer);
+/************************************************************************************************************************************************************
+
+VFS
+===
+
+The VFS object (virtual file system) is what's used to customize file access. This is useful in cases where stdio FILE* based APIs may not be entirely
+appropriate for a given situation.
+
+************************************************************************************************************************************************************/
+typedef void ma_vfs;
+typedef ma_handle ma_vfs_file;
+
+#define MA_OPEN_MODE_READ 0x00000001
+#define MA_OPEN_MODE_WRITE 0x00000002
+
+typedef enum
+{
+ ma_seek_origin_start,
+ ma_seek_origin_current,
+ ma_seek_origin_end /* Not used by decoders. */
+} ma_seek_origin;
+
+typedef struct
+{
+ ma_uint64 sizeInBytes;
+} ma_file_info;
+
+typedef struct
+{
+ ma_result (* onOpen) (ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
+ ma_result (* onOpenW)(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
+ ma_result (* onClose)(ma_vfs* pVFS, ma_vfs_file file);
+ ma_result (* onRead) (ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead);
+ ma_result (* onWrite)(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten);
+ ma_result (* onSeek) (ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin);
+ ma_result (* onTell) (ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor);
+ ma_result (* onInfo) (ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo);
+} ma_vfs_callbacks;
+
+MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
+MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
+MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file);
+MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead);
+MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten);
+MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin);
+MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor);
+MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo);
+MA_API ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks);
+
+typedef struct
+{
+ ma_vfs_callbacks cb;
+ ma_allocation_callbacks allocationCallbacks; /* Only used for the wchar_t version of open() on non-Windows platforms. */
+} ma_default_vfs;
+
+MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks);
+
+
+
+
+#if !defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)
+typedef enum
+{
+ ma_resource_format_wav
+} ma_resource_format;
+#endif
+
/************************************************************************************************************************************************************
Decoding
@@ -4652,17 +5296,10 @@ you do your own synchronization.
************************************************************************************************************************************************************/
#ifndef MA_NO_DECODING
-
typedef struct ma_decoder ma_decoder;
-typedef enum
-{
- ma_seek_origin_start,
- ma_seek_origin_current
-} ma_seek_origin;
-
typedef size_t (* ma_decoder_read_proc) (ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead); /* Returns the number of bytes read. */
-typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin);
+typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin); /* Origin will never be ma_seek_origin_end. */
typedef ma_uint64 (* ma_decoder_read_pcm_frames_proc) (ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount); /* Returns the number of frames read. Output data is in internal format. */
typedef ma_result (* ma_decoder_seek_to_pcm_frame_proc) (ma_decoder* pDecoder, ma_uint64 frameIndex);
typedef ma_result (* ma_decoder_uninit_proc) (ma_decoder* pDecoder);
@@ -4681,7 +5318,7 @@ typedef struct
ma_resample_algorithm algorithm;
struct
{
- ma_uint32 lpfCount;
+ ma_uint32 lpfOrder;
} linear;
struct
{
@@ -4693,6 +5330,7 @@ typedef struct
struct ma_decoder
{
+ ma_data_source_callbacks ds;
ma_decoder_read_proc onRead;
ma_decoder_seek_proc onSeek;
void* pUserData;
@@ -4712,45 +5350,63 @@ struct ma_decoder
ma_decoder_uninit_proc onUninit;
ma_decoder_get_length_in_pcm_frames_proc onGetLengthInPCMFrames;
void* pInternalDecoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */
- struct
+ union
{
- const ma_uint8* pData;
- size_t dataSize;
- size_t currentReadPos;
- } memory; /* Only used for decoders that were opened against a block of memory. */
+ struct
+ {
+ ma_vfs* pVFS;
+ ma_vfs_file file;
+ } vfs;
+ struct
+ {
+ const ma_uint8* pData;
+ size_t dataSize;
+ size_t currentReadPos;
+ } memory; /* Only used for decoders that were opened against a block of memory. */
+ } backend;
};
-ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate);
+MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate);
-ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
-#ifndef MA_NO_STDIO
-ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-#endif
+MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
-ma_result ma_decoder_uninit(ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+
+MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
+
+MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder);
/*
Retrieves the length of the decoder in PCM frames.
@@ -4766,39 +5422,89 @@ For MP3's, this will decode the entire file. Do not call this in time critical s
This function is not thread safe without your own synchronization.
*/
-ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder);
+MA_API ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder);
/*
Reads PCM frames from the given decoder.
This is not thread safe without your own synchronization.
*/
-ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount);
+MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount);
/*
Seeks to a PCM frame based on it's absolute index.
This is not thread safe without your own synchronization.
*/
-ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex);
+MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex);
/*
Helper for opening and decoding a file into a heap allocated block of memory. Free the returned pointer with ma_free(). On input,
pConfig should be set to what you want. On output it will be set to what you got.
*/
-#ifndef MA_NO_STDIO
-ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppDataOut);
-#endif
-ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppDataOut);
+MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
+MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
+MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
#endif /* MA_NO_DECODING */
+/************************************************************************************************************************************************************
+
+Encoding
+========
+
+Encoders do not perform any format conversion for you. If your target format does not support the format, and error will be returned.
+
+************************************************************************************************************************************************************/
+#ifndef MA_NO_ENCODING
+typedef struct ma_encoder ma_encoder;
+
+typedef size_t (* ma_encoder_write_proc) (ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite); /* Returns the number of bytes written. */
+typedef ma_bool32 (* ma_encoder_seek_proc) (ma_encoder* pEncoder, int byteOffset, ma_seek_origin origin);
+typedef ma_result (* ma_encoder_init_proc) (ma_encoder* pEncoder);
+typedef void (* ma_encoder_uninit_proc) (ma_encoder* pEncoder);
+typedef ma_uint64 (* ma_encoder_write_pcm_frames_proc)(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount);
+
+typedef struct
+{
+ ma_resource_format resourceFormat;
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ ma_allocation_callbacks allocationCallbacks;
+} ma_encoder_config;
+
+MA_API ma_encoder_config ma_encoder_config_init(ma_resource_format resourceFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate);
+
+struct ma_encoder
+{
+ ma_encoder_config config;
+ ma_encoder_write_proc onWrite;
+ ma_encoder_seek_proc onSeek;
+ ma_encoder_init_proc onInit;
+ ma_encoder_uninit_proc onUninit;
+ ma_encoder_write_pcm_frames_proc onWritePCMFrames;
+ void* pUserData;
+ void* pInternalEncoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */
+ void* pFile; /* FILE*. Only used when initialized with ma_encoder_init_file(). */
+};
+
+MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
+MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
+MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
+MA_API void ma_encoder_uninit(ma_encoder* pEncoder);
+MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount);
+
+#endif /* MA_NO_ENCODING */
+
+
/************************************************************************************************************************************************************
Generation
************************************************************************************************************************************************************/
+#ifndef MA_NO_GENERATION
typedef enum
{
ma_waveform_type_sine,
@@ -4809,18 +5515,76 @@ typedef enum
typedef struct
{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
ma_waveform_type type;
double amplitude;
double frequency;
- double deltaTime;
+} ma_waveform_config;
+
+MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency);
+
+typedef struct
+{
+ ma_data_source_callbacks ds;
+ ma_waveform_config config;
+ double advance;
double time;
} ma_waveform;
-ma_result ma_waveform_init(ma_waveform_type type, double amplitude, double frequency, ma_uint32 sampleRate, ma_waveform* pWaveform);
-ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
-ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude);
-ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency);
-ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate);
+MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform);
+MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount);
+MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex);
+MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude);
+MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency);
+MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate);
+
+
+
+typedef enum
+{
+ ma_noise_type_white,
+ ma_noise_type_pink,
+ ma_noise_type_brownian
+} ma_noise_type;
+
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_noise_type type;
+ ma_int32 seed;
+ double amplitude;
+ ma_bool32 duplicateChannels;
+} ma_noise_config;
+
+MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude);
+
+typedef struct
+{
+ ma_data_source_callbacks ds;
+ ma_noise_config config;
+ ma_lcg lcg;
+ union
+ {
+ struct
+ {
+ double bin[MA_MAX_CHANNELS][16];
+ double accumulation[MA_MAX_CHANNELS];
+ ma_uint32 counter[MA_MAX_CHANNELS];
+ } pink;
+ struct
+ {
+ double accumulation[MA_MAX_CHANNELS];
+ } brownian;
+ } state;
+} ma_noise;
+
+MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise);
+MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount);
+
+#endif /* MA_NO_GENERATION */
#ifdef __cplusplus
}
@@ -4837,38 +5601,30 @@ IMPLEMENTATION
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION)
+#ifndef miniaudio_c
+#define miniaudio_c
+
#include
#include /* For INT_MAX */
#include /* sin(), etc. */
-#if !defined(MA_NO_STDIO) || defined(MA_DEBUG_OUTPUT)
- #include
- #if !defined(_MSC_VER) && !defined(__DMC__)
- #include /* For strcasecmp(). */
- #include /* For wcslen(), wcsrtombs() */
- #endif
+#include
+#include
+#if !defined(_MSC_VER) && !defined(__DMC__)
+ #include /* For strcasecmp(). */
+ #include /* For wcslen(), wcsrtombs() */
#endif
#ifdef MA_WIN32
#include
-#include
-#include
-#include
#else
-#include /* For malloc(), free(), wcstombs(). */
-#include /* For memset() */
+#include /* For malloc(), free(), wcstombs(). */
+#include /* For memset() */
+#include
+#include /* select() (used for ma_sleep()). */
#endif
-#if defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
-#include /* For mach_absolute_time() */
-#endif
-
-#ifdef MA_POSIX
-#include
-#include
-#include
-#include
-#endif
+#include /* For fstat(), etc. */
#ifdef MA_EMSCRIPTEN
#include
@@ -5061,7 +5817,7 @@ IMPLEMENTATION
#define MA_NO_XGETBV
#endif
-static MA_INLINE ma_bool32 ma_has_sse2()
+static MA_INLINE ma_bool32 ma_has_sse2(void)
{
#if defined(MA_SUPPORT_SSE2)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_SSE2)
@@ -5121,7 +5877,7 @@ static MA_INLINE ma_bool32 ma_has_avx()
}
#endif
-static MA_INLINE ma_bool32 ma_has_avx2()
+static MA_INLINE ma_bool32 ma_has_avx2(void)
{
#if defined(MA_SUPPORT_AVX2)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX2)
@@ -5156,7 +5912,7 @@ static MA_INLINE ma_bool32 ma_has_avx2()
#endif
}
-static MA_INLINE ma_bool32 ma_has_avx512f()
+static MA_INLINE ma_bool32 ma_has_avx512f(void)
{
#if defined(MA_SUPPORT_AVX512)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX512)
@@ -5191,7 +5947,7 @@ static MA_INLINE ma_bool32 ma_has_avx512f()
#endif
}
-static MA_INLINE ma_bool32 ma_has_neon()
+static MA_INLINE ma_bool32 ma_has_neon(void)
{
#if defined(MA_SUPPORT_NEON)
#if defined(MA_ARM) && !defined(MA_NO_NEON)
@@ -5227,7 +5983,34 @@ static MA_INLINE ma_bool32 ma_has_neon()
#endif
-static MA_INLINE ma_bool32 ma_is_little_endian()
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ #define MA_HAS_BYTESWAP16_INTRINSIC
+ #define MA_HAS_BYTESWAP32_INTRINSIC
+ #define MA_HAS_BYTESWAP64_INTRINSIC
+#elif defined(__clang__)
+ #if defined(__has_builtin)
+ #if __has_builtin(__builtin_bswap16)
+ #define MA_HAS_BYTESWAP16_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap32)
+ #define MA_HAS_BYTESWAP32_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap64)
+ #define MA_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #endif
+#elif defined(__GNUC__)
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+ #define MA_HAS_BYTESWAP32_INTRINSIC
+ #define MA_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+ #define MA_HAS_BYTESWAP16_INTRINSIC
+ #endif
+#endif
+
+
+static MA_INLINE ma_bool32 ma_is_little_endian(void)
{
#if defined(MA_X86) || defined(MA_X64)
return MA_TRUE;
@@ -5237,12 +6020,114 @@ static MA_INLINE ma_bool32 ma_is_little_endian()
#endif
}
-static MA_INLINE ma_bool32 ma_is_big_endian()
+static MA_INLINE ma_bool32 ma_is_big_endian(void)
{
return !ma_is_little_endian();
}
+static MA_INLINE ma_uint32 ma_swap_endian_uint32(ma_uint32 n)
+{
+#ifdef MA_HAS_BYTESWAP32_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ulong(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ #if defined(MA_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(MA_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
+ /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
+ ma_uint32 r;
+ __asm__ __volatile__ (
+ #if defined(MA_64BIT)
+ "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
+ #else
+ "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
+ #endif
+ );
+ return r;
+ #else
+ return __builtin_bswap32(n);
+ #endif
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF000000) >> 24) |
+ ((n & 0x00FF0000) >> 8) |
+ ((n & 0x0000FF00) << 8) |
+ ((n & 0x000000FF) << 24);
+#endif
+}
+
+
+#if !defined(MA_EMSCRIPTEN)
+#ifdef MA_WIN32
+static void ma_sleep__win32(ma_uint32 milliseconds)
+{
+ Sleep((DWORD)milliseconds);
+}
+#endif
+#ifdef MA_POSIX
+static void ma_sleep__posix(ma_uint32 milliseconds)
+{
+#ifdef MA_EMSCRIPTEN
+ (void)milliseconds;
+ MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */
+#else
+ #if _POSIX_C_SOURCE >= 199309L
+ struct timespec ts;
+ ts.tv_sec = milliseconds / 1000;
+ ts.tv_nsec = milliseconds % 1000 * 1000000;
+ nanosleep(&ts, NULL);
+ #else
+ struct timeval tv;
+ tv.tv_sec = milliseconds / 1000;
+ tv.tv_usec = milliseconds % 1000 * 1000;
+ select(0, NULL, NULL, NULL, &tv);
+ #endif
+#endif
+}
+#endif
+
+static void ma_sleep(ma_uint32 milliseconds)
+{
+#ifdef MA_WIN32
+ ma_sleep__win32(milliseconds);
+#endif
+#ifdef MA_POSIX
+ ma_sleep__posix(milliseconds);
+#endif
+}
+#endif
+
+#if !defined(MA_EMSCRIPTEN)
+static MA_INLINE void ma_yield()
+{
+#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+ /* x86/x64 */
+ #if defined(_MSC_VER) && !defined(__clang__)
+ #if _MSC_VER >= 1400
+ _mm_pause();
+ #else
+ __asm pause;
+ #endif
+ #else
+ __asm__ __volatile__ ("pause");
+ #endif
+#elif (defined(__arm__) && defined(__ARM_ARCH) && __ARM_ARCH >= 6) || (defined(_M_ARM) && _M_ARM >= 6)
+ /* ARM */
+ #if defined(_MSC_VER)
+ /* Apparently there is a __yield() intrinsic that's compatible with ARM, but I cannot find documentation for it nor can I find where it's declared. */
+ __yield();
+ #else
+ __asm__ __volatile__ ("yield");
+ #endif
+#else
+ /* Unknown or unsupported architecture. No-op. */
+#endif
+}
+#endif
+
+
+
#ifndef MA_COINIT_VALUE
#define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED */
#endif
@@ -5293,18 +6178,22 @@ static MA_INLINE ma_bool32 ma_is_big_endian()
#define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE 100
#endif
-/* The default LPF count for linear resampling. Note that this is clamped to MA_MAX_RESAMPLER_LPF_FILTERS. */
-#ifndef MA_DEFAULT_RESAMPLER_LPF_FILTERS
- #if MA_MAX_RESAMPLER_LPF_FILTERS >= 2
- #define MA_DEFAULT_RESAMPLER_LPF_FILTERS 2
+/* The default LPF filter order for linear resampling. Note that this is clamped to MA_MAX_FILTER_ORDER. */
+#ifndef MA_DEFAULT_RESAMPLER_LPF_ORDER
+ #if MA_MAX_FILTER_ORDER >= 4
+ #define MA_DEFAULT_RESAMPLER_LPF_ORDER 4
#else
- #define MA_DEFAULT_RESAMPLER_LPF_FILTERS MA_MAX_RESAMPLER_LPF_FILTERS
+ #define MA_DEFAULT_RESAMPLER_LPF_ORDER MA_MAX_FILTER_ORDER
#endif
#endif
+#if defined(__GNUC__)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wunused-variable"
+#endif
/* Standard sample rates, in order of priority. */
-ma_uint32 g_maStandardSampleRatePriorities[] = {
+static ma_uint32 g_maStandardSampleRatePriorities[] = {
MA_SAMPLE_RATE_48000, /* Most common */
MA_SAMPLE_RATE_44100,
@@ -5325,7 +6214,7 @@ ma_uint32 g_maStandardSampleRatePriorities[] = {
MA_SAMPLE_RATE_384000
};
-ma_format g_maFormatPriorities[] = {
+static ma_format g_maFormatPriorities[] = {
ma_format_s16, /* Most common */
ma_format_f32,
@@ -5336,8 +6225,31 @@ ma_format g_maFormatPriorities[] = {
ma_format_u8 /* Low quality */
};
+#if defined(__GNUC__)
+ #pragma GCC diagnostic pop
+#endif
+MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision)
+{
+ if (pMajor) {
+ *pMajor = MA_VERSION_MAJOR;
+ }
+
+ if (pMinor) {
+ *pMinor = MA_VERSION_MINOR;
+ }
+
+ if (pRevision) {
+ *pRevision = MA_VERSION_REVISION;
+ }
+}
+
+MA_API const char* ma_version_string()
+{
+ return MA_VERSION_STRING;
+}
+
/******************************************************************************
@@ -5409,9 +6321,10 @@ static MA_INLINE double ma_sin(double x)
return sin(x);
}
-static MA_INLINE double ma_cos(double x)
+static MA_INLINE double ma_exp(double x)
{
- return ma_sin((MA_PI*0.5) - x);
+ /* TODO: Implement custom exp(x). */
+ return exp(x);
}
static MA_INLINE double ma_log(double x)
@@ -5426,6 +6339,18 @@ static MA_INLINE double ma_pow(double x, double y)
return pow(x, y);
}
+static MA_INLINE double ma_sqrt(double x)
+{
+ /* TODO: Implement custom sqrt(x). */
+ return sqrt(x);
+}
+
+
+static MA_INLINE double ma_cos(double x)
+{
+ return ma_sin((MA_PI_D*0.5) - x);
+}
+
static MA_INLINE double ma_log10(double x)
{
return ma_log(x) * 0.43429448190325182765;
@@ -5450,7 +6375,7 @@ Return Values:
Not using symbolic constants for errors because I want to avoid #including errno.h
*/
-int ma_strcpy_s(char* dst, size_t dstSizeInBytes, const char* src)
+MA_API int ma_strcpy_s(char* dst, size_t dstSizeInBytes, const char* src)
{
size_t i;
@@ -5478,7 +6403,7 @@ int ma_strcpy_s(char* dst, size_t dstSizeInBytes, const char* src)
return 34;
}
-int ma_strncpy_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
+MA_API int ma_strncpy_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
{
size_t maxcount;
size_t i;
@@ -5512,7 +6437,7 @@ int ma_strncpy_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count
return 34;
}
-int ma_strcat_s(char* dst, size_t dstSizeInBytes, const char* src)
+MA_API int ma_strcat_s(char* dst, size_t dstSizeInBytes, const char* src)
{
char* dstorig;
@@ -5554,7 +6479,7 @@ int ma_strcat_s(char* dst, size_t dstSizeInBytes, const char* src)
return 0;
}
-int ma_strncat_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
+MA_API int ma_strncat_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
{
char* dstorig;
@@ -5600,7 +6525,7 @@ int ma_strncat_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count
return 0;
}
-int ma_itoa_s(int value, char* dst, size_t dstSizeInBytes, int radix)
+MA_API int ma_itoa_s(int value, char* dst, size_t dstSizeInBytes, int radix)
{
int sign;
unsigned int valueU;
@@ -5669,7 +6594,7 @@ int ma_itoa_s(int value, char* dst, size_t dstSizeInBytes, int radix)
return 0;
}
-int ma_strcmp(const char* str1, const char* str2)
+MA_API int ma_strcmp(const char* str1, const char* str2)
{
if (str1 == str2) return 0;
@@ -5692,7 +6617,7 @@ int ma_strcmp(const char* str1, const char* str2)
return ((unsigned char*)str1)[0] - ((unsigned char*)str2)[0];
}
-int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB)
+MA_API int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB)
{
int result;
@@ -5709,7 +6634,7 @@ int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB)
return result;
}
-char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t sz = strlen(src)+1;
char* dst = (char*)ma_malloc(sz, pAllocationCallbacks);
@@ -5723,6 +6648,554 @@ char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocation
}
+#include
+static ma_result ma_result_from_errno(int e)
+{
+ switch (e)
+ {
+ case 0: return MA_SUCCESS;
+ #ifdef EPERM
+ case EPERM: return MA_INVALID_OPERATION;
+ #endif
+ #ifdef ENOENT
+ case ENOENT: return MA_DOES_NOT_EXIST;
+ #endif
+ #ifdef ESRCH
+ case ESRCH: return MA_DOES_NOT_EXIST;
+ #endif
+ #ifdef EINTR
+ case EINTR: return MA_INTERRUPT;
+ #endif
+ #ifdef EIO
+ case EIO: return MA_IO_ERROR;
+ #endif
+ #ifdef ENXIO
+ case ENXIO: return MA_DOES_NOT_EXIST;
+ #endif
+ #ifdef E2BIG
+ case E2BIG: return MA_INVALID_ARGS;
+ #endif
+ #ifdef ENOEXEC
+ case ENOEXEC: return MA_INVALID_FILE;
+ #endif
+ #ifdef EBADF
+ case EBADF: return MA_INVALID_FILE;
+ #endif
+ #ifdef ECHILD
+ case ECHILD: return MA_ERROR;
+ #endif
+ #ifdef EAGAIN
+ case EAGAIN: return MA_UNAVAILABLE;
+ #endif
+ #ifdef ENOMEM
+ case ENOMEM: return MA_OUT_OF_MEMORY;
+ #endif
+ #ifdef EACCES
+ case EACCES: return MA_ACCESS_DENIED;
+ #endif
+ #ifdef EFAULT
+ case EFAULT: return MA_BAD_ADDRESS;
+ #endif
+ #ifdef ENOTBLK
+ case ENOTBLK: return MA_ERROR;
+ #endif
+ #ifdef EBUSY
+ case EBUSY: return MA_BUSY;
+ #endif
+ #ifdef EEXIST
+ case EEXIST: return MA_ALREADY_EXISTS;
+ #endif
+ #ifdef EXDEV
+ case EXDEV: return MA_ERROR;
+ #endif
+ #ifdef ENODEV
+ case ENODEV: return MA_DOES_NOT_EXIST;
+ #endif
+ #ifdef ENOTDIR
+ case ENOTDIR: return MA_NOT_DIRECTORY;
+ #endif
+ #ifdef EISDIR
+ case EISDIR: return MA_IS_DIRECTORY;
+ #endif
+ #ifdef EINVAL
+ case EINVAL: return MA_INVALID_ARGS;
+ #endif
+ #ifdef ENFILE
+ case ENFILE: return MA_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef EMFILE
+ case EMFILE: return MA_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef ENOTTY
+ case ENOTTY: return MA_INVALID_OPERATION;
+ #endif
+ #ifdef ETXTBSY
+ case ETXTBSY: return MA_BUSY;
+ #endif
+ #ifdef EFBIG
+ case EFBIG: return MA_TOO_BIG;
+ #endif
+ #ifdef ENOSPC
+ case ENOSPC: return MA_NO_SPACE;
+ #endif
+ #ifdef ESPIPE
+ case ESPIPE: return MA_BAD_SEEK;
+ #endif
+ #ifdef EROFS
+ case EROFS: return MA_ACCESS_DENIED;
+ #endif
+ #ifdef EMLINK
+ case EMLINK: return MA_TOO_MANY_LINKS;
+ #endif
+ #ifdef EPIPE
+ case EPIPE: return MA_BAD_PIPE;
+ #endif
+ #ifdef EDOM
+ case EDOM: return MA_OUT_OF_RANGE;
+ #endif
+ #ifdef ERANGE
+ case ERANGE: return MA_OUT_OF_RANGE;
+ #endif
+ #ifdef EDEADLK
+ case EDEADLK: return MA_DEADLOCK;
+ #endif
+ #ifdef ENAMETOOLONG
+ case ENAMETOOLONG: return MA_PATH_TOO_LONG;
+ #endif
+ #ifdef ENOLCK
+ case ENOLCK: return MA_ERROR;
+ #endif
+ #ifdef ENOSYS
+ case ENOSYS: return MA_NOT_IMPLEMENTED;
+ #endif
+ #ifdef ENOTEMPTY
+ case ENOTEMPTY: return MA_DIRECTORY_NOT_EMPTY;
+ #endif
+ #ifdef ELOOP
+ case ELOOP: return MA_TOO_MANY_LINKS;
+ #endif
+ #ifdef ENOMSG
+ case ENOMSG: return MA_NO_MESSAGE;
+ #endif
+ #ifdef EIDRM
+ case EIDRM: return MA_ERROR;
+ #endif
+ #ifdef ECHRNG
+ case ECHRNG: return MA_ERROR;
+ #endif
+ #ifdef EL2NSYNC
+ case EL2NSYNC: return MA_ERROR;
+ #endif
+ #ifdef EL3HLT
+ case EL3HLT: return MA_ERROR;
+ #endif
+ #ifdef EL3RST
+ case EL3RST: return MA_ERROR;
+ #endif
+ #ifdef ELNRNG
+ case ELNRNG: return MA_OUT_OF_RANGE;
+ #endif
+ #ifdef EUNATCH
+ case EUNATCH: return MA_ERROR;
+ #endif
+ #ifdef ENOCSI
+ case ENOCSI: return MA_ERROR;
+ #endif
+ #ifdef EL2HLT
+ case EL2HLT: return MA_ERROR;
+ #endif
+ #ifdef EBADE
+ case EBADE: return MA_ERROR;
+ #endif
+ #ifdef EBADR
+ case EBADR: return MA_ERROR;
+ #endif
+ #ifdef EXFULL
+ case EXFULL: return MA_ERROR;
+ #endif
+ #ifdef ENOANO
+ case ENOANO: return MA_ERROR;
+ #endif
+ #ifdef EBADRQC
+ case EBADRQC: return MA_ERROR;
+ #endif
+ #ifdef EBADSLT
+ case EBADSLT: return MA_ERROR;
+ #endif
+ #ifdef EBFONT
+ case EBFONT: return MA_INVALID_FILE;
+ #endif
+ #ifdef ENOSTR
+ case ENOSTR: return MA_ERROR;
+ #endif
+ #ifdef ENODATA
+ case ENODATA: return MA_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ETIME
+ case ETIME: return MA_TIMEOUT;
+ #endif
+ #ifdef ENOSR
+ case ENOSR: return MA_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ENONET
+ case ENONET: return MA_NO_NETWORK;
+ #endif
+ #ifdef ENOPKG
+ case ENOPKG: return MA_ERROR;
+ #endif
+ #ifdef EREMOTE
+ case EREMOTE: return MA_ERROR;
+ #endif
+ #ifdef ENOLINK
+ case ENOLINK: return MA_ERROR;
+ #endif
+ #ifdef EADV
+ case EADV: return MA_ERROR;
+ #endif
+ #ifdef ESRMNT
+ case ESRMNT: return MA_ERROR;
+ #endif
+ #ifdef ECOMM
+ case ECOMM: return MA_ERROR;
+ #endif
+ #ifdef EPROTO
+ case EPROTO: return MA_ERROR;
+ #endif
+ #ifdef EMULTIHOP
+ case EMULTIHOP: return MA_ERROR;
+ #endif
+ #ifdef EDOTDOT
+ case EDOTDOT: return MA_ERROR;
+ #endif
+ #ifdef EBADMSG
+ case EBADMSG: return MA_BAD_MESSAGE;
+ #endif
+ #ifdef EOVERFLOW
+ case EOVERFLOW: return MA_TOO_BIG;
+ #endif
+ #ifdef ENOTUNIQ
+ case ENOTUNIQ: return MA_NOT_UNIQUE;
+ #endif
+ #ifdef EBADFD
+ case EBADFD: return MA_ERROR;
+ #endif
+ #ifdef EREMCHG
+ case EREMCHG: return MA_ERROR;
+ #endif
+ #ifdef ELIBACC
+ case ELIBACC: return MA_ACCESS_DENIED;
+ #endif
+ #ifdef ELIBBAD
+ case ELIBBAD: return MA_INVALID_FILE;
+ #endif
+ #ifdef ELIBSCN
+ case ELIBSCN: return MA_INVALID_FILE;
+ #endif
+ #ifdef ELIBMAX
+ case ELIBMAX: return MA_ERROR;
+ #endif
+ #ifdef ELIBEXEC
+ case ELIBEXEC: return MA_ERROR;
+ #endif
+ #ifdef EILSEQ
+ case EILSEQ: return MA_INVALID_DATA;
+ #endif
+ #ifdef ERESTART
+ case ERESTART: return MA_ERROR;
+ #endif
+ #ifdef ESTRPIPE
+ case ESTRPIPE: return MA_ERROR;
+ #endif
+ #ifdef EUSERS
+ case EUSERS: return MA_ERROR;
+ #endif
+ #ifdef ENOTSOCK
+ case ENOTSOCK: return MA_NOT_SOCKET;
+ #endif
+ #ifdef EDESTADDRREQ
+ case EDESTADDRREQ: return MA_NO_ADDRESS;
+ #endif
+ #ifdef EMSGSIZE
+ case EMSGSIZE: return MA_TOO_BIG;
+ #endif
+ #ifdef EPROTOTYPE
+ case EPROTOTYPE: return MA_BAD_PROTOCOL;
+ #endif
+ #ifdef ENOPROTOOPT
+ case ENOPROTOOPT: return MA_PROTOCOL_UNAVAILABLE;
+ #endif
+ #ifdef EPROTONOSUPPORT
+ case EPROTONOSUPPORT: return MA_PROTOCOL_NOT_SUPPORTED;
+ #endif
+ #ifdef ESOCKTNOSUPPORT
+ case ESOCKTNOSUPPORT: return MA_SOCKET_NOT_SUPPORTED;
+ #endif
+ #ifdef EOPNOTSUPP
+ case EOPNOTSUPP: return MA_INVALID_OPERATION;
+ #endif
+ #ifdef EPFNOSUPPORT
+ case EPFNOSUPPORT: return MA_PROTOCOL_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EAFNOSUPPORT
+ case EAFNOSUPPORT: return MA_ADDRESS_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EADDRINUSE
+ case EADDRINUSE: return MA_ALREADY_IN_USE;
+ #endif
+ #ifdef EADDRNOTAVAIL
+ case EADDRNOTAVAIL: return MA_ERROR;
+ #endif
+ #ifdef ENETDOWN
+ case ENETDOWN: return MA_NO_NETWORK;
+ #endif
+ #ifdef ENETUNREACH
+ case ENETUNREACH: return MA_NO_NETWORK;
+ #endif
+ #ifdef ENETRESET
+ case ENETRESET: return MA_NO_NETWORK;
+ #endif
+ #ifdef ECONNABORTED
+ case ECONNABORTED: return MA_NO_NETWORK;
+ #endif
+ #ifdef ECONNRESET
+ case ECONNRESET: return MA_CONNECTION_RESET;
+ #endif
+ #ifdef ENOBUFS
+ case ENOBUFS: return MA_NO_SPACE;
+ #endif
+ #ifdef EISCONN
+ case EISCONN: return MA_ALREADY_CONNECTED;
+ #endif
+ #ifdef ENOTCONN
+ case ENOTCONN: return MA_NOT_CONNECTED;
+ #endif
+ #ifdef ESHUTDOWN
+ case ESHUTDOWN: return MA_ERROR;
+ #endif
+ #ifdef ETOOMANYREFS
+ case ETOOMANYREFS: return MA_ERROR;
+ #endif
+ #ifdef ETIMEDOUT
+ case ETIMEDOUT: return MA_TIMEOUT;
+ #endif
+ #ifdef ECONNREFUSED
+ case ECONNREFUSED: return MA_CONNECTION_REFUSED;
+ #endif
+ #ifdef EHOSTDOWN
+ case EHOSTDOWN: return MA_NO_HOST;
+ #endif
+ #ifdef EHOSTUNREACH
+ case EHOSTUNREACH: return MA_NO_HOST;
+ #endif
+ #ifdef EALREADY
+ case EALREADY: return MA_IN_PROGRESS;
+ #endif
+ #ifdef EINPROGRESS
+ case EINPROGRESS: return MA_IN_PROGRESS;
+ #endif
+ #ifdef ESTALE
+ case ESTALE: return MA_INVALID_FILE;
+ #endif
+ #ifdef EUCLEAN
+ case EUCLEAN: return MA_ERROR;
+ #endif
+ #ifdef ENOTNAM
+ case ENOTNAM: return MA_ERROR;
+ #endif
+ #ifdef ENAVAIL
+ case ENAVAIL: return MA_ERROR;
+ #endif
+ #ifdef EISNAM
+ case EISNAM: return MA_ERROR;
+ #endif
+ #ifdef EREMOTEIO
+ case EREMOTEIO: return MA_IO_ERROR;
+ #endif
+ #ifdef EDQUOT
+ case EDQUOT: return MA_NO_SPACE;
+ #endif
+ #ifdef ENOMEDIUM
+ case ENOMEDIUM: return MA_DOES_NOT_EXIST;
+ #endif
+ #ifdef EMEDIUMTYPE
+ case EMEDIUMTYPE: return MA_ERROR;
+ #endif
+ #ifdef ECANCELED
+ case ECANCELED: return MA_CANCELLED;
+ #endif
+ #ifdef ENOKEY
+ case ENOKEY: return MA_ERROR;
+ #endif
+ #ifdef EKEYEXPIRED
+ case EKEYEXPIRED: return MA_ERROR;
+ #endif
+ #ifdef EKEYREVOKED
+ case EKEYREVOKED: return MA_ERROR;
+ #endif
+ #ifdef EKEYREJECTED
+ case EKEYREJECTED: return MA_ERROR;
+ #endif
+ #ifdef EOWNERDEAD
+ case EOWNERDEAD: return MA_ERROR;
+ #endif
+ #ifdef ENOTRECOVERABLE
+ case ENOTRECOVERABLE: return MA_ERROR;
+ #endif
+ #ifdef ERFKILL
+ case ERFKILL: return MA_ERROR;
+ #endif
+ #ifdef EHWPOISON
+ case EHWPOISON: return MA_ERROR;
+ #endif
+ default: return MA_ERROR;
+ }
+}
+
+MA_API ma_result ma_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+ errno_t err;
+#endif
+
+ if (ppFile != NULL) {
+ *ppFile = NULL; /* Safety. */
+ }
+
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if _MSC_VER && _MSC_VER >= 1400
+ err = fopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return ma_result_from_errno(err);
+ }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+ *ppFile = fopen(pFilePath, pOpenMode);
+#else
+ #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+ *ppFile = fopen64(pFilePath, pOpenMode);
+ #else
+ *ppFile = fopen(pFilePath, pOpenMode);
+ #endif
+#endif
+ if (*ppFile == NULL) {
+ ma_result result = ma_result_from_errno(errno);
+ if (result == MA_SUCCESS) {
+ result = MA_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */
+ }
+
+ return result;
+ }
+#endif
+
+ return MA_SUCCESS;
+}
+
+
+
+/*
+_wfopen() isn't always available in all compilation environments.
+
+ * Windows only.
+ * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
+ * MinGW-64 (both 32- and 64-bit) seems to support it.
+ * MinGW wraps it in !defined(__STRICT_ANSI__).
+
+This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
+fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
+*/
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
+ #define MA_HAS_WFOPEN
+ #endif
+#endif
+
+MA_API ma_result ma_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppFile != NULL) {
+ *ppFile = NULL; /* Safety. */
+ }
+
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_HAS_WFOPEN)
+ {
+ /* Use _wfopen() on Windows. */
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
+ errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return ma_result_from_errno(err);
+ }
+ #else
+ *ppFile = _wfopen(pFilePath, pOpenMode);
+ if (*ppFile == NULL) {
+ return ma_result_from_errno(errno);
+ }
+ #endif
+ (void)pAllocationCallbacks;
+ }
+#else
+ /*
+ Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
+ think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
+ maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
+ */
+ {
+ mbstate_t mbs;
+ size_t lenMB;
+ const wchar_t* pFilePathTemp = pFilePath;
+ char* pFilePathMB = NULL;
+ char pOpenModeMB[32] = {0};
+
+ /* Get the length first. */
+ MA_ZERO_OBJECT(&mbs);
+ lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+ if (lenMB == (size_t)-1) {
+ return ma_result_from_errno(errno);
+ }
+
+ pFilePathMB = (char*)ma_malloc(lenMB + 1, pAllocationCallbacks);
+ if (pFilePathMB == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ pFilePathTemp = pFilePath;
+ MA_ZERO_OBJECT(&mbs);
+ wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+
+ /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
+ {
+ size_t i = 0;
+ for (;;) {
+ if (pOpenMode[i] == 0) {
+ pOpenModeMB[i] = '\0';
+ break;
+ }
+
+ pOpenModeMB[i] = (char)pOpenMode[i];
+ i += 1;
+ }
+ }
+
+ *ppFile = fopen(pFilePathMB, pOpenModeMB);
+
+ ma_free(pFilePathMB, pAllocationCallbacks);
+ }
+
+ if (*ppFile == NULL) {
+ return MA_ERROR;
+ }
+#endif
+
+ return MA_SUCCESS;
+}
+
+
+
static MA_INLINE void ma_copy_memory_64(void* dst, const void* src, ma_uint64 sizeInBytes)
{
#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
@@ -5829,7 +7302,6 @@ static MA_INLINE float ma_mix_f32_fast(float x, float y, float a)
/*return x + (y - x)*a;*/
}
-
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE __m128 ma_mix_f32_fast__sse2(__m128 x, __m128 y, __m128 a)
{
@@ -5895,55 +7367,101 @@ Random Number Generation
miniaudio uses the LCG random number generation algorithm. This is good enough for audio.
-Note that miniaudio's LCG implementation uses global state which is _not_ thread-local. When this is called across
-multiple threads, results will be unpredictable. However, it won't crash and results will still be random enough
-for miniaudio's purposes.
+Note that miniaudio's global LCG implementation uses global state which is _not_ thread-local. When this is called across
+multiple threads, results will be unpredictable. However, it won't crash and results will still be random enough for
+miniaudio's purposes.
*/
+#ifndef MA_DEFAULT_LCG_SEED
+#define MA_DEFAULT_LCG_SEED 4321
+#endif
+
#define MA_LCG_M 2147483647
#define MA_LCG_A 48271
#define MA_LCG_C 0
-static ma_int32 g_maLCG = 4321; /* Non-zero initial seed. Use ma_seed() to use an explicit seed. */
-static MA_INLINE void ma_seed(ma_int32 seed)
+static ma_lcg g_maLCG = {MA_DEFAULT_LCG_SEED}; /* Non-zero initial seed. Use ma_seed() to use an explicit seed. */
+
+static MA_INLINE void ma_lcg_seed(ma_lcg* pLCG, ma_int32 seed)
{
- g_maLCG = seed;
+ MA_ASSERT(pLCG != NULL);
+ pLCG->state = seed;
}
-static MA_INLINE ma_int32 ma_rand_s32()
+static MA_INLINE ma_int32 ma_lcg_rand_s32(ma_lcg* pLCG)
{
- ma_int32 lcg = g_maLCG;
- ma_int32 r = (MA_LCG_A * lcg + MA_LCG_C) % MA_LCG_M;
- g_maLCG = r;
- return r;
+ pLCG->state = (MA_LCG_A * pLCG->state + MA_LCG_C) % MA_LCG_M;
+ return pLCG->state;
}
-static MA_INLINE ma_uint32 ma_rand_u32()
+static MA_INLINE ma_uint32 ma_lcg_rand_u32(ma_lcg* pLCG)
{
- return (ma_uint32)ma_rand_s32();
+ return (ma_uint32)ma_lcg_rand_s32(pLCG);
}
-static MA_INLINE double ma_rand_f64()
+static MA_INLINE ma_int16 ma_lcg_rand_s16(ma_lcg* pLCG)
{
- return ma_rand_s32() / (double)0x7FFFFFFF;
+ return (ma_int16)(ma_lcg_rand_s32(pLCG) & 0xFFFF);
}
-static MA_INLINE float ma_rand_f32()
+static MA_INLINE double ma_lcg_rand_f64(ma_lcg* pLCG)
{
- return (float)ma_rand_f64();
+ return ma_lcg_rand_s32(pLCG) / (double)0x7FFFFFFF;
}
-static MA_INLINE float ma_rand_range_f32(float lo, float hi)
+static MA_INLINE float ma_lcg_rand_f32(ma_lcg* pLCG)
{
- return ma_scale_to_range_f32(ma_rand_f32(), lo, hi);
+ return (float)ma_lcg_rand_f64(pLCG);
}
-static MA_INLINE ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi)
+static MA_INLINE float ma_lcg_rand_range_f32(ma_lcg* pLCG, float lo, float hi)
+{
+ return ma_scale_to_range_f32(ma_lcg_rand_f32(pLCG), lo, hi);
+}
+
+static MA_INLINE ma_int32 ma_lcg_rand_range_s32(ma_lcg* pLCG, ma_int32 lo, ma_int32 hi)
{
if (lo == hi) {
return lo;
}
- return lo + ma_rand_u32() / (0xFFFFFFFF / (hi - lo + 1) + 1);
+ return lo + ma_lcg_rand_u32(pLCG) / (0xFFFFFFFF / (hi - lo + 1) + 1);
+}
+
+
+
+static MA_INLINE void ma_seed(ma_int32 seed)
+{
+ ma_lcg_seed(&g_maLCG, seed);
+}
+
+static MA_INLINE ma_int32 ma_rand_s32(void)
+{
+ return ma_lcg_rand_s32(&g_maLCG);
+}
+
+static MA_INLINE ma_uint32 ma_rand_u32(void)
+{
+ return ma_lcg_rand_u32(&g_maLCG);
+}
+
+static MA_INLINE double ma_rand_f64(void)
+{
+ return ma_lcg_rand_f64(&g_maLCG);
+}
+
+static MA_INLINE float ma_rand_f32(void)
+{
+ return ma_lcg_rand_f32(&g_maLCG);
+}
+
+static MA_INLINE float ma_rand_range_f32(float lo, float hi)
+{
+ return ma_lcg_rand_range_f32(&g_maLCG, lo, hi);
+}
+
+static MA_INLINE ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi)
+{
+ return ma_lcg_rand_range_s32(&g_maLCG, lo, hi);
}
@@ -5987,51 +7505,806 @@ static MA_INLINE ma_int32 ma_dither_s32(ma_dither_mode ditherMode, ma_int32 dith
}
-/******************************************************************************
+/**************************************************************************************************************************************************************
Atomics
-******************************************************************************/
-#if defined(__clang__)
- #if defined(__has_builtin)
- #if __has_builtin(__sync_swap)
- #define MA_HAS_SYNC_SWAP
+**************************************************************************************************************************************************************/
+/* c89atomic.h begin */
+#ifndef c89atomic_h
+#define c89atomic_h
+#if defined(__cplusplus)
+extern "C" {
+#endif
+#if defined(__GNUC__)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wlong-long"
+ #if defined(__clang__)
+ #pragma GCC diagnostic ignored "-Wc++11-long-long"
+ #endif
+#endif
+typedef signed char c89atomic_int8;
+typedef unsigned char c89atomic_uint8;
+typedef signed short c89atomic_int16;
+typedef unsigned short c89atomic_uint16;
+typedef signed int c89atomic_int32;
+typedef unsigned int c89atomic_uint32;
+#if defined(_MSC_VER)
+typedef signed __int64 c89atomic_int64;
+typedef unsigned __int64 c89atomic_uint64;
+#else
+typedef unsigned long long c89atomic_int64;
+typedef unsigned long long c89atomic_uint64;
+#endif
+#if defined(__GNUC__)
+ #pragma GCC diagnostic pop
+#endif
+typedef int c89atomic_memory_order;
+typedef unsigned char c89atomic_bool;
+typedef unsigned char c89atomic_flag;
+#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
+#ifdef _WIN32
+#ifdef _WIN64
+#define C89ATOMIC_64BIT
+#else
+#define C89ATOMIC_32BIT
+#endif
+#endif
+#endif
+#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
+#ifdef __GNUC__
+#ifdef __LP64__
+#define C89ATOMIC_64BIT
+#else
+#define C89ATOMIC_32BIT
+#endif
+#endif
+#endif
+#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
+#include
+#if INTPTR_MAX == INT64_MAX
+#define C89ATOMIC_64BIT
+#else
+#define C89ATOMIC_32BIT
+#endif
+#endif
+#if defined(__x86_64__) || defined(_M_X64)
+#define C89ATOMIC_X64
+#elif defined(__i386) || defined(_M_IX86)
+#define C89ATOMIC_X86
+#elif defined(__arm__) || defined(_M_ARM)
+#define C89ATOMIC_ARM
+#endif
+#ifdef _MSC_VER
+ #define C89ATOMIC_INLINE __forceinline
+#elif defined(__GNUC__)
+ #if defined(__STRICT_ANSI__)
+ #define C89ATOMIC_INLINE __inline__ __attribute__((always_inline))
+ #else
+ #define C89ATOMIC_INLINE inline __attribute__((always_inline))
+ #endif
+#else
+ #define C89ATOMIC_INLINE
+#endif
+#if defined(_MSC_VER)
+ #define c89atomic_memory_order_relaxed 0
+ #define c89atomic_memory_order_consume 1
+ #define c89atomic_memory_order_acquire 2
+ #define c89atomic_memory_order_release 3
+ #define c89atomic_memory_order_acq_rel 4
+ #define c89atomic_memory_order_seq_cst 5
+ #if _MSC_VER >= 1400
+ #include
+ #define c89atomic_exchange_explicit_8( dst, src, order) (c89atomic_uint8 )_InterlockedExchange8 ((volatile char* )dst, (char )src)
+ #define c89atomic_exchange_explicit_16(dst, src, order) (c89atomic_uint16)_InterlockedExchange16((volatile short*)dst, (short)src)
+ #define c89atomic_exchange_explicit_32(dst, src, order) (c89atomic_uint32)_InterlockedExchange ((volatile long* )dst, (long )src)
+ #if defined(C89ATOMIC_64BIT)
+ #define c89atomic_exchange_explicit_64(dst, src, order) (c89atomic_uint64)_InterlockedExchange64((volatile long long*)dst, (long long)src)
+ #endif
+ #define c89atomic_fetch_add_explicit_8( dst, src, order) (c89atomic_uint8 )_InterlockedExchangeAdd8 ((volatile char* )dst, (char )src)
+ #define c89atomic_fetch_add_explicit_16(dst, src, order) (c89atomic_uint16)_InterlockedExchangeAdd16((volatile short*)dst, (short)src)
+ #define c89atomic_fetch_add_explicit_32(dst, src, order) (c89atomic_uint32)_InterlockedExchangeAdd ((volatile long* )dst, (long )src)
+ #if defined(C89ATOMIC_64BIT)
+ #define c89atomic_fetch_add_explicit_64(dst, src, order) (c89atomic_uint64)_InterlockedExchangeAdd64((volatile long long*)dst, (long long)src)
+ #endif
+ #define c89atomic_compare_and_swap_8( dst, expected, desired) (c89atomic_uint8 )_InterlockedCompareExchange8 ((volatile char* )dst, (char )desired, (char )expected)
+ #define c89atomic_compare_and_swap_16(dst, expected, desired) (c89atomic_uint16)_InterlockedCompareExchange16((volatile short* )dst, (short )desired, (short )expected)
+ #define c89atomic_compare_and_swap_32(dst, expected, desired) (c89atomic_uint32)_InterlockedCompareExchange ((volatile long* )dst, (long )desired, (long )expected)
+ #define c89atomic_compare_and_swap_64(dst, expected, desired) (c89atomic_uint64)_InterlockedCompareExchange64((volatile long long*)dst, (long long)desired, (long long)expected)
+ #if defined(C89ATOMIC_X64)
+ #define c89atomic_thread_fence(order) __faststorefence()
+ #else
+ static C89ATOMIC_INLINE void c89atomic_thread_fence(c89atomic_memory_order order)
+ {
+ volatile c89atomic_uint32 barrier = 0;
+ (void)order;
+ c89atomic_fetch_add_explicit_32(&barrier, 0, order);
+ }
+ #endif
+ #else
+ #if defined(__i386) || defined(_M_IX86)
+ static C89ATOMIC_INLINE void __stdcall c89atomic_thread_fence(int order)
+ {
+ volatile c89atomic_uint32 barrier;
+ __asm {
+ xchg barrier, eax
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov al, src
+ lock xchg [ecx], al
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov ax, src
+ lock xchg [ecx], ax
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov eax, src
+ lock xchg [ecx], eax
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov al, src
+ lock xadd [ecx], al
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov ax, src
+ lock xadd [ecx], ax
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ (void)order;
+ __asm {
+ mov ecx, dst
+ mov eax, src
+ lock xadd [ecx], eax
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired)
+ {
+ __asm {
+ mov ecx, dst
+ mov al, expected
+ mov dl, desired
+ lock cmpxchg [ecx], dl
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired)
+ {
+ __asm {
+ mov ecx, dst
+ mov ax, expected
+ mov dx, desired
+ lock cmpxchg [ecx], dx
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired)
+ {
+ __asm {
+ mov ecx, dst
+ mov eax, expected
+ mov edx, desired
+ lock cmpxchg [ecx], edx
+ }
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired)
+ {
+ __asm {
+ mov esi, dst
+ mov eax, dword ptr expected
+ mov edx, dword ptr expected + 4
+ mov ebx, dword ptr desired
+ mov ecx, dword ptr desired + 4
+ lock cmpxchg8b qword ptr [esi]
+ }
+ }
+ #else
+ error "Unsupported architecture."
#endif
#endif
-#elif defined(__GNUC__)
- #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC__ >= 7)
- #define MA_HAS_GNUC_ATOMICS
+ #define c89atomic_compiler_fence() c89atomic_thread_fence(c89atomic_memory_order_seq_cst)
+ #define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
+ #define c89atomic_load_explicit_8( ptr, order) c89atomic_compare_and_swap_8 (ptr, 0, 0)
+ #define c89atomic_load_explicit_16(ptr, order) c89atomic_compare_and_swap_16(ptr, 0, 0)
+ #define c89atomic_load_explicit_32(ptr, order) c89atomic_compare_and_swap_32(ptr, 0, 0)
+ #define c89atomic_load_explicit_64(ptr, order) c89atomic_compare_and_swap_64(ptr, 0, 0)
+ #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order)
+ #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order)
+ #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order)
+ #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order)
+#if defined(C89ATOMIC_32BIT)
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ do {
+ oldValue = *dst;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, src) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ volatile c89atomic_uint64 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue + src;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+#endif
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ volatile c89atomic_uint8 oldValue;
+ volatile c89atomic_uint8 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue - src;
+ } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ volatile c89atomic_uint16 oldValue;
+ volatile c89atomic_uint16 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue - src;
+ } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ volatile c89atomic_uint32 oldValue;
+ volatile c89atomic_uint32 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue - src;
+ } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ volatile c89atomic_uint64 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue - src;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ volatile c89atomic_uint8 oldValue;
+ volatile c89atomic_uint8 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue & src;
+ } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ volatile c89atomic_uint16 oldValue;
+ volatile c89atomic_uint16 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue & src;
+ } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ volatile c89atomic_uint32 oldValue;
+ volatile c89atomic_uint32 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue & src;
+ } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ volatile c89atomic_uint64 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue & src;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ volatile c89atomic_uint8 oldValue;
+ volatile c89atomic_uint8 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue ^ src;
+ } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ volatile c89atomic_uint16 oldValue;
+ volatile c89atomic_uint16 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue ^ src;
+ } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ volatile c89atomic_uint32 oldValue;
+ volatile c89atomic_uint32 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue ^ src;
+ } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ volatile c89atomic_uint64 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue ^ src;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
+ {
+ volatile c89atomic_uint8 oldValue;
+ volatile c89atomic_uint8 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue | src;
+ } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
+ {
+ volatile c89atomic_uint16 oldValue;
+ volatile c89atomic_uint16 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue | src;
+ } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
+ {
+ volatile c89atomic_uint32 oldValue;
+ volatile c89atomic_uint32 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue | src;
+ } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ volatile c89atomic_uint64 newValue;
+ do {
+ oldValue = *dst;
+ newValue = oldValue | src;
+ } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order)
+ #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order)
+ #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order)
+ #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order)
+ #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order)
+ #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order)
+ #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order)
+ #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order)
+#elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC__ >= 7)))
+ #define C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE
+ #define C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE
+ #define c89atomic_memory_order_relaxed __ATOMIC_RELAXED
+ #define c89atomic_memory_order_consume __ATOMIC_CONSUME
+ #define c89atomic_memory_order_acquire __ATOMIC_ACQUIRE
+ #define c89atomic_memory_order_release __ATOMIC_RELEASE
+ #define c89atomic_memory_order_acq_rel __ATOMIC_ACQ_REL
+ #define c89atomic_memory_order_seq_cst __ATOMIC_SEQ_CST
+ #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory")
+ #define c89atomic_thread_fence(order) __atomic_thread_fence(order)
+ #define c89atomic_signal_fence(order) __atomic_signal_fence(order)
+ #define c89atomic_is_lock_free_8(ptr) __atomic_is_lock_free(1, ptr)
+ #define c89atomic_is_lock_free_16(ptr) __atomic_is_lock_free(2, ptr)
+ #define c89atomic_is_lock_free_32(ptr) __atomic_is_lock_free(4, ptr)
+ #define c89atomic_is_lock_free_64(ptr) __atomic_is_lock_free(8, ptr)
+ #define c89atomic_flag_test_and_set_explicit(dst, order) (c89atomic_flag)__atomic_test_and_set(dst, order)
+ #define c89atomic_flag_clear_explicit(dst, order) __atomic_clear(dst, order)
+ #define c89atomic_test_and_set_explicit_8( dst, order) __atomic_exchange_n(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_16(dst, order) __atomic_exchange_n(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_32(dst, order) __atomic_exchange_n(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_64(dst, order) __atomic_exchange_n(dst, 1, order)
+ #define c89atomic_clear_explicit_8( dst, order) __atomic_store_n(dst, 0, order)
+ #define c89atomic_clear_explicit_16(dst, order) __atomic_store_n(dst, 0, order)
+ #define c89atomic_clear_explicit_32(dst, order) __atomic_store_n(dst, 0, order)
+ #define c89atomic_clear_explicit_64(dst, order) __atomic_store_n(dst, 0, order)
+ #define c89atomic_store_explicit_8( dst, src, order) __atomic_store_n(dst, src, order)
+ #define c89atomic_store_explicit_16(dst, src, order) __atomic_store_n(dst, src, order)
+ #define c89atomic_store_explicit_32(dst, src, order) __atomic_store_n(dst, src, order)
+ #define c89atomic_store_explicit_64(dst, src, order) __atomic_store_n(dst, src, order)
+ #define c89atomic_load_explicit_8( dst, order) __atomic_load_n(dst, order)
+ #define c89atomic_load_explicit_16(dst, order) __atomic_load_n(dst, order)
+ #define c89atomic_load_explicit_32(dst, order) __atomic_load_n(dst, order)
+ #define c89atomic_load_explicit_64(dst, order) __atomic_load_n(dst, order)
+ #define c89atomic_exchange_explicit_8( dst, src, order) __atomic_exchange_n(dst, src, order)
+ #define c89atomic_exchange_explicit_16(dst, src, order) __atomic_exchange_n(dst, src, order)
+ #define c89atomic_exchange_explicit_32(dst, src, order) __atomic_exchange_n(dst, src, order)
+ #define c89atomic_exchange_explicit_64(dst, src, order) __atomic_exchange_n(dst, src, order)
+ #define c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
+ #define c89atomic_fetch_add_explicit_8( dst, src, order) __atomic_fetch_add(dst, src, order)
+ #define c89atomic_fetch_add_explicit_16(dst, src, order) __atomic_fetch_add(dst, src, order)
+ #define c89atomic_fetch_add_explicit_32(dst, src, order) __atomic_fetch_add(dst, src, order)
+ #define c89atomic_fetch_add_explicit_64(dst, src, order) __atomic_fetch_add(dst, src, order)
+ #define c89atomic_fetch_sub_explicit_8( dst, src, order) __atomic_fetch_sub(dst, src, order)
+ #define c89atomic_fetch_sub_explicit_16(dst, src, order) __atomic_fetch_sub(dst, src, order)
+ #define c89atomic_fetch_sub_explicit_32(dst, src, order) __atomic_fetch_sub(dst, src, order)
+ #define c89atomic_fetch_sub_explicit_64(dst, src, order) __atomic_fetch_sub(dst, src, order)
+ #define c89atomic_fetch_or_explicit_8( dst, src, order) __atomic_fetch_or(dst, src, order)
+ #define c89atomic_fetch_or_explicit_16(dst, src, order) __atomic_fetch_or(dst, src, order)
+ #define c89atomic_fetch_or_explicit_32(dst, src, order) __atomic_fetch_or(dst, src, order)
+ #define c89atomic_fetch_or_explicit_64(dst, src, order) __atomic_fetch_or(dst, src, order)
+ #define c89atomic_fetch_xor_explicit_8( dst, src, order) __atomic_fetch_xor(dst, src, order)
+ #define c89atomic_fetch_xor_explicit_16(dst, src, order) __atomic_fetch_xor(dst, src, order)
+ #define c89atomic_fetch_xor_explicit_32(dst, src, order) __atomic_fetch_xor(dst, src, order)
+ #define c89atomic_fetch_xor_explicit_64(dst, src, order) __atomic_fetch_xor(dst, src, order)
+ #define c89atomic_fetch_and_explicit_8( dst, src, order) __atomic_fetch_and(dst, src, order)
+ #define c89atomic_fetch_and_explicit_16(dst, src, order) __atomic_fetch_and(dst, src, order)
+ #define c89atomic_fetch_and_explicit_32(dst, src, order) __atomic_fetch_and(dst, src, order)
+ #define c89atomic_fetch_and_explicit_64(dst, src, order) __atomic_fetch_and(dst, src, order)
+ #define c89atomic_compare_and_swap_8 (dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+#else
+ #define c89atomic_memory_order_relaxed 1
+ #define c89atomic_memory_order_consume 2
+ #define c89atomic_memory_order_acquire 3
+ #define c89atomic_memory_order_release 4
+ #define c89atomic_memory_order_acq_rel 5
+ #define c89atomic_memory_order_seq_cst 6
+ #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory")
+ #define c89atomic_thread_fence(order) __sync_synchronize()
+ #define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
+ static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order)
+ {
+ if (order > c89atomic_memory_order_acquire) {
+ __sync_synchronize();
+ }
+ return __sync_lock_test_and_set(dst, src);
+ }
+ static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order)
+ {
+ volatile c89atomic_uint16 oldValue;
+ do {
+ oldValue = *dst;
+ } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order)
+ {
+ volatile c89atomic_uint32 oldValue;
+ do {
+ oldValue = *dst;
+ } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order)
+ {
+ volatile c89atomic_uint64 oldValue;
+ do {
+ oldValue = *dst;
+ } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
+ (void)order;
+ return oldValue;
+ }
+ #define c89atomic_fetch_add_explicit_8( dst, src, order) __sync_fetch_and_add(dst, src)
+ #define c89atomic_fetch_add_explicit_16(dst, src, order) __sync_fetch_and_add(dst, src)
+ #define c89atomic_fetch_add_explicit_32(dst, src, order) __sync_fetch_and_add(dst, src)
+ #define c89atomic_fetch_add_explicit_64(dst, src, order) __sync_fetch_and_add(dst, src)
+ #define c89atomic_fetch_sub_explicit_8( dst, src, order) __sync_fetch_and_sub(dst, src)
+ #define c89atomic_fetch_sub_explicit_16(dst, src, order) __sync_fetch_and_sub(dst, src)
+ #define c89atomic_fetch_sub_explicit_32(dst, src, order) __sync_fetch_and_sub(dst, src)
+ #define c89atomic_fetch_sub_explicit_64(dst, src, order) __sync_fetch_and_sub(dst, src)
+ #define c89atomic_fetch_or_explicit_8( dst, src, order) __sync_fetch_and_or(dst, src)
+ #define c89atomic_fetch_or_explicit_16(dst, src, order) __sync_fetch_and_or(dst, src)
+ #define c89atomic_fetch_or_explicit_32(dst, src, order) __sync_fetch_and_or(dst, src)
+ #define c89atomic_fetch_or_explicit_64(dst, src, order) __sync_fetch_and_or(dst, src)
+ #define c89atomic_fetch_xor_explicit_8( dst, src, order) __sync_fetch_and_xor(dst, src)
+ #define c89atomic_fetch_xor_explicit_16(dst, src, order) __sync_fetch_and_xor(dst, src)
+ #define c89atomic_fetch_xor_explicit_32(dst, src, order) __sync_fetch_and_xor(dst, src)
+ #define c89atomic_fetch_xor_explicit_64(dst, src, order) __sync_fetch_and_xor(dst, src)
+ #define c89atomic_fetch_and_explicit_8( dst, src, order) __sync_fetch_and_and(dst, src)
+ #define c89atomic_fetch_and_explicit_16(dst, src, order) __sync_fetch_and_and(dst, src)
+ #define c89atomic_fetch_and_explicit_32(dst, src, order) __sync_fetch_and_and(dst, src)
+ #define c89atomic_fetch_and_explicit_64(dst, src, order) __sync_fetch_and_and(dst, src)
+ #define c89atomic_compare_and_swap_8( dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
+ #define c89atomic_load_explicit_8( ptr, order) c89atomic_compare_and_swap_8 (ptr, 0, 0)
+ #define c89atomic_load_explicit_16(ptr, order) c89atomic_compare_and_swap_16(ptr, 0, 0)
+ #define c89atomic_load_explicit_32(ptr, order) c89atomic_compare_and_swap_32(ptr, 0, 0)
+ #define c89atomic_load_explicit_64(ptr, order) c89atomic_compare_and_swap_64(ptr, 0, 0)
+ #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order)
+ #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order)
+ #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order)
+ #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order)
+ #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order)
+ #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order)
+ #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order)
+ #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order)
+ #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order)
+ #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order)
+ #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order)
+ #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order)
+ #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order)
+#endif
+#if !defined(C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE)
+c89atomic_bool c89atomic_compare_exchange_strong_explicit_8(volatile c89atomic_uint8* dst, volatile c89atomic_uint8* expected, c89atomic_uint8 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
+{
+ c89atomic_uint8 expectedValue;
+ c89atomic_uint8 result;
+ (void)successOrder;
+ (void)failureOrder;
+ expectedValue = c89atomic_load_explicit_8(expected, c89atomic_memory_order_seq_cst);
+ result = c89atomic_compare_and_swap_8(dst, expectedValue, desired);
+ if (result == expectedValue) {
+ return 1;
+ } else {
+ c89atomic_store_explicit_8(expected, result, failureOrder);
+ return 0;
+ }
+}
+c89atomic_bool c89atomic_compare_exchange_strong_explicit_16(volatile c89atomic_uint16* dst, volatile c89atomic_uint16* expected, c89atomic_uint16 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
+{
+ c89atomic_uint16 expectedValue;
+ c89atomic_uint16 result;
+ (void)successOrder;
+ (void)failureOrder;
+ expectedValue = c89atomic_load_explicit_16(expected, c89atomic_memory_order_seq_cst);
+ result = c89atomic_compare_and_swap_16(dst, expectedValue, desired);
+ if (result == expectedValue) {
+ return 1;
+ } else {
+ c89atomic_store_explicit_16(expected, result, failureOrder);
+ return 0;
+ }
+}
+c89atomic_bool c89atomic_compare_exchange_strong_explicit_32(volatile c89atomic_uint32* dst, volatile c89atomic_uint32* expected, c89atomic_uint32 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
+{
+ c89atomic_uint32 expectedValue;
+ c89atomic_uint32 result;
+ (void)successOrder;
+ (void)failureOrder;
+ expectedValue = c89atomic_load_explicit_32(expected, c89atomic_memory_order_seq_cst);
+ result = c89atomic_compare_and_swap_32(dst, expectedValue, desired);
+ if (result == expectedValue) {
+ return 1;
+ } else {
+ c89atomic_store_explicit_32(expected, result, failureOrder);
+ return 0;
+ }
+}
+c89atomic_bool c89atomic_compare_exchange_strong_explicit_64(volatile c89atomic_uint64* dst, volatile c89atomic_uint64* expected, c89atomic_uint64 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
+{
+ c89atomic_uint64 expectedValue;
+ c89atomic_uint64 result;
+ (void)successOrder;
+ (void)failureOrder;
+ expectedValue = c89atomic_load_explicit_64(expected, c89atomic_memory_order_seq_cst);
+ result = c89atomic_compare_and_swap_64(dst, expectedValue, desired);
+ if (result == expectedValue) {
+ return 1;
+ } else {
+ c89atomic_store_explicit_64(expected, result, failureOrder);
+ return 0;
+ }
+}
+#define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8 (dst, expected, desired, successOrder, failureOrder)
+#define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder)
+#define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder)
+#define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder)
+#endif
+#if !defined(C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE)
+ #define c89atomic_is_lock_free_8( ptr) 1
+ #define c89atomic_is_lock_free_16(ptr) 1
+ #define c89atomic_is_lock_free_32(ptr) 1
+ #if defined(C89ATOMIC_64BIT)
+ #define c89atomic_is_lock_free_64(ptr) 1
+ #else
+ #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64)
+ #define c89atomic_is_lock_free_64(ptr) 1
+ #else
+ #define c89atomic_is_lock_free_64(ptr) 0
+ #endif
#endif
#endif
-
-#if defined(_WIN32) && !defined(__GNUC__) && !defined(__clang__)
-#define ma_memory_barrier() MemoryBarrier()
-#define ma_atomic_exchange_32(a, b) InterlockedExchange((LONG*)a, (LONG)b)
-#define ma_atomic_exchange_64(a, b) InterlockedExchange64((LONGLONG*)a, (LONGLONG)b)
-#define ma_atomic_increment_32(a) InterlockedIncrement((LONG*)a)
-#define ma_atomic_decrement_32(a) InterlockedDecrement((LONG*)a)
+#if defined(C89ATOMIC_64BIT)
+ #define c89atomic_is_lock_free_ptr(ptr) c89atomic_is_lock_free_64((volatile c89atomic_uint64*)ptr)
+ #define c89atomic_load_explicit_ptr(ptr, order) (void*)c89atomic_load_explicit_64((volatile c89atomic_uint64*)ptr, order)
+ #define c89atomic_store_explicit_ptr(dst, src, order) (void*)c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order)
+ #define c89atomic_exchange_explicit_ptr(dst, src, order) (void*)c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order)
+ #define c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64((volatile c89atomic_uint64*)dst, (volatile c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_64((volatile c89atomic_uint64*)dst, (volatile c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder)
+ #define c89atomic_compare_and_swap_ptr(dst, expected, desired) (void*)c89atomic_compare_and_swap_64 ((volatile c89atomic_uint64*)dst, (c89atomic_uint64)expected, (c89atomic_uint64)desired)
+#elif defined(C89ATOMIC_32BIT)
+ #define c89atomic_is_lock_free_ptr(ptr) c89atomic_is_lock_free_32((volatile c89atomic_uint32*)ptr)
+ #define c89atomic_load_explicit_ptr(ptr, order) (void*)c89atomic_load_explicit_32((volatile c89atomic_uint32*)ptr, order)
+ #define c89atomic_store_explicit_ptr(dst, src, order) (void*)c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order)
+ #define c89atomic_exchange_explicit_ptr(dst, src, order) (void*)c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order)
+ #define c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32((volatile c89atomic_uint32*)dst, (volatile c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder)
+ #define c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_32((volatile c89atomic_uint32*)dst, (volatile c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder)
+ #define c89atomic_compare_and_swap_ptr(dst, expected, desired) (void*)c89atomic_compare_and_swap_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)expected, (c89atomic_uint32)desired)
#else
-#define ma_memory_barrier() __sync_synchronize()
-#if defined(MA_HAS_SYNC_SWAP)
- #define ma_atomic_exchange_32(a, b) __sync_swap(a, b)
- #define ma_atomic_exchange_64(a, b) __sync_swap(a, b)
-#elif defined(MA_HAS_GNUC_ATOMICS)
- #define ma_atomic_exchange_32(a, b) (void)__atomic_exchange_n(a, b, __ATOMIC_ACQ_REL)
- #define ma_atomic_exchange_64(a, b) (void)__atomic_exchange_n(a, b, __ATOMIC_ACQ_REL)
-#else
- #define ma_atomic_exchange_32(a, b) __sync_synchronize(); (void)__sync_lock_test_and_set(a, b)
- #define ma_atomic_exchange_64(a, b) __sync_synchronize(); (void)__sync_lock_test_and_set(a, b)
+ error "Unsupported architecture."
#endif
-#define ma_atomic_increment_32(a) __sync_add_and_fetch(a, 1)
-#define ma_atomic_decrement_32(a) __sync_sub_and_fetch(a, 1)
+#define c89atomic_flag_test_and_set(ptr) c89atomic_flag_test_and_set_explicit(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_flag_clear(ptr) c89atomic_flag_clear_explicit(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_test_and_set_8( ptr) c89atomic_test_and_set_explicit_8 (ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_test_and_set_16(ptr) c89atomic_test_and_set_explicit_16(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_test_and_set_32(ptr) c89atomic_test_and_set_explicit_32(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_test_and_set_64(ptr) c89atomic_test_and_set_explicit_64(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_clear_8( ptr) c89atomic_clear_explicit_8 (ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_clear_16(ptr) c89atomic_clear_explicit_16(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_clear_32(ptr) c89atomic_clear_explicit_32(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_clear_64(ptr) c89atomic_clear_explicit_64(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_store_8( dst, src) c89atomic_store_explicit_8 ( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_store_16( dst, src) c89atomic_store_explicit_16( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_store_32( dst, src) c89atomic_store_explicit_32( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_store_64( dst, src) c89atomic_store_explicit_64( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_store_ptr(dst, src) c89atomic_store_explicit_ptr(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_load_8( ptr) c89atomic_load_explicit_8 ( ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_load_16( ptr) c89atomic_load_explicit_16( ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_load_32( ptr) c89atomic_load_explicit_32( ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_load_64( ptr) c89atomic_load_explicit_64( ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_load_ptr(ptr) c89atomic_load_explicit_ptr(ptr, c89atomic_memory_order_seq_cst)
+#define c89atomic_exchange_8( dst, src) c89atomic_exchange_explicit_8 ( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_exchange_16( dst, src) c89atomic_exchange_explicit_16( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_exchange_32( dst, src) c89atomic_exchange_explicit_32( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_exchange_64( dst, src) c89atomic_exchange_explicit_64( dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_exchange_ptr(dst, src) c89atomic_exchange_explicit_ptr(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_strong_8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_8 ( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_strong_16( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_16( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_strong_32( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_32( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_strong_64( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_64( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_strong_ptr(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_weak_8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_8 ( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_weak_16( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_16( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_weak_32( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_32( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_weak_64( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_64( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_compare_exchange_weak_ptr(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_add_8( dst, src) c89atomic_fetch_add_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_add_16(dst, src) c89atomic_fetch_add_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_add_32(dst, src) c89atomic_fetch_add_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_add_64(dst, src) c89atomic_fetch_add_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_sub_8( dst, src) c89atomic_fetch_sub_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_sub_16(dst, src) c89atomic_fetch_sub_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_sub_32(dst, src) c89atomic_fetch_sub_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_sub_64(dst, src) c89atomic_fetch_sub_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_or_8( dst, src) c89atomic_fetch_or_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_or_16(dst, src) c89atomic_fetch_or_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_or_32(dst, src) c89atomic_fetch_or_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_or_64(dst, src) c89atomic_fetch_or_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_xor_8( dst, src) c89atomic_fetch_xor_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_xor_16(dst, src) c89atomic_fetch_xor_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_xor_32(dst, src) c89atomic_fetch_xor_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_xor_64(dst, src) c89atomic_fetch_xor_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_and_8( dst, src) c89atomic_fetch_and_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_and_16(dst, src) c89atomic_fetch_and_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_and_32(dst, src) c89atomic_fetch_and_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
+#define c89atomic_fetch_and_64(dst, src) c89atomic_fetch_and_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
+#if defined(__cplusplus)
+}
#endif
+#endif
+/* c89atomic.h end */
+
+
+typedef unsigned char ma_spinlock;
+
+static MA_INLINE ma_result ma_spinlock_lock_ex(ma_spinlock* pSpinlock, ma_bool32 yield)
+{
+ if (pSpinlock == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ for (;;) {
+ if (c89atomic_flag_test_and_set_explicit(pSpinlock, c89atomic_memory_order_acquire) == 0) {
+ break;
+ }
+
+ while (c89atomic_load_explicit_8(pSpinlock, c89atomic_memory_order_relaxed) == 1) {
+ if (yield) {
+ ma_yield();
+ }
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_spinlock_lock(ma_spinlock* pSpinlock)
+{
+ return ma_spinlock_lock_ex(pSpinlock, MA_TRUE);
+}
+
+static ma_result ma_spinlock_lock_noyield(ma_spinlock* pSpinlock)
+{
+ return ma_spinlock_lock_ex(pSpinlock, MA_FALSE);
+}
+
+static ma_result ma_spinlock_unlock(ma_spinlock* pSpinlock)
+{
+ if (pSpinlock == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ c89atomic_flag_clear_explicit(pSpinlock, c89atomic_memory_order_release);
+ return MA_SUCCESS;
+}
-#ifdef MA_64BIT
-#define ma_atomic_exchange_ptr ma_atomic_exchange_64
-#endif
-#ifdef MA_32BIT
-#define ma_atomic_exchange_ptr ma_atomic_exchange_32
-#endif
static void* ma__malloc_default(size_t sz, void* pUserData)
@@ -6122,7 +8395,7 @@ static void ma__free_from_callbacks(void* p, const ma_allocation_callbacks* pAll
}
}
-static ma_allocation_callbacks ma_allocation_callbacks_init_default()
+static ma_allocation_callbacks ma_allocation_callbacks_init_default(void)
{
ma_allocation_callbacks callbacks;
callbacks.pUserData = NULL;
@@ -6157,7 +8430,7 @@ static ma_result ma_allocation_callbacks_init_copy(ma_allocation_callbacks* pDst
}
-ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn)
+MA_API ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn)
{
/* For robustness we're going to use a resampler object to calculate this since that already has a way of calculating this. */
ma_result result;
@@ -6165,6 +8438,10 @@ ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_
ma_resampler_config config;
ma_resampler resampler;
+ if (sampleRateOut == sampleRateIn) {
+ return frameCountIn;
+ }
+
config = ma_resampler_config_init(ma_format_s16, 1, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear);
result = ma_resampler_init(&config, &resampler);
if (result != MA_SUCCESS) {
@@ -6181,6 +8458,670 @@ ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_
#define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096
#endif
+
+
+#if defined(MA_WIN32)
+static ma_result ma_result_from_GetLastError(DWORD error)
+{
+ switch (error)
+ {
+ case ERROR_SUCCESS: return MA_SUCCESS;
+ case ERROR_PATH_NOT_FOUND: return MA_DOES_NOT_EXIST;
+ case ERROR_TOO_MANY_OPEN_FILES: return MA_TOO_MANY_OPEN_FILES;
+ case ERROR_NOT_ENOUGH_MEMORY: return MA_OUT_OF_MEMORY;
+ case ERROR_DISK_FULL: return MA_NO_SPACE;
+ case ERROR_HANDLE_EOF: return MA_END_OF_FILE;
+ case ERROR_NEGATIVE_SEEK: return MA_BAD_SEEK;
+ case ERROR_INVALID_PARAMETER: return MA_INVALID_ARGS;
+ case ERROR_ACCESS_DENIED: return MA_ACCESS_DENIED;
+ case ERROR_SEM_TIMEOUT: return MA_TIMEOUT;
+ case ERROR_FILE_NOT_FOUND: return MA_DOES_NOT_EXIST;
+ default: break;
+ }
+
+ return MA_ERROR;
+}
+#endif /* MA_WIN32 */
+
+
+/*******************************************************************************
+
+Threading
+
+*******************************************************************************/
+#ifndef MA_NO_THREADING
+#ifdef MA_WIN32
+ #define MA_THREADCALL WINAPI
+ typedef unsigned long ma_thread_result;
+#else
+ #define MA_THREADCALL
+ typedef void* ma_thread_result;
+#endif
+typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData);
+
+#ifdef MA_WIN32
+static int ma_thread_priority_to_win32(ma_thread_priority priority)
+{
+ switch (priority) {
+ case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE;
+ case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST;
+ case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL;
+ case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL;
+ case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL;
+ case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST;
+ case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL;
+ default: return THREAD_PRIORITY_NORMAL;
+ }
+}
+
+static ma_result ma_thread_create__win32(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
+{
+ *pThread = CreateThread(NULL, stackSize, entryProc, pData, 0, NULL);
+ if (*pThread == NULL) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ SetThreadPriority((HANDLE)*pThread, ma_thread_priority_to_win32(priority));
+
+ return MA_SUCCESS;
+}
+
+static void ma_thread_wait__win32(ma_thread* pThread)
+{
+ WaitForSingleObject((HANDLE)*pThread, INFINITE);
+}
+
+
+static ma_result ma_mutex_init__win32(ma_mutex* pMutex)
+{
+ *pMutex = CreateEventW(NULL, FALSE, TRUE, NULL);
+ if (*pMutex == NULL) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_mutex_uninit__win32(ma_mutex* pMutex)
+{
+ CloseHandle((HANDLE)*pMutex);
+}
+
+static void ma_mutex_lock__win32(ma_mutex* pMutex)
+{
+ WaitForSingleObject((HANDLE)*pMutex, INFINITE);
+}
+
+static void ma_mutex_unlock__win32(ma_mutex* pMutex)
+{
+ SetEvent((HANDLE)*pMutex);
+}
+
+
+static ma_result ma_event_init__win32(ma_event* pEvent)
+{
+ *pEvent = CreateEventW(NULL, FALSE, FALSE, NULL);
+ if (*pEvent == NULL) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_event_uninit__win32(ma_event* pEvent)
+{
+ CloseHandle((HANDLE)*pEvent);
+}
+
+static ma_result ma_event_wait__win32(ma_event* pEvent)
+{
+ DWORD result = WaitForSingleObject((HANDLE)*pEvent, INFINITE);
+ if (result == WAIT_OBJECT_0) {
+ return MA_SUCCESS;
+ }
+
+ if (result == WAIT_TIMEOUT) {
+ return MA_TIMEOUT;
+ }
+
+ return ma_result_from_GetLastError(GetLastError());
+}
+
+static ma_result ma_event_signal__win32(ma_event* pEvent)
+{
+ BOOL result = SetEvent((HANDLE)*pEvent);
+ if (result == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+
+static ma_result ma_semaphore_init__win32(int initialValue, ma_semaphore* pSemaphore)
+{
+ *pSemaphore = CreateSemaphoreW(NULL, (LONG)initialValue, LONG_MAX, NULL);
+ if (*pSemaphore == NULL) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore)
+{
+ CloseHandle((HANDLE)*pSemaphore);
+}
+
+static ma_result ma_semaphore_wait__win32(ma_semaphore* pSemaphore)
+{
+ DWORD result = WaitForSingleObject((HANDLE)*pSemaphore, INFINITE);
+ if (result == WAIT_OBJECT_0) {
+ return MA_SUCCESS;
+ }
+
+ if (result == WAIT_TIMEOUT) {
+ return MA_TIMEOUT;
+ }
+
+ return ma_result_from_GetLastError(GetLastError());
+}
+
+static ma_result ma_semaphore_release__win32(ma_semaphore* pSemaphore)
+{
+ BOOL result = ReleaseSemaphore((HANDLE)*pSemaphore, 1, NULL);
+ if (result == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+#endif
+
+
+#ifdef MA_POSIX
+static ma_result ma_thread_create__posix(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
+{
+ int result;
+ pthread_attr_t* pAttr = NULL;
+
+#if !defined(__EMSCRIPTEN__)
+ /* Try setting the thread priority. It's not critical if anything fails here. */
+ pthread_attr_t attr;
+ if (pthread_attr_init(&attr) == 0) {
+ int scheduler = -1;
+ if (priority == ma_thread_priority_idle) {
+#ifdef SCHED_IDLE
+ if (pthread_attr_setschedpolicy(&attr, SCHED_IDLE) == 0) {
+ scheduler = SCHED_IDLE;
+ }
+#endif
+ } else if (priority == ma_thread_priority_realtime) {
+#ifdef SCHED_FIFO
+ if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) == 0) {
+ scheduler = SCHED_FIFO;
+ }
+#endif
+#ifdef MA_LINUX
+ } else {
+ scheduler = sched_getscheduler(0);
+#endif
+ }
+
+ if (stackSize > 0) {
+ pthread_attr_setstacksize(&attr, stackSize);
+ }
+
+ if (scheduler != -1) {
+ int priorityMin = sched_get_priority_min(scheduler);
+ int priorityMax = sched_get_priority_max(scheduler);
+ int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */
+
+ struct sched_param sched;
+ if (pthread_attr_getschedparam(&attr, &sched) == 0) {
+ if (priority == ma_thread_priority_idle) {
+ sched.sched_priority = priorityMin;
+ } else if (priority == ma_thread_priority_realtime) {
+ sched.sched_priority = priorityMax;
+ } else {
+ sched.sched_priority += ((int)priority + 5) * priorityStep; /* +5 because the lowest priority is -5. */
+ if (sched.sched_priority < priorityMin) {
+ sched.sched_priority = priorityMin;
+ }
+ if (sched.sched_priority > priorityMax) {
+ sched.sched_priority = priorityMax;
+ }
+ }
+
+ if (pthread_attr_setschedparam(&attr, &sched) == 0) {
+ pAttr = &attr;
+ }
+ }
+ }
+
+ pthread_attr_destroy(&attr);
+ }
+#endif
+
+ result = pthread_create(pThread, pAttr, entryProc, pData);
+ if (result != 0) {
+ return ma_result_from_errno(result);
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_thread_wait__posix(ma_thread* pThread)
+{
+ pthread_join(*pThread, NULL);
+}
+
+
+static ma_result ma_mutex_init__posix(ma_mutex* pMutex)
+{
+ int result = pthread_mutex_init((pthread_mutex_t*)pMutex, NULL);
+ if (result != 0) {
+ return ma_result_from_errno(result);
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_mutex_uninit__posix(ma_mutex* pMutex)
+{
+ pthread_mutex_destroy((pthread_mutex_t*)pMutex);
+}
+
+static void ma_mutex_lock__posix(ma_mutex* pMutex)
+{
+ pthread_mutex_lock((pthread_mutex_t*)pMutex);
+}
+
+static void ma_mutex_unlock__posix(ma_mutex* pMutex)
+{
+ pthread_mutex_unlock((pthread_mutex_t*)pMutex);
+}
+
+
+static ma_result ma_event_init__posix(ma_event* pEvent)
+{
+ int result;
+
+ result = pthread_mutex_init(&pEvent->lock, NULL);
+ if (result != 0) {
+ return ma_result_from_errno(result);
+ }
+
+ result = pthread_cond_init(&pEvent->cond, NULL);
+ if (result != 0) {
+ pthread_mutex_destroy(&pEvent->lock);
+ return ma_result_from_errno(result);
+ }
+
+ pEvent->value = 0;
+ return MA_SUCCESS;
+}
+
+static void ma_event_uninit__posix(ma_event* pEvent)
+{
+ pthread_cond_destroy(&pEvent->cond);
+ pthread_mutex_destroy(&pEvent->lock);
+}
+
+static ma_result ma_event_wait__posix(ma_event* pEvent)
+{
+ pthread_mutex_lock(&pEvent->lock);
+ {
+ while (pEvent->value == 0) {
+ pthread_cond_wait(&pEvent->cond, &pEvent->lock);
+ }
+ pEvent->value = 0; /* Auto-reset. */
+ }
+ pthread_mutex_unlock(&pEvent->lock);
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_event_signal__posix(ma_event* pEvent)
+{
+ pthread_mutex_lock(&pEvent->lock);
+ {
+ pEvent->value = 1;
+ pthread_cond_signal(&pEvent->cond);
+ }
+ pthread_mutex_unlock(&pEvent->lock);
+
+ return MA_SUCCESS;
+}
+
+
+static ma_result ma_semaphore_init__posix(int initialValue, ma_semaphore* pSemaphore)
+{
+ int result;
+
+ if (pSemaphore == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pSemaphore->value = initialValue;
+
+ result = pthread_mutex_init(&pSemaphore->lock, NULL);
+ if (result != 0) {
+ return ma_result_from_errno(result); /* Failed to create mutex. */
+ }
+
+ result = pthread_cond_init(&pSemaphore->cond, NULL);
+ if (result != 0) {
+ pthread_mutex_destroy(&pSemaphore->lock);
+ return ma_result_from_errno(result); /* Failed to create condition variable. */
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return;
+ }
+
+ pthread_cond_destroy(&pSemaphore->cond);
+ pthread_mutex_destroy(&pSemaphore->lock);
+}
+
+static ma_result ma_semaphore_wait__posix(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pthread_mutex_lock(&pSemaphore->lock);
+ {
+ /* We need to wait on a condition variable before escaping. We can't return from this function until the semaphore has been signaled. */
+ while (pSemaphore->value == 0) {
+ pthread_cond_wait(&pSemaphore->cond, &pSemaphore->lock);
+ }
+
+ pSemaphore->value -= 1;
+ }
+ pthread_mutex_unlock(&pSemaphore->lock);
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_semaphore_release__posix(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pthread_mutex_lock(&pSemaphore->lock);
+ {
+ pSemaphore->value += 1;
+ pthread_cond_signal(&pSemaphore->cond);
+ }
+ pthread_mutex_unlock(&pSemaphore->lock);
+
+ return MA_SUCCESS;
+}
+#endif
+
+static ma_result ma_thread_create(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
+{
+ if (pThread == NULL || entryProc == NULL) {
+ return MA_FALSE;
+ }
+
+#ifdef MA_WIN32
+ return ma_thread_create__win32(pThread, priority, stackSize, entryProc, pData);
+#endif
+#ifdef MA_POSIX
+ return ma_thread_create__posix(pThread, priority, stackSize, entryProc, pData);
+#endif
+}
+
+static void ma_thread_wait(ma_thread* pThread)
+{
+ if (pThread == NULL) {
+ return;
+ }
+
+#ifdef MA_WIN32
+ ma_thread_wait__win32(pThread);
+#endif
+#ifdef MA_POSIX
+ ma_thread_wait__posix(pThread);
+#endif
+}
+
+
+MA_API ma_result ma_mutex_init(ma_mutex* pMutex)
+{
+ if (pMutex == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_mutex_init__win32(pMutex);
+#endif
+#ifdef MA_POSIX
+ return ma_mutex_init__posix(pMutex);
+#endif
+}
+
+MA_API void ma_mutex_uninit(ma_mutex* pMutex)
+{
+ if (pMutex == NULL) {
+ return;
+ }
+
+#ifdef MA_WIN32
+ ma_mutex_uninit__win32(pMutex);
+#endif
+#ifdef MA_POSIX
+ ma_mutex_uninit__posix(pMutex);
+#endif
+}
+
+MA_API void ma_mutex_lock(ma_mutex* pMutex)
+{
+ if (pMutex == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return;
+ }
+
+#ifdef MA_WIN32
+ ma_mutex_lock__win32(pMutex);
+#endif
+#ifdef MA_POSIX
+ ma_mutex_lock__posix(pMutex);
+#endif
+}
+
+MA_API void ma_mutex_unlock(ma_mutex* pMutex)
+{
+ if (pMutex == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return;
+}
+
+#ifdef MA_WIN32
+ ma_mutex_unlock__win32(pMutex);
+#endif
+#ifdef MA_POSIX
+ ma_mutex_unlock__posix(pMutex);
+#endif
+}
+
+
+MA_API ma_result ma_event_init(ma_event* pEvent)
+{
+ if (pEvent == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_event_init__win32(pEvent);
+#endif
+#ifdef MA_POSIX
+ return ma_event_init__posix(pEvent);
+#endif
+}
+
+#if 0
+static ma_result ma_event_alloc_and_init(ma_event** ppEvent, ma_allocation_callbacks* pAllocationCallbacks)
+{
+ ma_result result;
+ ma_event* pEvent;
+
+ if (ppEvent == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *ppEvent = NULL;
+
+ pEvent = ma_malloc(sizeof(*pEvent), pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
+ if (pEvent == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ result = ma_event_init(pEvent);
+ if (result != MA_SUCCESS) {
+ ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
+ return result;
+ }
+
+ *ppEvent = pEvent;
+ return result;
+}
+#endif
+
+MA_API void ma_event_uninit(ma_event* pEvent)
+{
+ if (pEvent == NULL) {
+ return;
+ }
+
+#ifdef MA_WIN32
+ ma_event_uninit__win32(pEvent);
+#endif
+#ifdef MA_POSIX
+ ma_event_uninit__posix(pEvent);
+#endif
+}
+
+#if 0
+static void ma_event_uninit_and_free(ma_event* pEvent, ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pEvent == NULL) {
+ return;
+ }
+
+ ma_event_uninit(pEvent);
+ ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
+}
+#endif
+
+MA_API ma_result ma_event_wait(ma_event* pEvent)
+{
+ if (pEvent == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_event_wait__win32(pEvent);
+#endif
+#ifdef MA_POSIX
+ return ma_event_wait__posix(pEvent);
+#endif
+}
+
+MA_API ma_result ma_event_signal(ma_event* pEvent)
+{
+ if (pEvent == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_event_signal__win32(pEvent);
+#endif
+#ifdef MA_POSIX
+ return ma_event_signal__posix(pEvent);
+#endif
+}
+
+
+MA_API ma_result ma_semaphore_init(int initialValue, ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_semaphore_init__win32(initialValue, pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_init__posix(initialValue, pSemaphore);
+#endif
+}
+
+MA_API void ma_semaphore_uninit(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */
+ return;
+ }
+
+#ifdef MA_WIN32
+ ma_semaphore_uninit__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ ma_semaphore_uninit__posix(pSemaphore);
+#endif
+}
+
+MA_API ma_result ma_semaphore_wait(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_semaphore_wait__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_wait__posix(pSemaphore);
+#endif
+}
+
+MA_API ma_result ma_semaphore_release(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */
+ return MA_INVALID_ARGS;
+ }
+
+#ifdef MA_WIN32
+ return ma_semaphore_release__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_release__posix(pSemaphore);
+#endif
+}
+#else
+/* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */
+#ifndef MA_NO_DEVICE_IO
+#error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO";
+#endif
+#endif /* MA_NO_THREADING */
+
+
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
@@ -6190,6 +9131,22 @@ DEVICE I/O
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#ifndef MA_NO_DEVICE_IO
+#ifdef MA_WIN32
+ #include
+ #include
+ #include
+#endif
+
+#if defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
+ #include /* For mach_absolute_time() */
+#endif
+
+#ifdef MA_POSIX
+ #include
+ #include
+ #include
+#endif
+
/*
Unfortunately using runtime linking for pthreads causes problems. This has occurred for me when testing on FreeBSD. When
using runtime linking, deadlocks can occur (for me it happens when loading data from fread()). It turns out that doing
@@ -6274,7 +9231,7 @@ certain unused functions and variables can be excluded from the build to avoid w
#define MA_HAS_NULL /* Everything supports the null backend. */
#endif
-const char* ma_get_backend_name(ma_backend backend)
+MA_API const char* ma_get_backend_name(ma_backend backend)
{
switch (backend)
{
@@ -6296,7 +9253,7 @@ const char* ma_get_backend_name(ma_backend backend)
}
}
-ma_bool32 ma_is_loopback_supported(ma_backend backend)
+MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend)
{
switch (backend)
{
@@ -6321,24 +9278,174 @@ ma_bool32 ma_is_loopback_supported(ma_backend backend)
#ifdef MA_WIN32
- #define MA_THREADCALL WINAPI
- typedef unsigned long ma_thread_result;
-#else
- #define MA_THREADCALL
- typedef void* ma_thread_result;
-#endif
-typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData);
+/* WASAPI error codes. */
+#define MA_AUDCLNT_E_NOT_INITIALIZED ((HRESULT)0x88890001)
+#define MA_AUDCLNT_E_ALREADY_INITIALIZED ((HRESULT)0x88890002)
+#define MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE ((HRESULT)0x88890003)
+#define MA_AUDCLNT_E_DEVICE_INVALIDATED ((HRESULT)0x88890004)
+#define MA_AUDCLNT_E_NOT_STOPPED ((HRESULT)0x88890005)
+#define MA_AUDCLNT_E_BUFFER_TOO_LARGE ((HRESULT)0x88890006)
+#define MA_AUDCLNT_E_OUT_OF_ORDER ((HRESULT)0x88890007)
+#define MA_AUDCLNT_E_UNSUPPORTED_FORMAT ((HRESULT)0x88890008)
+#define MA_AUDCLNT_E_INVALID_SIZE ((HRESULT)0x88890009)
+#define MA_AUDCLNT_E_DEVICE_IN_USE ((HRESULT)0x8889000A)
+#define MA_AUDCLNT_E_BUFFER_OPERATION_PENDING ((HRESULT)0x8889000B)
+#define MA_AUDCLNT_E_THREAD_NOT_REGISTERED ((HRESULT)0x8889000C)
+#define MA_AUDCLNT_E_NO_SINGLE_PROCESS ((HRESULT)0x8889000D)
+#define MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED ((HRESULT)0x8889000E)
+#define MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED ((HRESULT)0x8889000F)
+#define MA_AUDCLNT_E_SERVICE_NOT_RUNNING ((HRESULT)0x88890010)
+#define MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED ((HRESULT)0x88890011)
+#define MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY ((HRESULT)0x88890012)
+#define MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL ((HRESULT)0x88890013)
+#define MA_AUDCLNT_E_EVENTHANDLE_NOT_SET ((HRESULT)0x88890014)
+#define MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE ((HRESULT)0x88890015)
+#define MA_AUDCLNT_E_BUFFER_SIZE_ERROR ((HRESULT)0x88890016)
+#define MA_AUDCLNT_E_CPUUSAGE_EXCEEDED ((HRESULT)0x88890017)
+#define MA_AUDCLNT_E_BUFFER_ERROR ((HRESULT)0x88890018)
+#define MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED ((HRESULT)0x88890019)
+#define MA_AUDCLNT_E_INVALID_DEVICE_PERIOD ((HRESULT)0x88890020)
+#define MA_AUDCLNT_E_INVALID_STREAM_FLAG ((HRESULT)0x88890021)
+#define MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE ((HRESULT)0x88890022)
+#define MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES ((HRESULT)0x88890023)
+#define MA_AUDCLNT_E_OFFLOAD_MODE_ONLY ((HRESULT)0x88890024)
+#define MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY ((HRESULT)0x88890025)
+#define MA_AUDCLNT_E_RESOURCES_INVALIDATED ((HRESULT)0x88890026)
+#define MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED ((HRESULT)0x88890027)
+#define MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED ((HRESULT)0x88890028)
+#define MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED ((HRESULT)0x88890029)
+#define MA_AUDCLNT_E_HEADTRACKING_ENABLED ((HRESULT)0x88890030)
+#define MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED ((HRESULT)0x88890040)
+#define MA_AUDCLNT_S_BUFFER_EMPTY ((HRESULT)0x08890001)
+#define MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED ((HRESULT)0x08890002)
+#define MA_AUDCLNT_S_POSITION_STALLED ((HRESULT)0x08890003)
+
+#define MA_DS_OK ((HRESULT)0)
+#define MA_DS_NO_VIRTUALIZATION ((HRESULT)0x0878000A)
+#define MA_DSERR_ALLOCATED ((HRESULT)0x8878000A)
+#define MA_DSERR_CONTROLUNAVAIL ((HRESULT)0x8878001E)
+#define MA_DSERR_INVALIDPARAM ((HRESULT)0x80070057) /*E_INVALIDARG*/
+#define MA_DSERR_INVALIDCALL ((HRESULT)0x88780032)
+#define MA_DSERR_GENERIC ((HRESULT)0x80004005) /*E_FAIL*/
+#define MA_DSERR_PRIOLEVELNEEDED ((HRESULT)0x88780046)
+#define MA_DSERR_OUTOFMEMORY ((HRESULT)0x8007000E) /*E_OUTOFMEMORY*/
+#define MA_DSERR_BADFORMAT ((HRESULT)0x88780064)
+#define MA_DSERR_UNSUPPORTED ((HRESULT)0x80004001) /*E_NOTIMPL*/
+#define MA_DSERR_NODRIVER ((HRESULT)0x88780078)
+#define MA_DSERR_ALREADYINITIALIZED ((HRESULT)0x88780082)
+#define MA_DSERR_NOAGGREGATION ((HRESULT)0x80040110) /*CLASS_E_NOAGGREGATION*/
+#define MA_DSERR_BUFFERLOST ((HRESULT)0x88780096)
+#define MA_DSERR_OTHERAPPHASPRIO ((HRESULT)0x887800A0)
+#define MA_DSERR_UNINITIALIZED ((HRESULT)0x887800AA)
+#define MA_DSERR_NOINTERFACE ((HRESULT)0x80004002) /*E_NOINTERFACE*/
+#define MA_DSERR_ACCESSDENIED ((HRESULT)0x80070005) /*E_ACCESSDENIED*/
+#define MA_DSERR_BUFFERTOOSMALL ((HRESULT)0x887800B4)
+#define MA_DSERR_DS8_REQUIRED ((HRESULT)0x887800BE)
+#define MA_DSERR_SENDLOOP ((HRESULT)0x887800C8)
+#define MA_DSERR_BADSENDBUFFERGUID ((HRESULT)0x887800D2)
+#define MA_DSERR_OBJECTNOTFOUND ((HRESULT)0x88781161)
+#define MA_DSERR_FXUNAVAILABLE ((HRESULT)0x887800DC)
+
+static ma_result ma_result_from_HRESULT(HRESULT hr)
+{
+ switch (hr)
+ {
+ case NOERROR: return MA_SUCCESS;
+ /*case S_OK: return MA_SUCCESS;*/
+
+ case E_POINTER: return MA_INVALID_ARGS;
+ case E_UNEXPECTED: return MA_ERROR;
+ case E_NOTIMPL: return MA_NOT_IMPLEMENTED;
+ case E_OUTOFMEMORY: return MA_OUT_OF_MEMORY;
+ case E_INVALIDARG: return MA_INVALID_ARGS;
+ case E_NOINTERFACE: return MA_API_NOT_FOUND;
+ case E_HANDLE: return MA_INVALID_ARGS;
+ case E_ABORT: return MA_ERROR;
+ case E_FAIL: return MA_ERROR;
+ case E_ACCESSDENIED: return MA_ACCESS_DENIED;
+
+ /* WASAPI */
+ case MA_AUDCLNT_E_NOT_INITIALIZED: return MA_DEVICE_NOT_INITIALIZED;
+ case MA_AUDCLNT_E_ALREADY_INITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED;
+ case MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_DEVICE_INVALIDATED: return MA_UNAVAILABLE;
+ case MA_AUDCLNT_E_NOT_STOPPED: return MA_DEVICE_NOT_STOPPED;
+ case MA_AUDCLNT_E_BUFFER_TOO_LARGE: return MA_TOO_BIG;
+ case MA_AUDCLNT_E_OUT_OF_ORDER: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_UNSUPPORTED_FORMAT: return MA_FORMAT_NOT_SUPPORTED;
+ case MA_AUDCLNT_E_INVALID_SIZE: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_DEVICE_IN_USE: return MA_BUSY;
+ case MA_AUDCLNT_E_BUFFER_OPERATION_PENDING: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_THREAD_NOT_REGISTERED: return MA_DOES_NOT_EXIST;
+ case MA_AUDCLNT_E_NO_SINGLE_PROCESS: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED: return MA_SHARE_MODE_NOT_SUPPORTED;
+ case MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED: return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
+ case MA_AUDCLNT_E_SERVICE_NOT_RUNNING: return MA_NOT_CONNECTED;
+ case MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY: return MA_SHARE_MODE_NOT_SUPPORTED;
+ case MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_EVENTHANDLE_NOT_SET: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_BUFFER_SIZE_ERROR: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_CPUUSAGE_EXCEEDED: return MA_ERROR;
+ case MA_AUDCLNT_E_BUFFER_ERROR: return MA_ERROR;
+ case MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_INVALID_DEVICE_PERIOD: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_INVALID_STREAM_FLAG: return MA_INVALID_ARGS;
+ case MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES: return MA_OUT_OF_MEMORY;
+ case MA_AUDCLNT_E_OFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_RESOURCES_INVALIDATED: return MA_INVALID_DATA;
+ case MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_HEADTRACKING_ENABLED: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED: return MA_INVALID_OPERATION;
+ case MA_AUDCLNT_S_BUFFER_EMPTY: return MA_NO_SPACE;
+ case MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED: return MA_ALREADY_EXISTS;
+ case MA_AUDCLNT_S_POSITION_STALLED: return MA_ERROR;
+
+ /* DirectSound */
+ /*case MA_DS_OK: return MA_SUCCESS;*/ /* S_OK */
+ case MA_DS_NO_VIRTUALIZATION: return MA_SUCCESS;
+ case MA_DSERR_ALLOCATED: return MA_ALREADY_IN_USE;
+ case MA_DSERR_CONTROLUNAVAIL: return MA_INVALID_OPERATION;
+ /*case MA_DSERR_INVALIDPARAM: return MA_INVALID_ARGS;*/ /* E_INVALIDARG */
+ case MA_DSERR_INVALIDCALL: return MA_INVALID_OPERATION;
+ /*case MA_DSERR_GENERIC: return MA_ERROR;*/ /* E_FAIL */
+ case MA_DSERR_PRIOLEVELNEEDED: return MA_INVALID_OPERATION;
+ /*case MA_DSERR_OUTOFMEMORY: return MA_OUT_OF_MEMORY;*/ /* E_OUTOFMEMORY */
+ case MA_DSERR_BADFORMAT: return MA_FORMAT_NOT_SUPPORTED;
+ /*case MA_DSERR_UNSUPPORTED: return MA_NOT_IMPLEMENTED;*/ /* E_NOTIMPL */
+ case MA_DSERR_NODRIVER: return MA_FAILED_TO_INIT_BACKEND;
+ case MA_DSERR_ALREADYINITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED;
+ case MA_DSERR_NOAGGREGATION: return MA_ERROR;
+ case MA_DSERR_BUFFERLOST: return MA_UNAVAILABLE;
+ case MA_DSERR_OTHERAPPHASPRIO: return MA_ACCESS_DENIED;
+ case MA_DSERR_UNINITIALIZED: return MA_DEVICE_NOT_INITIALIZED;
+ /*case MA_DSERR_NOINTERFACE: return MA_API_NOT_FOUND;*/ /* E_NOINTERFACE */
+ /*case MA_DSERR_ACCESSDENIED: return MA_ACCESS_DENIED;*/ /* E_ACCESSDENIED */
+ case MA_DSERR_BUFFERTOOSMALL: return MA_NO_SPACE;
+ case MA_DSERR_DS8_REQUIRED: return MA_INVALID_OPERATION;
+ case MA_DSERR_SENDLOOP: return MA_DEADLOCK;
+ case MA_DSERR_BADSENDBUFFERGUID: return MA_INVALID_ARGS;
+ case MA_DSERR_OBJECTNOTFOUND: return MA_NO_DEVICE;
+ case MA_DSERR_FXUNAVAILABLE: return MA_UNAVAILABLE;
+
+ default: return MA_ERROR;
+ }
+}
-#ifdef MA_WIN32
typedef HRESULT (WINAPI * MA_PFN_CoInitializeEx)(LPVOID pvReserved, DWORD dwCoInit);
-typedef void (WINAPI * MA_PFN_CoUninitialize)();
+typedef void (WINAPI * MA_PFN_CoUninitialize)(void);
typedef HRESULT (WINAPI * MA_PFN_CoCreateInstance)(REFCLSID rclsid, LPUNKNOWN pUnkOuter, DWORD dwClsContext, REFIID riid, LPVOID *ppv);
typedef void (WINAPI * MA_PFN_CoTaskMemFree)(LPVOID pv);
typedef HRESULT (WINAPI * MA_PFN_PropVariantClear)(PROPVARIANT *pvar);
typedef int (WINAPI * MA_PFN_StringFromGUID2)(const GUID* const rguid, LPOLESTR lpsz, int cchMax);
-typedef HWND (WINAPI * MA_PFN_GetForegroundWindow)();
-typedef HWND (WINAPI * MA_PFN_GetDesktopWindow)();
+typedef HWND (WINAPI * MA_PFN_GetForegroundWindow)(void);
+typedef HWND (WINAPI * MA_PFN_GetDesktopWindow)(void);
/* Microsoft documents these APIs as returning LSTATUS, but the Win32 API shipping with some compilers do not define it. It's just a LONG. */
typedef LONG (WINAPI * MA_PFN_RegOpenKeyExA)(HKEY hKey, LPCSTR lpSubKey, DWORD ulOptions, REGSAM samDesired, PHKEY phkResult);
@@ -6357,7 +9464,7 @@ typedef LONG (WINAPI * MA_PFN_RegQueryValueExA)(HKEY hKey, LPCSTR lpValueName, L
#define MA_DEFAULT_CAPTURE_DEVICE_NAME "Default Capture Device"
-const char* ma_log_level_to_string(ma_uint32 logLevel)
+MA_API const char* ma_log_level_to_string(ma_uint32 logLevel)
{
switch (logLevel)
{
@@ -6372,6 +9479,17 @@ const char* ma_log_level_to_string(ma_uint32 logLevel)
/* Posts a log message. */
static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
{
+ if (pContext == NULL) {
+ if (pDevice != NULL) {
+ pContext = pDevice->pContext;
+ }
+ }
+
+ /* All logs must be output when debug output is enabled. */
+#if defined(MA_DEBUG_OUTPUT)
+ printf("%s: %s\n", ma_log_level_to_string(logLevel), message);
+#endif
+
if (pContext == NULL) {
return;
}
@@ -6380,12 +9498,6 @@ static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uin
if (logLevel <= MA_LOG_LEVEL) {
ma_log_proc onLog;
- #if defined(MA_DEBUG_OUTPUT)
- if (logLevel <= MA_LOG_LEVEL) {
- printf("%s: %s\n", ma_log_level_to_string(logLevel), message);
- }
- #endif
-
onLog = pContext->logCallback;
if (onLog) {
onLog(pContext, pDevice, logLevel, message);
@@ -6394,16 +9506,132 @@ static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uin
#endif
}
+/*
+We need to emulate _vscprintf() for the VC6 build. This can be more efficient, but since it's only VC6, and it's just a
+logging function, I'm happy to keep this simple. In the VC6 build we can implement this in terms of _vsnprintf().
+*/
+#if defined(_MSC_VER) && _MSC_VER < 1900
+int ma_vscprintf(const char* format, va_list args)
+{
+#if _MSC_VER > 1200
+ return _vscprintf(format, args);
+#else
+ int result;
+ char* pTempBuffer = NULL;
+ size_t tempBufferCap = 1024;
+
+ if (format == NULL) {
+ errno = EINVAL;
+ return -1;
+ }
+
+ for (;;) {
+ char* pNewTempBuffer = (char*)ma_realloc(pTempBuffer, tempBufferCap, NULL); /* TODO: Add support for custom memory allocators? */
+ if (pNewTempBuffer == NULL) {
+ ma_free(pTempBuffer, NULL);
+ errno = ENOMEM;
+ return -1; /* Out of memory. */
+ }
+
+ pTempBuffer = pNewTempBuffer;
+
+ result = _vsnprintf(pTempBuffer, tempBufferCap, format, args);
+ ma_free(pTempBuffer, NULL);
+
+ if (result != -1) {
+ break; /* Got it. */
+ }
+
+ /* Buffer wasn't big enough. Ideally it'd be nice to use an error code to know the reason for sure, but this is reliable enough. */
+ tempBufferCap *= 2;
+ }
+
+ return result;
+#endif
+}
+#endif
+
+/* Posts a formatted log message. */
+static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, va_list args)
+{
+#if (!defined(_MSC_VER) || _MSC_VER >= 1900) && !defined(__STRICT_ANSI__)
+ {
+ char pFormattedMessage[1024];
+ vsnprintf(pFormattedMessage, sizeof(pFormattedMessage), pFormat, args);
+ ma_post_log_message(pContext, pDevice, logLevel, pFormattedMessage);
+ }
+#else
+ {
+ /*
+ Without snprintf() we need to first measure the string and then heap allocate it. I'm only aware of Visual Studio having support for this without snprintf(), so we'll
+ need to restrict this branch to Visual Studio. For other compilers we need to just not support formatted logging because I don't want the security risk of overflowing
+ a fixed sized stack allocated buffer.
+ */
+ #if defined(_MSC_VER) && _MSC_VER >= 1200 /* 1200 = VC6 */
+ int formattedLen;
+ va_list args2;
+
+ #if _MSC_VER >= 1800
+ va_copy(args2, args);
+ #else
+ args2 = args;
+ #endif
+ formattedLen = ma_vscprintf(pFormat, args2);
+ va_end(args2);
+
+ if (formattedLen > 0) {
+ char* pFormattedMessage = NULL;
+ ma_allocation_callbacks* pAllocationCallbacks = NULL;
+
+ /* Make sure we have a context so we can allocate memory. */
+ if (pContext == NULL) {
+ if (pDevice != NULL) {
+ pContext = pDevice->pContext;
+ }
+ }
+
+ if (pContext != NULL) {
+ pAllocationCallbacks = &pContext->allocationCallbacks;
+ }
+
+ pFormattedMessage = (char*)ma_malloc(formattedLen + 1, pAllocationCallbacks);
+ if (pFormattedMessage != NULL) {
+ /* We'll get errors on newer versions of Visual Studio if we try to use vsprintf(). */
+ #if _MSC_VER >= 1400 /* 1400 = Visual Studio 2005 */
+ vsprintf_s(pFormattedMessage, formattedLen + 1, pFormat, args);
+ #else
+ vsprintf(pFormattedMessage, pFormat, args);
+ #endif
+
+ ma_post_log_message(pContext, pDevice, logLevel, pFormattedMessage);
+ ma_free(pFormattedMessage, pAllocationCallbacks);
+ }
+ }
+ #else
+ /* Can't do anything because we don't have a safe way of to emulate vsnprintf() without a manual solution. */
+ (void)pContext;
+ (void)pDevice;
+ (void)logLevel;
+ (void)pFormat;
+ (void)args;
+ #endif
+ }
+#endif
+}
+
+MA_API void ma_post_log_messagef(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, ...)
+{
+ va_list args;
+ va_start(args, pFormat);
+ {
+ ma_post_log_messagev(pContext, pDevice, logLevel, pFormat, args);
+ }
+ va_end(args);
+}
+
/* Posts an log message. Throw a breakpoint in here if you're needing to debug. The return value is always "resultCode". */
static ma_result ma_context_post_error(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
{
- /* Derive the context from the device if necessary. */
- if (pContext == NULL) {
- if (pDevice != NULL) {
- pContext = pDevice->pContext;
- }
- }
-
ma_post_log_message(pContext, pDevice, logLevel, message);
return resultCode;
}
@@ -6420,108 +9648,108 @@ Timing
*******************************************************************************/
#ifdef MA_WIN32
-LARGE_INTEGER g_ma_TimerFrequency = {{0}};
-static void ma_timer_init(ma_timer* pTimer)
-{
- LARGE_INTEGER counter;
+ static LARGE_INTEGER g_ma_TimerFrequency = {{0}};
+ static void ma_timer_init(ma_timer* pTimer)
+ {
+ LARGE_INTEGER counter;
- if (g_ma_TimerFrequency.QuadPart == 0) {
- QueryPerformanceFrequency(&g_ma_TimerFrequency);
+ if (g_ma_TimerFrequency.QuadPart == 0) {
+ QueryPerformanceFrequency(&g_ma_TimerFrequency);
+ }
+
+ QueryPerformanceCounter(&counter);
+ pTimer->counter = counter.QuadPart;
}
- QueryPerformanceCounter(&counter);
- pTimer->counter = counter.QuadPart;
-}
+ static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+ {
+ LARGE_INTEGER counter;
+ if (!QueryPerformanceCounter(&counter)) {
+ return 0;
+ }
-static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
-{
- LARGE_INTEGER counter;
- if (!QueryPerformanceCounter(&counter)) {
- return 0;
+ return (double)(counter.QuadPart - pTimer->counter) / g_ma_TimerFrequency.QuadPart;
}
-
- return (double)(counter.QuadPart - pTimer->counter) / g_ma_TimerFrequency.QuadPart;
-}
#elif defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
-ma_uint64 g_ma_TimerFrequency = 0;
-static void ma_timer_init(ma_timer* pTimer)
-{
- mach_timebase_info_data_t baseTime;
- mach_timebase_info(&baseTime);
- g_ma_TimerFrequency = (baseTime.denom * 1e9) / baseTime.numer;
+ static ma_uint64 g_ma_TimerFrequency = 0;
+ static void ma_timer_init(ma_timer* pTimer)
+ {
+ mach_timebase_info_data_t baseTime;
+ mach_timebase_info(&baseTime);
+ g_ma_TimerFrequency = (baseTime.denom * 1e9) / baseTime.numer;
- pTimer->counter = mach_absolute_time();
-}
+ pTimer->counter = mach_absolute_time();
+ }
-static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
-{
- ma_uint64 newTimeCounter = mach_absolute_time();
- ma_uint64 oldTimeCounter = pTimer->counter;
+ static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+ {
+ ma_uint64 newTimeCounter = mach_absolute_time();
+ ma_uint64 oldTimeCounter = pTimer->counter;
- return (newTimeCounter - oldTimeCounter) / g_ma_TimerFrequency;
-}
+ return (newTimeCounter - oldTimeCounter) / g_ma_TimerFrequency;
+ }
#elif defined(MA_EMSCRIPTEN)
-static MA_INLINE void ma_timer_init(ma_timer* pTimer)
-{
- pTimer->counterD = emscripten_get_now();
-}
+ static MA_INLINE void ma_timer_init(ma_timer* pTimer)
+ {
+ pTimer->counterD = emscripten_get_now();
+ }
-static MA_INLINE double ma_timer_get_time_in_seconds(ma_timer* pTimer)
-{
- return (emscripten_get_now() - pTimer->counterD) / 1000; /* Emscripten is in milliseconds. */
-}
+ static MA_INLINE double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+ {
+ return (emscripten_get_now() - pTimer->counterD) / 1000; /* Emscripten is in milliseconds. */
+ }
#else
-#if _POSIX_C_SOURCE >= 199309L
-#if defined(CLOCK_MONOTONIC)
- #define MA_CLOCK_ID CLOCK_MONOTONIC
-#else
- #define MA_CLOCK_ID CLOCK_REALTIME
-#endif
+ #if _POSIX_C_SOURCE >= 199309L
+ #if defined(CLOCK_MONOTONIC)
+ #define MA_CLOCK_ID CLOCK_MONOTONIC
+ #else
+ #define MA_CLOCK_ID CLOCK_REALTIME
+ #endif
-static void ma_timer_init(ma_timer* pTimer)
-{
- struct timespec newTime;
- clock_gettime(MA_CLOCK_ID, &newTime);
+ static void ma_timer_init(ma_timer* pTimer)
+ {
+ struct timespec newTime;
+ clock_gettime(MA_CLOCK_ID, &newTime);
- pTimer->counter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
-}
+ pTimer->counter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
+ }
-static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
-{
- ma_uint64 newTimeCounter;
- ma_uint64 oldTimeCounter;
+ static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+ {
+ ma_uint64 newTimeCounter;
+ ma_uint64 oldTimeCounter;
- struct timespec newTime;
- clock_gettime(MA_CLOCK_ID, &newTime);
+ struct timespec newTime;
+ clock_gettime(MA_CLOCK_ID, &newTime);
- newTimeCounter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
- oldTimeCounter = pTimer->counter;
+ newTimeCounter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
+ oldTimeCounter = pTimer->counter;
- return (newTimeCounter - oldTimeCounter) / 1000000000.0;
-}
-#else
-static void ma_timer_init(ma_timer* pTimer)
-{
- struct timeval newTime;
- gettimeofday(&newTime, NULL);
+ return (newTimeCounter - oldTimeCounter) / 1000000000.0;
+ }
+ #else
+ static void ma_timer_init(ma_timer* pTimer)
+ {
+ struct timeval newTime;
+ gettimeofday(&newTime, NULL);
- pTimer->counter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
-}
+ pTimer->counter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
+ }
-static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
-{
- ma_uint64 newTimeCounter;
- ma_uint64 oldTimeCounter;
+ static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+ {
+ ma_uint64 newTimeCounter;
+ ma_uint64 oldTimeCounter;
- struct timeval newTime;
- gettimeofday(&newTime, NULL);
+ struct timeval newTime;
+ gettimeofday(&newTime, NULL);
- newTimeCounter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
- oldTimeCounter = pTimer->counter;
+ newTimeCounter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
+ oldTimeCounter = pTimer->counter;
- return (newTimeCounter - oldTimeCounter) / 1000000.0;
-}
-#endif
+ return (newTimeCounter - oldTimeCounter) / 1000000.0;
+ }
+ #endif
#endif
@@ -6530,7 +9758,7 @@ static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
Dynamic Linking
*******************************************************************************/
-ma_handle ma_dlopen(ma_context* pContext, const char* filename)
+MA_API ma_handle ma_dlopen(ma_context* pContext, const char* filename)
{
ma_handle handle;
@@ -6574,7 +9802,7 @@ ma_handle ma_dlopen(ma_context* pContext, const char* filename)
return handle;
}
-void ma_dlclose(ma_context* pContext, ma_handle handle)
+MA_API void ma_dlclose(ma_context* pContext, ma_handle handle)
{
#ifdef _WIN32
FreeLibrary((HMODULE)handle);
@@ -6585,7 +9813,7 @@ void ma_dlclose(ma_context* pContext, ma_handle handle)
(void)pContext;
}
-ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
+MA_API ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
{
ma_proc proc;
@@ -6623,573 +9851,8 @@ ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
}
-/*******************************************************************************
-
-Threading
-
-*******************************************************************************/
-#ifdef MA_WIN32
-static int ma_thread_priority_to_win32(ma_thread_priority priority)
-{
- switch (priority) {
- case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE;
- case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST;
- case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL;
- case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL;
- case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL;
- case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST;
- case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL;
- default: return THREAD_PRIORITY_NORMAL;
- }
-}
-
-static ma_result ma_thread_create__win32(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
-{
- pThread->win32.hThread = CreateThread(NULL, 0, entryProc, pData, 0, NULL);
- if (pThread->win32.hThread == NULL) {
- return MA_FAILED_TO_CREATE_THREAD;
- }
-
- SetThreadPriority((HANDLE)pThread->win32.hThread, ma_thread_priority_to_win32(pContext->threadPriority));
-
- return MA_SUCCESS;
-}
-
-static void ma_thread_wait__win32(ma_thread* pThread)
-{
- WaitForSingleObject(pThread->win32.hThread, INFINITE);
-}
-
-static void ma_sleep__win32(ma_uint32 milliseconds)
-{
- Sleep((DWORD)milliseconds);
-}
-
-
-static ma_result ma_mutex_init__win32(ma_context* pContext, ma_mutex* pMutex)
-{
- (void)pContext;
-
- pMutex->win32.hMutex = CreateEventA(NULL, FALSE, TRUE, NULL);
- if (pMutex->win32.hMutex == NULL) {
- return MA_FAILED_TO_CREATE_MUTEX;
- }
-
- return MA_SUCCESS;
-}
-
-static void ma_mutex_uninit__win32(ma_mutex* pMutex)
-{
- CloseHandle(pMutex->win32.hMutex);
-}
-
-static void ma_mutex_lock__win32(ma_mutex* pMutex)
-{
- WaitForSingleObject(pMutex->win32.hMutex, INFINITE);
-}
-
-static void ma_mutex_unlock__win32(ma_mutex* pMutex)
-{
- SetEvent(pMutex->win32.hMutex);
-}
-
-
-static ma_result ma_event_init__win32(ma_context* pContext, ma_event* pEvent)
-{
- (void)pContext;
-
- pEvent->win32.hEvent = CreateEventW(NULL, FALSE, FALSE, NULL);
- if (pEvent->win32.hEvent == NULL) {
- return MA_FAILED_TO_CREATE_EVENT;
- }
-
- return MA_SUCCESS;
-}
-
-static void ma_event_uninit__win32(ma_event* pEvent)
-{
- CloseHandle(pEvent->win32.hEvent);
-}
-
-static ma_bool32 ma_event_wait__win32(ma_event* pEvent)
-{
- return WaitForSingleObject(pEvent->win32.hEvent, INFINITE) == WAIT_OBJECT_0;
-}
-
-static ma_bool32 ma_event_signal__win32(ma_event* pEvent)
-{
- return SetEvent(pEvent->win32.hEvent);
-}
-
-
-static ma_result ma_semaphore_init__win32(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
-{
- (void)pContext;
-
- pSemaphore->win32.hSemaphore = CreateSemaphoreA(NULL, (LONG)initialValue, LONG_MAX, NULL);
- if (pSemaphore->win32.hSemaphore == NULL) {
- return MA_FAILED_TO_CREATE_SEMAPHORE;
- }
-
- return MA_SUCCESS;
-}
-
-static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore)
-{
- CloseHandle((HANDLE)pSemaphore->win32.hSemaphore);
-}
-
-static ma_bool32 ma_semaphore_wait__win32(ma_semaphore* pSemaphore)
-{
- return WaitForSingleObject((HANDLE)pSemaphore->win32.hSemaphore, INFINITE) == WAIT_OBJECT_0;
-}
-
-static ma_bool32 ma_semaphore_release__win32(ma_semaphore* pSemaphore)
-{
- return ReleaseSemaphore((HANDLE)pSemaphore->win32.hSemaphore, 1, NULL) != 0;
-}
-#endif
-
-
-#ifdef MA_POSIX
-#include
-
-typedef int (* ma_pthread_create_proc)(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
-typedef int (* ma_pthread_join_proc)(pthread_t thread, void **retval);
-typedef int (* ma_pthread_mutex_init_proc)(pthread_mutex_t *__mutex, const pthread_mutexattr_t *__mutexattr);
-typedef int (* ma_pthread_mutex_destroy_proc)(pthread_mutex_t *__mutex);
-typedef int (* ma_pthread_mutex_lock_proc)(pthread_mutex_t *__mutex);
-typedef int (* ma_pthread_mutex_unlock_proc)(pthread_mutex_t *__mutex);
-typedef int (* ma_pthread_cond_init_proc)(pthread_cond_t *__restrict __cond, const pthread_condattr_t *__restrict __cond_attr);
-typedef int (* ma_pthread_cond_destroy_proc)(pthread_cond_t *__cond);
-typedef int (* ma_pthread_cond_signal_proc)(pthread_cond_t *__cond);
-typedef int (* ma_pthread_cond_wait_proc)(pthread_cond_t *__restrict __cond, pthread_mutex_t *__restrict __mutex);
-typedef int (* ma_pthread_attr_init_proc)(pthread_attr_t *attr);
-typedef int (* ma_pthread_attr_destroy_proc)(pthread_attr_t *attr);
-typedef int (* ma_pthread_attr_setschedpolicy_proc)(pthread_attr_t *attr, int policy);
-typedef int (* ma_pthread_attr_getschedparam_proc)(const pthread_attr_t *attr, struct sched_param *param);
-typedef int (* ma_pthread_attr_setschedparam_proc)(pthread_attr_t *attr, const struct sched_param *param);
-
-static ma_result ma_thread_create__posix(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
-{
- int result;
- pthread_attr_t* pAttr = NULL;
-
-#if !defined(__EMSCRIPTEN__)
- /* Try setting the thread priority. It's not critical if anything fails here. */
- pthread_attr_t attr;
- if (((ma_pthread_attr_init_proc)pContext->posix.pthread_attr_init)(&attr) == 0) {
- int scheduler = -1;
- if (pContext->threadPriority == ma_thread_priority_idle) {
-#ifdef SCHED_IDLE
- if (((ma_pthread_attr_setschedpolicy_proc)pContext->posix.pthread_attr_setschedpolicy)(&attr, SCHED_IDLE) == 0) {
- scheduler = SCHED_IDLE;
- }
-#endif
- } else if (pContext->threadPriority == ma_thread_priority_realtime) {
-#ifdef SCHED_FIFO
- if (((ma_pthread_attr_setschedpolicy_proc)pContext->posix.pthread_attr_setschedpolicy)(&attr, SCHED_FIFO) == 0) {
- scheduler = SCHED_FIFO;
- }
-#endif
-#ifdef MA_LINUX
- } else {
- scheduler = sched_getscheduler(0);
-#endif
- }
-
- if (scheduler != -1) {
- int priorityMin = sched_get_priority_min(scheduler);
- int priorityMax = sched_get_priority_max(scheduler);
- int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */
-
- struct sched_param sched;
- if (((ma_pthread_attr_getschedparam_proc)pContext->posix.pthread_attr_getschedparam)(&attr, &sched) == 0) {
- if (pContext->threadPriority == ma_thread_priority_idle) {
- sched.sched_priority = priorityMin;
- } else if (pContext->threadPriority == ma_thread_priority_realtime) {
- sched.sched_priority = priorityMax;
- } else {
- sched.sched_priority += ((int)pContext->threadPriority + 5) * priorityStep; /* +5 because the lowest priority is -5. */
- if (sched.sched_priority < priorityMin) {
- sched.sched_priority = priorityMin;
- }
- if (sched.sched_priority > priorityMax) {
- sched.sched_priority = priorityMax;
- }
- }
-
- if (((ma_pthread_attr_setschedparam_proc)pContext->posix.pthread_attr_setschedparam)(&attr, &sched) == 0) {
- pAttr = &attr;
- }
- }
- }
-
- ((ma_pthread_attr_destroy_proc)pContext->posix.pthread_attr_destroy)(&attr);
- }
-#endif
-
- result = ((ma_pthread_create_proc)pContext->posix.pthread_create)(&pThread->posix.thread, pAttr, entryProc, pData);
- if (result != 0) {
- return MA_FAILED_TO_CREATE_THREAD;
- }
-
- return MA_SUCCESS;
-}
-
-static void ma_thread_wait__posix(ma_thread* pThread)
-{
- ((ma_pthread_join_proc)pThread->pContext->posix.pthread_join)(pThread->posix.thread, NULL);
-}
-
-#if !defined(MA_EMSCRIPTEN)
-static void ma_sleep__posix(ma_uint32 milliseconds)
-{
-#ifdef MA_EMSCRIPTEN
- (void)milliseconds;
- MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */
-#else
- #if _POSIX_C_SOURCE >= 199309L
- struct timespec ts;
- ts.tv_sec = milliseconds / 1000000;
- ts.tv_nsec = milliseconds % 1000000 * 1000000;
- nanosleep(&ts, NULL);
- #else
- struct timeval tv;
- tv.tv_sec = milliseconds / 1000;
- tv.tv_usec = milliseconds % 1000 * 1000;
- select(0, NULL, NULL, NULL, &tv);
- #endif
-#endif
-}
-#endif /* MA_EMSCRIPTEN */
-
-
-static ma_result ma_mutex_init__posix(ma_context* pContext, ma_mutex* pMutex)
-{
- int result = ((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pMutex->posix.mutex, NULL);
- if (result != 0) {
- return MA_FAILED_TO_CREATE_MUTEX;
- }
-
- return MA_SUCCESS;
-}
-
-static void ma_mutex_uninit__posix(ma_mutex* pMutex)
-{
- ((ma_pthread_mutex_destroy_proc)pMutex->pContext->posix.pthread_mutex_destroy)(&pMutex->posix.mutex);
-}
-
-static void ma_mutex_lock__posix(ma_mutex* pMutex)
-{
- ((ma_pthread_mutex_lock_proc)pMutex->pContext->posix.pthread_mutex_lock)(&pMutex->posix.mutex);
-}
-
-static void ma_mutex_unlock__posix(ma_mutex* pMutex)
-{
- ((ma_pthread_mutex_unlock_proc)pMutex->pContext->posix.pthread_mutex_unlock)(&pMutex->posix.mutex);
-}
-
-
-static ma_result ma_event_init__posix(ma_context* pContext, ma_event* pEvent)
-{
- if (((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pEvent->posix.mutex, NULL) != 0) {
- return MA_FAILED_TO_CREATE_MUTEX;
- }
-
- if (((ma_pthread_cond_init_proc)pContext->posix.pthread_cond_init)(&pEvent->posix.condition, NULL) != 0) {
- return MA_FAILED_TO_CREATE_EVENT;
- }
-
- pEvent->posix.value = 0;
- return MA_SUCCESS;
-}
-
-static void ma_event_uninit__posix(ma_event* pEvent)
-{
- ((ma_pthread_cond_destroy_proc)pEvent->pContext->posix.pthread_cond_destroy)(&pEvent->posix.condition);
- ((ma_pthread_mutex_destroy_proc)pEvent->pContext->posix.pthread_mutex_destroy)(&pEvent->posix.mutex);
-}
-
-static ma_bool32 ma_event_wait__posix(ma_event* pEvent)
-{
- ((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex);
- {
- while (pEvent->posix.value == 0) {
- ((ma_pthread_cond_wait_proc)pEvent->pContext->posix.pthread_cond_wait)(&pEvent->posix.condition, &pEvent->posix.mutex);
- }
- pEvent->posix.value = 0; /* Auto-reset. */
- }
- ((ma_pthread_mutex_unlock_proc)pEvent->pContext->posix.pthread_mutex_unlock)(&pEvent->posix.mutex);
-
- return MA_TRUE;
-}
-
-static ma_bool32 ma_event_signal__posix(ma_event* pEvent)
-{
- ((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex);
- {
- pEvent->posix.value = 1;
- ((ma_pthread_cond_signal_proc)pEvent->pContext->posix.pthread_cond_signal)(&pEvent->posix.condition);
- }
- ((ma_pthread_mutex_unlock_proc)pEvent->pContext->posix.pthread_mutex_unlock)(&pEvent->posix.mutex);
-
- return MA_TRUE;
-}
-
-
-static ma_result ma_semaphore_init__posix(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
-{
- (void)pContext;
-
-#if defined(MA_APPLE)
- /* Not yet implemented for Apple platforms since sem_init() is deprecated. Need to use a named semaphore via sem_open() instead. */
- return MA_INVALID_OPERATION;
-#else
- if (sem_init(&pSemaphore->posix.semaphore, 0, (unsigned int)initialValue) == 0) {
- return MA_FAILED_TO_CREATE_SEMAPHORE;
- }
-#endif
-
- return MA_SUCCESS;
-}
-
-static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore)
-{
- sem_close(&pSemaphore->posix.semaphore);
-}
-
-static ma_bool32 ma_semaphore_wait__posix(ma_semaphore* pSemaphore)
-{
- return sem_wait(&pSemaphore->posix.semaphore) != -1;
-}
-
-static ma_bool32 ma_semaphore_release__posix(ma_semaphore* pSemaphore)
-{
- return sem_post(&pSemaphore->posix.semaphore) != -1;
-}
-#endif
-
-static ma_result ma_thread_create(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
-{
- if (pContext == NULL || pThread == NULL || entryProc == NULL) {
- return MA_FALSE;
- }
-
- pThread->pContext = pContext;
-
-#ifdef MA_WIN32
- return ma_thread_create__win32(pContext, pThread, entryProc, pData);
-#endif
-#ifdef MA_POSIX
- return ma_thread_create__posix(pContext, pThread, entryProc, pData);
-#endif
-}
-
-static void ma_thread_wait(ma_thread* pThread)
-{
- if (pThread == NULL) {
- return;
- }
-
-#ifdef MA_WIN32
- ma_thread_wait__win32(pThread);
-#endif
-#ifdef MA_POSIX
- ma_thread_wait__posix(pThread);
-#endif
-}
-
-#if !defined(MA_EMSCRIPTEN)
-static void ma_sleep(ma_uint32 milliseconds)
-{
-#ifdef MA_WIN32
- ma_sleep__win32(milliseconds);
-#endif
-#ifdef MA_POSIX
- ma_sleep__posix(milliseconds);
-#endif
-}
-#endif
-
-
-ma_result ma_mutex_init(ma_context* pContext, ma_mutex* pMutex)
-{
- if (pContext == NULL || pMutex == NULL) {
- return MA_INVALID_ARGS;
- }
-
- pMutex->pContext = pContext;
-
-#ifdef MA_WIN32
- return ma_mutex_init__win32(pContext, pMutex);
-#endif
-#ifdef MA_POSIX
- return ma_mutex_init__posix(pContext, pMutex);
-#endif
-}
-
-void ma_mutex_uninit(ma_mutex* pMutex)
-{
- if (pMutex == NULL || pMutex->pContext == NULL) {
- return;
- }
-
-#ifdef MA_WIN32
- ma_mutex_uninit__win32(pMutex);
-#endif
-#ifdef MA_POSIX
- ma_mutex_uninit__posix(pMutex);
-#endif
-}
-
-void ma_mutex_lock(ma_mutex* pMutex)
-{
- if (pMutex == NULL || pMutex->pContext == NULL) {
- return;
- }
-
-#ifdef MA_WIN32
- ma_mutex_lock__win32(pMutex);
-#endif
-#ifdef MA_POSIX
- ma_mutex_lock__posix(pMutex);
-#endif
-}
-
-void ma_mutex_unlock(ma_mutex* pMutex)
-{
- if (pMutex == NULL || pMutex->pContext == NULL) {
- return;
-}
-
-#ifdef MA_WIN32
- ma_mutex_unlock__win32(pMutex);
-#endif
-#ifdef MA_POSIX
- ma_mutex_unlock__posix(pMutex);
-#endif
-}
-
-
-ma_result ma_event_init(ma_context* pContext, ma_event* pEvent)
-{
- if (pContext == NULL || pEvent == NULL) {
- return MA_FALSE;
- }
-
- pEvent->pContext = pContext;
-
-#ifdef MA_WIN32
- return ma_event_init__win32(pContext, pEvent);
-#endif
-#ifdef MA_POSIX
- return ma_event_init__posix(pContext, pEvent);
-#endif
-}
-
-void ma_event_uninit(ma_event* pEvent)
-{
- if (pEvent == NULL || pEvent->pContext == NULL) {
- return;
- }
-
-#ifdef MA_WIN32
- ma_event_uninit__win32(pEvent);
-#endif
-#ifdef MA_POSIX
- ma_event_uninit__posix(pEvent);
-#endif
-}
-
-ma_bool32 ma_event_wait(ma_event* pEvent)
-{
- if (pEvent == NULL || pEvent->pContext == NULL) {
- return MA_FALSE;
- }
-
-#ifdef MA_WIN32
- return ma_event_wait__win32(pEvent);
-#endif
-#ifdef MA_POSIX
- return ma_event_wait__posix(pEvent);
-#endif
-}
-
-ma_bool32 ma_event_signal(ma_event* pEvent)
-{
- if (pEvent == NULL || pEvent->pContext == NULL) {
- return MA_FALSE;
- }
-
-#ifdef MA_WIN32
- return ma_event_signal__win32(pEvent);
-#endif
-#ifdef MA_POSIX
- return ma_event_signal__posix(pEvent);
-#endif
-}
-
-
-ma_result ma_semaphore_init(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
-{
- if (pContext == NULL || pSemaphore == NULL) {
- return MA_INVALID_ARGS;
- }
-
-#ifdef MA_WIN32
- return ma_semaphore_init__win32(pContext, initialValue, pSemaphore);
-#endif
-#ifdef MA_POSIX
- return ma_semaphore_init__posix(pContext, initialValue, pSemaphore);
-#endif
-}
-
-void ma_semaphore_uninit(ma_semaphore* pSemaphore)
-{
- if (pSemaphore == NULL) {
- return;
- }
-
-#ifdef MA_WIN32
- ma_semaphore_uninit__win32(pSemaphore);
-#endif
-#ifdef MA_POSIX
- ma_semaphore_uninit__posix(pSemaphore);
-#endif
-}
-
-ma_bool32 ma_semaphore_wait(ma_semaphore* pSemaphore)
-{
- if (pSemaphore == NULL) {
- return MA_FALSE;
- }
-
-#ifdef MA_WIN32
- return ma_semaphore_wait__win32(pSemaphore);
-#endif
-#ifdef MA_POSIX
- return ma_semaphore_wait__posix(pSemaphore);
-#endif
-}
-
-ma_bool32 ma_semaphore_release(ma_semaphore* pSemaphore)
-{
- if (pSemaphore == NULL) {
- return MA_FALSE;
- }
-
-#ifdef MA_WIN32
- return ma_semaphore_release__win32(pSemaphore);
-#endif
-#ifdef MA_POSIX
- return ma_semaphore_release__posix(pSemaphore);
-#endif
-}
-
-
#if 0
-ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
+static ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
{
ma_uint32 closestRate = 0;
ma_uint32 closestDiff = 0xFFFFFFFF;
@@ -7219,218 +9882,6 @@ ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
}
#endif
-ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale)
-{
- return ma_max(1, (ma_uint32)(baseBufferSize*scale));
-}
-
-ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate)
-{
- return bufferSizeInFrames / (sampleRate/1000);
-}
-
-ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate)
-{
- return bufferSizeInMilliseconds * (sampleRate/1000);
-}
-
-void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels)
-{
- MA_ZERO_MEMORY(p, frameCount * ma_get_bytes_per_frame(format, channels));
-}
-
-void ma_clip_samples_f32(float* p, ma_uint32 sampleCount)
-{
- ma_uint32 iSample;
-
- /* TODO: Research a branchless SSE implementation. */
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- p[iSample] = ma_clip_f32(p[iSample]);
- }
-}
-
-
-void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor)
-{
- ma_uint32 iSample;
-
- if (pSamplesOut == NULL || pSamplesIn == NULL) {
- return;
- }
-
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor);
- }
-}
-
-void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor)
-{
- ma_uint32 iSample;
-
- if (pSamplesOut == NULL || pSamplesIn == NULL) {
- return;
- }
-
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor);
- }
-}
-
-void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor)
-{
- ma_uint32 iSample;
- ma_uint8* pSamplesOut8;
- ma_uint8* pSamplesIn8;
-
- if (pSamplesOut == NULL || pSamplesIn == NULL) {
- return;
- }
-
- pSamplesOut8 = (ma_uint8*)pSamplesOut;
- pSamplesIn8 = (ma_uint8*)pSamplesIn;
-
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- ma_int32 sampleS32;
-
- sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24);
- sampleS32 = (ma_int32)(sampleS32 * factor);
-
- pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8);
- pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16);
- pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24);
- }
-}
-
-void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor)
-{
- ma_uint32 iSample;
-
- if (pSamplesOut == NULL || pSamplesIn == NULL) {
- return;
- }
-
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor);
- }
-}
-
-void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor)
-{
- ma_uint32 iSample;
-
- if (pSamplesOut == NULL || pSamplesIn == NULL) {
- return;
- }
-
- for (iSample = 0; iSample < sampleCount; iSample += 1) {
- pSamplesOut[iSample] = pSamplesIn[iSample] * factor;
- }
-}
-
-void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor)
-{
- ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor);
-}
-
-void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor)
-{
- ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor);
-}
-
-void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor)
-{
- ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor);
-}
-
-void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor)
-{
- ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor);
-}
-
-void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor)
-{
- ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_u8(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_s16(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_s24(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_s32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_f32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
-}
-
-void ma_copy_and_apply_volume_factor_pcm_frames(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
-{
- switch (format)
- {
- case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pPCMFramesOut, (const ma_uint8*)pPCMFramesIn, frameCount, channels, factor); return;
- case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pPCMFramesOut, (const ma_int16*)pPCMFramesIn, frameCount, channels, factor); return;
- case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pPCMFramesOut, pPCMFramesIn, frameCount, channels, factor); return;
- case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pPCMFramesOut, (const ma_int32*)pPCMFramesIn, frameCount, channels, factor); return;
- case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pPCMFramesOut, (const float*)pPCMFramesIn, frameCount, channels, factor); return;
- default: return; /* Do nothing. */
- }
-}
-
-void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames_u8(pPCMFrames, pPCMFrames, frameCount, channels, factor);
-}
-
-void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames_s16(pPCMFrames, pPCMFrames, frameCount, channels, factor);
-}
-
-void ma_apply_volume_factor_pcm_frames_s24(void* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames_s24(pPCMFrames, pPCMFrames, frameCount, channels, factor);
-}
-
-void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames_s32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
-}
-
-void ma_apply_volume_factor_pcm_frames_f32(float* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames_f32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
-}
-
-void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
-{
- ma_copy_and_apply_volume_factor_pcm_frames(pPCMFrames, pPCMFrames, frameCount, format, channels, factor);
-}
-
-
-float ma_factor_to_gain_db(float factor)
-{
- return (float)(20*ma_log10f(factor));
-}
-
-float ma_gain_db_to_factor(float gain)
-{
- return (float)ma_powf(10, gain/20.0f);
-}
-
static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount)
{
@@ -7440,7 +9891,7 @@ static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void*
if (pDevice->onData) {
if (!pDevice->noPreZeroedOutputBuffer && pFramesOut != NULL) {
- ma_zero_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels);
+ ma_silence_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels);
}
/* Volume control of input makes things a bit awkward because the input buffer is read-only. We'll need to use a temp buffer and loop in this case. */
@@ -7516,7 +9967,7 @@ static void ma_device__read_frames_from_client(ma_device* pDevice, ma_uint32 fra
framesToReadThisIterationIn = intermediaryBufferCap;
}
- requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, frameCount);
+ requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, framesToReadThisIterationOut);
if (framesToReadThisIterationIn > requiredInputFrameCount) {
framesToReadThisIterationIn = requiredInputFrameCount;
}
@@ -7625,7 +10076,7 @@ static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, m
}
if (framesToProcessInClientFormat == 0) {
- if (ma_pcm_rb_pointer_disance(pRB) == (ma_int32)ma_pcm_rb_get_subbuffer_size(pRB)) {
+ if (ma_pcm_rb_pointer_distance(pRB) == (ma_int32)ma_pcm_rb_get_subbuffer_size(pRB)) {
break; /* Overrun. Not enough room in the ring buffer for input frame. Excess frames are dropped. */
}
}
@@ -7699,7 +10150,7 @@ static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice,
/* Use actual input frames. */
ma_device__on_data(pDevice, playbackFramesInExternalFormat, pInputFrames, inputFrameCount);
} else {
- if (ma_pcm_rb_pointer_disance(pRB) == 0) {
+ if (ma_pcm_rb_pointer_distance(pRB) == 0) {
break; /* Underrun. */
}
}
@@ -7738,7 +10189,7 @@ static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice,
/* A helper for changing the state of the device. */
static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_uint32 newState)
{
- ma_atomic_exchange_32(&pDevice->state, newState);
+ c89atomic_exchange_32(&pDevice->state, newState);
}
/* A helper for getting the state of the device. */
@@ -7815,7 +10266,7 @@ static ma_result ma_context__try_get_device_name_by_id(ma_context* pContext, ma_
}
-ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */
+MA_API ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */
{
ma_uint32 i;
for (i = 0; i < ma_countof(g_maFormatPriorities); ++i) {
@@ -7856,7 +10307,7 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
/* Starting the device needs to put the thread into a loop. */
if (pDevice->null_device.operation == MA_DEVICE_OP_START__NULL) {
- ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
+ c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
/* Reset the timer just in case. */
ma_timer_init(&pDevice->null_device.timer);
@@ -7867,29 +10318,29 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
}
/* Getting here means a suspend or kill operation has been requested. */
- ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
+ c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue;
}
/* Suspending the device means we need to stop the timer and just continue the loop. */
if (pDevice->null_device.operation == MA_DEVICE_OP_SUSPEND__NULL) {
- ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
+ c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
/* We need to add the current run time to the prior run time, then reset the timer. */
pDevice->null_device.priorRunTime += ma_timer_get_time_in_seconds(&pDevice->null_device.timer);
ma_timer_init(&pDevice->null_device.timer);
/* We're done. */
- ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
+ c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue;
}
/* Killing the device means we need to get out of this loop so that this thread can terminate. */
if (pDevice->null_device.operation == MA_DEVICE_OP_KILL__NULL) {
- ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
- ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
+ c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
+ c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
break;
}
@@ -7897,7 +10348,7 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
/* Getting a signal on a "none" operation probably means an error. Return invalid operation. */
if (pDevice->null_device.operation == MA_DEVICE_OP_NONE__NULL) {
MA_ASSERT(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */
- ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_INVALID_OPERATION);
+ c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_INVALID_OPERATION);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue; /* Continue the loop. Don't terminate. */
}
@@ -7908,12 +10359,12 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
static ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation)
{
- ma_atomic_exchange_32(&pDevice->null_device.operation, operation);
- if (!ma_event_signal(&pDevice->null_device.operationEvent)) {
+ c89atomic_exchange_32(&pDevice->null_device.operation, operation);
+ if (ma_event_signal(&pDevice->null_device.operationEvent) != MA_SUCCESS) {
return MA_ERROR;
}
- if (!ma_event_wait(&pDevice->null_device.operationCompletionEvent)) {
+ if (ma_event_wait(&pDevice->null_device.operationCompletionEvent) != MA_SUCCESS) {
return MA_ERROR;
}
@@ -8054,17 +10505,17 @@ static ma_result ma_device_init__null(ma_context* pContext, const ma_device_conf
In order to get timing right, we need to create a thread that does nothing but keeps track of the timer. This timer is started when the
first period is "written" to it, and then stopped in ma_device_stop__null().
*/
- result = ma_event_init(pContext, &pDevice->null_device.operationEvent);
+ result = ma_event_init(&pDevice->null_device.operationEvent);
if (result != MA_SUCCESS) {
return result;
}
- result = ma_event_init(pContext, &pDevice->null_device.operationCompletionEvent);
+ result = ma_event_init(&pDevice->null_device.operationCompletionEvent);
if (result != MA_SUCCESS) {
return result;
}
- result = ma_thread_create(pContext, &pDevice->thread, ma_device_thread__null, pDevice);
+ result = ma_thread_create(&pDevice->thread, pContext->threadPriority, 0, ma_device_thread__null, pDevice);
if (result != MA_SUCCESS) {
return result;
}
@@ -8078,7 +10529,7 @@ static ma_result ma_device_start__null(ma_device* pDevice)
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_START__NULL);
- ma_atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE);
+ c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE);
return MA_SUCCESS;
}
@@ -8088,7 +10539,7 @@ static ma_result ma_device_stop__null(ma_device* pDevice)
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_SUSPEND__NULL);
- ma_atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE);
return MA_SUCCESS;
}
@@ -8195,7 +10646,7 @@ static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_u
framesToProcess = framesRemaining;
}
- /* We need to ensured the output buffer is zeroed. */
+ /* We need to ensure the output buffer is zeroed. */
MA_ZERO_MEMORY(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf);
pDevice->null_device.currentPeriodFramesRemainingCapture -= framesToProcess;
@@ -8448,6 +10899,7 @@ static ma_result ma_context_init__null(const ma_context_config* pConfig, ma_cont
#endif
+
/*******************************************************************************
WIN32 COMMON
@@ -8828,12 +11280,6 @@ typedef ma_int64 MA_REFERENCE_TIME;
#define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDE 0x20000000
#define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDEWHENEXPIRED 0x40000000
-/* We only care about a few error codes. */
-#define MA_AUDCLNT_E_INVALID_DEVICE_PERIOD (-2004287456)
-#define MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED (-2004287463)
-#define MA_AUDCLNT_S_BUFFER_EMPTY (143196161)
-#define MA_AUDCLNT_E_DEVICE_IN_USE (-2004287478)
-
/* Buffer flags. */
#define MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY 1
#define MA_AUDCLNT_BUFFERFLAGS_SILENT 2
@@ -9271,12 +11717,12 @@ static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_com
static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis)
{
- return (ULONG)ma_atomic_increment_32(&pThis->counter);
+ return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1;
}
static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis)
{
- ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter);
+ ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1;
if (newRefCount == 0) {
return 0; /* We don't free anything here because we never allocate the object on the heap. */
}
@@ -9306,9 +11752,9 @@ static ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHand
pHandler->lpVtbl = &g_maCompletionHandlerVtblInstance;
pHandler->counter = 1;
- pHandler->hEvent = CreateEventA(NULL, FALSE, FALSE, NULL);
+ pHandler->hEvent = CreateEventW(NULL, FALSE, FALSE, NULL);
if (pHandler->hEvent == NULL) {
- return MA_ERROR;
+ return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
@@ -9348,12 +11794,12 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMN
static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis)
{
- return (ULONG)ma_atomic_increment_32(&pThis->counter);
+ return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1;
}
static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis)
{
- ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter);
+ ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1;
if (newRefCount == 0) {
return 0; /* We don't free anything here because we never allocate the object on the heap. */
}
@@ -9365,7 +11811,7 @@ static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificati
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState)
{
#ifdef MA_DEBUG_OUTPUT
- printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);
+ /*printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);*/
#endif
(void)pThis;
@@ -9377,7 +11823,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(m
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
- printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
+ /*printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
/* We don't need to worry about this event for our purposes. */
@@ -9389,7 +11835,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNo
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
- printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
+ /*printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
/* We don't need to worry about this event for our purposes. */
@@ -9401,7 +11847,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMM
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
- printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");
+ /*printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");*/
#endif
/* We only ever use the eConsole role in miniaudio. */
@@ -9437,10 +11883,10 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged
that properly.
*/
if (dataFlow == ma_eRender && pThis->pDevice->type != ma_device_type_loopback) {
- ma_atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_TRUE);
+ c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_TRUE);
}
if (dataFlow == ma_eCapture || pThis->pDevice->type == ma_device_type_loopback) {
- ma_atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_TRUE);
+ c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_TRUE);
}
(void)pDefaultDeviceID;
@@ -9450,7 +11896,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key)
{
#ifdef MA_DEBUG_OUTPUT
- printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
+ /*printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
(void)pThis;
@@ -9516,7 +11962,7 @@ static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context
ma_set_device_info_from_WAVEFORMATEX(pWF, pInfo);
return MA_SUCCESS;
} else {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval.", ma_result_from_HRESULT(hr));
}
} else {
/* Exlcusive Mode. We repeatedly call IsFormatSupported() here. This is not currently support on UWP. */
@@ -9575,8 +12021,8 @@ static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context
ma_format format = formatsToSearch[iFormat];
ma_uint32 iSampleRate;
- wf.Format.wBitsPerSample = (WORD)ma_get_bytes_per_sample(format)*8;
- wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8;
+ wf.Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8);
+ wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
wf.Samples.wValidBitsPerSample = /*(format == ma_format_s24_32) ? 24 :*/ wf.Format.wBitsPerSample;
if (format == ma_format_f32) {
@@ -9603,17 +12049,17 @@ static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context
if (!found) {
ma_IPropertyStore_Release(pProperties);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to find suitable device format for device info retrieval.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to find suitable device format for device info retrieval.", MA_FORMAT_NOT_SUPPORTED);
}
}
} else {
ma_IPropertyStore_Release(pProperties);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve device format for device info retrieval.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve device format for device info retrieval.", ma_result_from_HRESULT(hr));
}
ma_IPropertyStore_Release(pProperties);
} else {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to open property store for device info retrieval.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to open property store for device info retrieval.", ma_result_from_HRESULT(hr));
}
return MA_SUCCESS;
@@ -9647,7 +12093,7 @@ static ma_result ma_context_create_IMMDeviceEnumerator__wasapi(ma_context* pCont
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_ERROR);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
*ppDeviceEnumerator = pDeviceEnumerator;
@@ -9718,7 +12164,7 @@ static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create IMMDeviceEnumerator.", MA_FAILED_TO_INIT_BACKEND);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create IMMDeviceEnumerator.", ma_result_from_HRESULT(hr));
}
if (pDeviceID == NULL) {
@@ -9729,7 +12175,7 @@ static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve IMMDevice.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve IMMDevice.", ma_result_from_HRESULT(hr));
}
return MA_SUCCESS;
@@ -9795,7 +12241,7 @@ static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pC
ma_IAudioClient_Release(pAudioClient);
return result;
} else {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate audio client for device info retrieval.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate audio client for device info retrieval.", ma_result_from_HRESULT(hr));
}
}
@@ -9822,7 +12268,7 @@ static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pConte
if (SUCCEEDED(hr)) {
hr = ma_IMMDeviceCollection_GetCount(pDeviceCollection, &deviceCount);
if (FAILED(hr)) {
- result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get device count.", MA_NO_DEVICE);
+ result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get device count.", ma_result_from_HRESULT(hr));
goto done;
}
@@ -9877,7 +12323,7 @@ static ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContex
hr = ma_IMMDevice_Activate(*ppMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)ppAudioClient);
if (FAILED(hr)) {
- return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
+ return ma_result_from_HRESULT(hr);
}
return MA_SUCCESS;
@@ -9913,13 +12359,13 @@ static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, m
hr = StringFromIID(&iid, &iidStr);
#endif
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to convert device IID to string for ActivateAudioInterfaceAsync(). Out of memory.", MA_OUT_OF_MEMORY);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to convert device IID to string for ActivateAudioInterfaceAsync(). Out of memory.", ma_result_from_HRESULT(hr));
}
result = ma_completion_handler_uwp_init(&completionHandler);
if (result != MA_SUCCESS) {
ma_CoTaskMemFree(pContext, iidStr);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for waiting for ActivateAudioInterfaceAsync().", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for waiting for ActivateAudioInterfaceAsync().", result);
}
#if defined(__cplusplus)
@@ -9930,7 +12376,7 @@ static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, m
if (FAILED(hr)) {
ma_completion_handler_uwp_uninit(&completionHandler);
ma_CoTaskMemFree(pContext, iidStr);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] ActivateAudioInterfaceAsync() failed.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] ActivateAudioInterfaceAsync() failed.", ma_result_from_HRESULT(hr));
}
ma_CoTaskMemFree(pContext, iidStr);
@@ -9943,13 +12389,13 @@ static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, m
ma_IActivateAudioInterfaceAsyncOperation_Release(pAsyncOp);
if (FAILED(hr) || FAILED(activateResult)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate device.", FAILED(hr) ? ma_result_from_HRESULT(hr) : ma_result_from_HRESULT(activateResult));
}
/* Here is where we grab the IAudioClient interface. */
hr = ma_IUnknown_QueryInterface(pActivatedInterface, &MA_IID_IAudioClient, (void**)ppAudioClient);
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to query IAudioClient interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to query IAudioClient interface.", ma_result_from_HRESULT(hr));
}
if (ppActivatedInterface) {
@@ -9982,7 +12428,7 @@ static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_e
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_playback, callback, pUserData);
@@ -10155,7 +12601,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
DWORD streamFlags = 0;
MA_REFERENCE_TIME periodDurationInMicroseconds;
ma_bool32 wasInitializedUsingIAudioClient3 = MA_FALSE;
- WAVEFORMATEXTENSIBLE wf = {0};
+ WAVEFORMATEXTENSIBLE wf;
ma_WASAPIDeviceInterface* pDeviceInterface = NULL;
ma_IAudioClient2* pAudioClient2;
ma_uint32 nativeSampleRate;
@@ -10188,6 +12634,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
goto done;
}
+ MA_ZERO_OBJECT(&wf);
/* Try enabling hardware offloading. */
if (!pData->noHardwareOffloading) {
@@ -10350,9 +12797,9 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
if (hr == E_ACCESSDENIED) {
errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Access denied.", result = MA_ACCESS_DENIED;
} else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) {
- errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Device in use.", result = MA_DEVICE_BUSY;
+ errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Device in use.", result = MA_BUSY;
} else {
- errorMsg = "[WASAPI] Failed to initialize device in exclusive mode."; result = MA_SHARE_MODE_NOT_SUPPORTED;
+ errorMsg = "[WASAPI] Failed to initialize device in exclusive mode."; result = ma_result_from_HRESULT(hr);
}
goto done;
}
@@ -10446,9 +12893,9 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
if (hr == E_ACCESSDENIED) {
errorMsg = "[WASAPI] Failed to initialize device. Access denied.", result = MA_ACCESS_DENIED;
} else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) {
- errorMsg = "[WASAPI] Failed to initialize device. Device in use.", result = MA_DEVICE_BUSY;
+ errorMsg = "[WASAPI] Failed to initialize device. Device in use.", result = MA_BUSY;
} else {
- errorMsg = "[WASAPI] Failed to initialize device.", result = MA_FAILED_TO_OPEN_BACKEND_DEVICE;
+ errorMsg = "[WASAPI] Failed to initialize device.", result = ma_result_from_HRESULT(hr);
}
goto done;
@@ -10460,7 +12907,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
ma_uint32 bufferSizeInFrames;
hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames);
if (FAILED(hr)) {
- errorMsg = "[WASAPI] Failed to get audio client's actual buffer size.", result = MA_FAILED_TO_OPEN_BACKEND_DEVICE;
+ errorMsg = "[WASAPI] Failed to get audio client's actual buffer size.", result = ma_result_from_HRESULT(hr);
goto done;
}
@@ -10476,7 +12923,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device
}
if (FAILED(hr)) {
- errorMsg = "[WASAPI] Failed to get audio client service.", result = MA_API_NOT_FOUND;
+ errorMsg = "[WASAPI] Failed to get audio client service.", result = ma_result_from_HRESULT(hr);
goto done;
}
@@ -10526,7 +12973,11 @@ done:
pData->pAudioClient = NULL;
}
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, errorMsg, result);
+ if (errorMsg != NULL && errorMsg[0] != '\0') {
+ ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, errorMsg, result);
+ }
+
+ return result;
} else {
return MA_SUCCESS;
}
@@ -10607,7 +13058,7 @@ static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type dev
if (pDevice->wasapi.isStartedCapture) {
HRESULT hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device after reinitialization.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device after reinitialization.", ma_result_from_HRESULT(hr));
}
}
}
@@ -10643,7 +13094,7 @@ static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type dev
if (pDevice->wasapi.isStartedPlayback) {
HRESULT hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device after reinitialization.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device after reinitialization.", ma_result_from_HRESULT(hr));
}
}
}
@@ -10711,8 +13162,10 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
The event for capture needs to be manual reset for the same reason as playback. We keep the initial state set to unsignaled,
however, because we want to block until we actually have something for the first call to ma_device_read().
*/
- pDevice->wasapi.hEventCapture = CreateEventA(NULL, FALSE, FALSE, NULL); /* Auto reset, unsignaled by default. */
+ pDevice->wasapi.hEventCapture = CreateEventW(NULL, FALSE, FALSE, NULL); /* Auto reset, unsignaled by default. */
if (pDevice->wasapi.hEventCapture == NULL) {
+ result = ma_result_from_GetLastError(GetLastError());
+
if (pDevice->wasapi.pCaptureClient != NULL) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
pDevice->wasapi.pCaptureClient = NULL;
@@ -10722,7 +13175,7 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
pDevice->wasapi.pAudioClientCapture = NULL;
}
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for capture.", MA_FAILED_TO_CREATE_EVENT);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for capture.", result);
}
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture);
@@ -10784,8 +13237,10 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
The playback event also needs to be initially set to a signaled state so that the first call to ma_device_write() is able
to get passed WaitForMultipleObjects().
*/
- pDevice->wasapi.hEventPlayback = CreateEventA(NULL, FALSE, TRUE, NULL); /* Auto reset, signaled by default. */
+ pDevice->wasapi.hEventPlayback = CreateEventW(NULL, FALSE, TRUE, NULL); /* Auto reset, signaled by default. */
if (pDevice->wasapi.hEventPlayback == NULL) {
+ result = ma_result_from_GetLastError(GetLastError());
+
if (pConfig->deviceType == ma_device_type_duplex) {
if (pDevice->wasapi.pCaptureClient != NULL) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
@@ -10809,7 +13264,7 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
pDevice->wasapi.pAudioClientPlayback = NULL;
}
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for playback.", MA_FAILED_TO_CREATE_EVENT);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for playback.", result);
}
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback);
@@ -10835,7 +13290,7 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
HRESULT hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
ma_device_uninit__wasapi(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl;
@@ -10853,8 +13308,8 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co
}
#endif
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
return MA_SUCCESS;
}
@@ -10876,7 +13331,7 @@ static ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_
hr = ma_IAudioClient_GetCurrentPadding(pAudioClient, &paddingFramesCount);
if (FAILED(hr)) {
- return MA_DEVICE_UNAVAILABLE;
+ return ma_result_from_HRESULT(hr);
}
/* Slightly different rules for exclusive and shared modes. */
@@ -10918,10 +13373,10 @@ static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type de
}
if (deviceType == ma_device_type_playback) {
- ma_atomic_exchange_32(&pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_FALSE);
}
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) {
- ma_atomic_exchange_32(&pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_FALSE);
}
@@ -10988,9 +13443,9 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device.", ma_result_from_HRESULT(hr));
}
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE);
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
@@ -11057,7 +13512,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
/* We're ready to map the playback device's buffer. We don't release this until it's been entirely filled. */
hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11100,7 +13555,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11135,7 +13590,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11151,7 +13606,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
} else {
#ifdef MA_DEBUG_OUTPUT
if (flagsCapture != 0) {
- printf("[WASAPI] Capture Flags: %d\n", flagsCapture);
+ printf("[WASAPI] Capture Flags: %ld\n", flagsCapture);
}
#endif
}
@@ -11266,7 +13721,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if (mappedDeviceBufferFramesRemainingCapture == 0 && pMappedDeviceBufferCapture != NULL) {
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11289,7 +13744,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if (mappedDeviceBufferFramesRemainingPlayback == 0 && pMappedDeviceBufferPlayback != NULL) {
hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedDeviceBufferSizeInFramesPlayback, 0);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11315,9 +13770,9 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if (FAILED(hr)) {
ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", ma_result_from_HRESULT(hr));
}
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
}
}
} break;
@@ -11351,22 +13806,74 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
mappedDeviceBufferSizeInFramesCapture = framesAvailableCapture;
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
- /* We should have a buffer at this point. */
- ma_device__send_frames_to_client(pDevice, mappedDeviceBufferSizeInFramesCapture, pMappedDeviceBufferCapture);
+ /* Overrun detection. */
+ if ((flagsCapture & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) {
+ /* Glitched. Probably due to an overrun. */
+ #ifdef MA_DEBUG_OUTPUT
+ printf("[WASAPI] Data discontinuity (possible overrun). framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
+ #endif
- /* At this point we're done with the buffer. */
- hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
- pMappedDeviceBufferCapture = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
- mappedDeviceBufferSizeInFramesCapture = 0;
- if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
- exitLoop = MA_TRUE;
- break;
+ /*
+ Exeriment: If we get an overrun it probably means we're straddling the end of the buffer. In order to prevent a never-ending sequence of glitches let's experiment
+ by dropping every frame until we're left with only a single period. To do this we just keep retrieving and immediately releasing buffers until we're down to the
+ last period.
+ */
+ if (framesAvailableCapture >= pDevice->wasapi.actualPeriodSizeInFramesCapture) {
+ #ifdef MA_DEBUG_OUTPUT
+ printf("[WASAPI] Synchronizing capture stream. ");
+ #endif
+ do
+ {
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
+ if (FAILED(hr)) {
+ break;
+ }
+
+ framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture;
+
+ if (framesAvailableCapture > 0) {
+ mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
+ hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
+ if (FAILED(hr)) {
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
+ exitLoop = MA_TRUE;
+ break;
+ }
+ } else {
+ pMappedDeviceBufferCapture = NULL;
+ mappedDeviceBufferSizeInFramesCapture = 0;
+ }
+ } while (framesAvailableCapture > periodSizeInFramesCapture);
+ #ifdef MA_DEBUG_OUTPUT
+ printf("framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
+ #endif
+ }
+ } else {
+ #ifdef MA_DEBUG_OUTPUT
+ if (flagsCapture != 0) {
+ printf("[WASAPI] Capture Flags: %ld\n", flagsCapture);
+ }
+ #endif
+ }
+
+ /* We should have a buffer at this point, but let's just do a sanity check anyway. */
+ if (mappedDeviceBufferSizeInFramesCapture > 0 && pMappedDeviceBufferCapture != NULL) {
+ ma_device__send_frames_to_client(pDevice, mappedDeviceBufferSizeInFramesCapture, pMappedDeviceBufferCapture);
+
+ /* At this point we're done with the buffer. */
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
+ pMappedDeviceBufferCapture = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
+ mappedDeviceBufferSizeInFramesCapture = 0;
+ if (FAILED(hr)) {
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
+ exitLoop = MA_TRUE;
+ break;
+ }
}
} break;
@@ -11396,7 +13903,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
/* Map a the data buffer in preparation for the callback. */
hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11410,7 +13917,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
mappedDeviceBufferSizeInFramesPlayback = 0;
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
@@ -11420,11 +13927,11 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames*1) {
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
}
}
} break;
@@ -11442,16 +13949,16 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal capture device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal capture device.", ma_result_from_HRESULT(hr));
}
/* The audio client needs to be reset otherwise restarting will fail. */
hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal capture device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal capture device.", ma_result_from_HRESULT(hr));
}
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
@@ -11497,16 +14004,16 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal playback device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal playback device.", ma_result_from_HRESULT(hr));
}
/* The audio client needs to be reset otherwise restarting will fail. */
hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal playback device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal playback device.", ma_result_from_HRESULT(hr));
}
- ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
+ c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
}
return MA_SUCCESS;
@@ -11556,8 +14063,8 @@ static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_co
MA_ZERO_OBJECT(&osvi);
osvi.dwOSVersionInfoSize = sizeof(osvi);
- osvi.dwMajorVersion = HIBYTE(MA_WIN32_WINNT_VISTA);
- osvi.dwMinorVersion = LOBYTE(MA_WIN32_WINNT_VISTA);
+ osvi.dwMajorVersion = ((MA_WIN32_WINNT_VISTA >> 8) & 0xFF);
+ osvi.dwMinorVersion = ((MA_WIN32_WINNT_VISTA >> 0) & 0xFF);
osvi.wServicePackMajor = 1;
if (_VerifyVersionInfoW(&osvi, MA_VER_MAJORVERSION | MA_VER_MINORVERSION | MA_VER_SERVICEPACKMAJOR, _VerSetConditionMask(_VerSetConditionMask(_VerSetConditionMask(0, MA_VER_MAJORVERSION, MA_VER_GREATER_EQUAL), MA_VER_MINORVERSION, MA_VER_GREATER_EQUAL), MA_VER_SERVICEPACKMAJOR, MA_VER_GREATER_EQUAL))) {
result = MA_SUCCESS;
@@ -11994,6 +14501,7 @@ static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma
{
ma_IDirectSound* pDirectSound;
HWND hWnd;
+ HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppDirectSound != NULL);
@@ -12010,8 +14518,10 @@ static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma
if (hWnd == NULL) {
hWnd = ((MA_PFN_GetDesktopWindow)pContext->win32.GetDesktopWindow)();
}
- if (FAILED(ma_IDirectSound_SetCooperativeLevel(pDirectSound, hWnd, (shareMode == ma_share_mode_exclusive) ? MA_DSSCL_EXCLUSIVE : MA_DSSCL_PRIORITY))) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_SetCooperateiveLevel() failed for playback device.", MA_SHARE_MODE_NOT_SUPPORTED);
+
+ hr = ma_IDirectSound_SetCooperativeLevel(pDirectSound, hWnd, (shareMode == ma_share_mode_exclusive) ? MA_DSSCL_EXCLUSIVE : MA_DSSCL_PRIORITY);
+ if (FAILED(hr)) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_SetCooperateiveLevel() failed for playback device.", ma_result_from_HRESULT(hr));
}
*ppDirectSound = pDirectSound;
@@ -12021,6 +14531,7 @@ static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma
static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSoundCapture** ppDirectSoundCapture)
{
ma_IDirectSoundCapture* pDirectSoundCapture;
+ HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppDirectSoundCapture != NULL);
@@ -12033,8 +14544,9 @@ static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pCont
*ppDirectSoundCapture = NULL;
pDirectSoundCapture = NULL;
- if (FAILED(((ma_DirectSoundCaptureCreateProc)pContext->dsound.DirectSoundCaptureCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSoundCapture, NULL))) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCaptureCreate() failed for capture device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ hr = ((ma_DirectSoundCaptureCreateProc)pContext->dsound.DirectSoundCaptureCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSoundCapture, NULL);
+ if (FAILED(hr)) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCaptureCreate() failed for capture device.", ma_result_from_HRESULT(hr));
}
*ppDirectSoundCapture = pDirectSoundCapture;
@@ -12043,6 +14555,7 @@ static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pCont
static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context* pContext, ma_IDirectSoundCapture* pDirectSoundCapture, WORD* pChannels, WORD* pBitsPerSample, DWORD* pSampleRate)
{
+ HRESULT hr;
MA_DSCCAPS caps;
WORD bitsPerSample;
DWORD sampleRate;
@@ -12062,8 +14575,9 @@ static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_c
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
- if (FAILED(ma_IDirectSoundCapture_GetCaps(pDirectSoundCapture, &caps))) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_GetCaps() failed for capture device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ hr = ma_IDirectSoundCapture_GetCaps(pDirectSoundCapture, &caps);
+ if (FAILED(hr)) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_GetCaps() failed for capture device.", ma_result_from_HRESULT(hr));
}
if (pChannels) {
@@ -12252,6 +14766,9 @@ static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid,
static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
+ ma_result result;
+ HRESULT hr;
+
/* Exclusive mode and capture not supported with DirectSound. */
if (deviceType == ma_device_type_capture && shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
@@ -12294,7 +14811,6 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev
if (deviceType == ma_device_type_playback) {
/* Playback. */
ma_IDirectSound* pDirectSound;
- ma_result result;
MA_DSCAPS caps;
ma_uint32 iFormat;
@@ -12305,8 +14821,9 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
- if (FAILED(ma_IDirectSound_GetCaps(pDirectSound, &caps))) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ hr = ma_IDirectSound_GetCaps(pDirectSound, &caps);
+ if (FAILED(hr)) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr));
}
if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) {
@@ -12315,7 +14832,8 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev
/* Look at the speaker configuration to get a better idea on the channel count. */
DWORD speakerConfig;
- if (SUCCEEDED(ma_IDirectSound_GetSpeakerConfig(pDirectSound, &speakerConfig))) {
+ hr = ma_IDirectSound_GetSpeakerConfig(pDirectSound, &speakerConfig);
+ if (SUCCEEDED(hr)) {
ma_get_channels_from_speaker_config__dsound(speakerConfig, &channels, NULL);
}
@@ -12362,7 +14880,6 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev
reporting the best format.
*/
ma_IDirectSoundCapture* pDirectSoundCapture;
- ma_result result;
WORD channels;
WORD bitsPerSample;
DWORD sampleRate;
@@ -12455,8 +14972,8 @@ static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 c
pWF->Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
pWF->Format.nChannels = (WORD)channels;
pWF->Format.nSamplesPerSec = (DWORD)sampleRate;
- pWF->Format.wBitsPerSample = (WORD)ma_get_bytes_per_sample(format)*8;
- pWF->Format.nBlockAlign = (pWF->Format.nChannels * pWF->Format.wBitsPerSample) / 8;
+ pWF->Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8);
+ pWF->Format.nBlockAlign = (WORD)(pWF->Format.nChannels * pWF->Format.wBitsPerSample / 8);
pWF->Format.nAvgBytesPerSec = pWF->Format.nBlockAlign * pWF->Format.nSamplesPerSec;
pWF->Samples.wValidBitsPerSample = pWF->Format.wBitsPerSample;
pWF->dwChannelMask = ma_channel_map_to_channel_mask__win32(pChannelMap, channels);
@@ -12468,6 +14985,7 @@ static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 c
static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
+ HRESULT hr;
ma_uint32 periodSizeInMilliseconds;
MA_ASSERT(pDevice != NULL);
@@ -12525,7 +15043,7 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
return result;
}
- wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8;
+ wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
wf.Samples.wValidBitsPerSample = wf.Format.wBitsPerSample;
wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM;
@@ -12538,16 +15056,18 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
descDS.dwFlags = 0;
descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
- if (FAILED(ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL))) {
+ hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", ma_result_from_HRESULT(hr));
}
/* Get the _actual_ properties of the buffer. */
pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata;
- if (FAILED(ma_IDirectSoundCaptureBuffer_GetFormat((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL))) {
+ hr = ma_IDirectSoundCaptureBuffer_GetFormat((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the capture device's buffer.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the capture device's buffer.", ma_result_from_HRESULT(hr));
}
pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat);
@@ -12569,9 +15089,10 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels) * pConfig->periods;
ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
- if (FAILED(ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL))) {
+ hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Second attempt at IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Second attempt at IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", ma_result_from_HRESULT(hr));
}
}
@@ -12603,18 +15124,20 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
MA_ZERO_OBJECT(&descDSPrimary);
descDSPrimary.dwSize = sizeof(MA_DSBUFFERDESC);
descDSPrimary.dwFlags = MA_DSBCAPS_PRIMARYBUFFER | MA_DSBCAPS_CTRLVOLUME;
- if (FAILED(ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDSPrimary, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackPrimaryBuffer, NULL))) {
+ hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDSPrimary, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackPrimaryBuffer, NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's primary buffer.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
/* We may want to make some adjustments to the format if we are using defaults. */
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
- if (FAILED(ma_IDirectSound_GetCaps((ma_IDirectSound*)pDevice->dsound.pPlayback, &caps))) {
+ hr = ma_IDirectSound_GetCaps((ma_IDirectSound*)pDevice->dsound.pPlayback, &caps);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr));
}
if (pDevice->playback.usingDefaultChannels) {
@@ -12643,7 +15166,7 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
}
}
- wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8;
+ wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
/*
@@ -12653,16 +15176,18 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
supported format. To determine whether this has happened, an application can call the GetFormat method for the primary buffer
and compare the result with the format that was requested with the SetFormat method.
*/
- if (FAILED(ma_IDirectSoundBuffer_SetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)&wf))) {
+ hr = ma_IDirectSoundBuffer_SetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)&wf);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to set format of playback device's primary buffer.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to set format of playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
/* Get the _actual_ properties of the buffer. */
pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata;
- if (FAILED(ma_IDirectSoundBuffer_GetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL))) {
+ hr = ma_IDirectSoundBuffer_GetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the playback device's primary buffer.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat);
@@ -12699,9 +15224,10 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co
descDS.dwFlags = MA_DSBCAPS_CTRLPOSITIONNOTIFY | MA_DSBCAPS_GLOBALFOCUS | MA_DSBCAPS_GETCURRENTPOSITION2;
descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
- if (FAILED(ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL))) {
+ hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL);
+ if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's secondary buffer.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's secondary buffer.", ma_result_from_HRESULT(hr));
}
/* DirectSound should give us a buffer exactly the size we asked for. */
@@ -12754,8 +15280,9 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
{
DWORD physicalCaptureCursorInBytes;
DWORD physicalReadCursorInBytes;
- if (FAILED(ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes))) {
- return MA_ERROR;
+ hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes);
+ if (FAILED(hr)) {
+ return ma_result_from_HRESULT(hr);
}
/* If nothing is available we just sleep for a bit and return from this iteration. */
@@ -12795,7 +15322,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
}
@@ -12850,7 +15377,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
- printf("[DirectSound] (Duplex/Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
+ printf("[DirectSound] (Duplex/Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
@@ -12861,7 +15388,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
- printf("[DirectSound] (Duplex/Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
+ printf("[DirectSound] (Duplex/Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
@@ -12875,9 +15402,10 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
if (availableBytesPlayback == 0) {
/* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */
if (!isPlaybackDeviceStarted) {
- if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
+ hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
+ if (FAILED(hr)) {
ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
} else {
@@ -12899,7 +15427,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
- result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
break;
}
@@ -12916,7 +15444,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
}
#ifdef MA_DEBUG_OUTPUT
- printf("[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%d, silentPaddingInBytes=%d\n", availableBytesPlayback, silentPaddingInBytes);
+ printf("[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%ld, silentPaddingInBytes=%ld\n", availableBytesPlayback, silentPaddingInBytes);
#endif
}
}
@@ -12943,7 +15471,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, framesWrittenThisIteration*bpfDevicePlayback, NULL, 0);
if (FAILED(hr)) {
- result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
break;
}
@@ -12959,9 +15487,10 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
*/
framesWrittenToPlaybackDevice += framesWrittenThisIteration;
if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= (pDevice->playback.internalPeriodSizeInFrames*2)) {
- if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
+ hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
+ if (FAILED(hr)) {
ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
}
@@ -12980,7 +15509,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
/* At this point we're done with the mapped portion of the capture buffer. */
hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
}
prevReadCursorInBytesCapture = (lockOffsetInBytesCapture + mappedSizeInBytesCapture);
} break;
@@ -12991,7 +15520,8 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
{
DWORD physicalCaptureCursorInBytes;
DWORD physicalReadCursorInBytes;
- if (FAILED(ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes))) {
+ hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes);
+ if (FAILED(hr)) {
return MA_ERROR;
}
@@ -13034,12 +15564,12 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
}
#ifdef MA_DEBUG_OUTPUT
if (lockSizeInBytesCapture != mappedSizeInBytesCapture) {
- printf("[DirectSound] (Capture) lockSizeInBytesCapture=%d != mappedSizeInBytesCapture=%d\n", lockSizeInBytesCapture, mappedSizeInBytesCapture);
+ printf("[DirectSound] (Capture) lockSizeInBytesCapture=%ld != mappedSizeInBytesCapture=%ld\n", lockSizeInBytesCapture, mappedSizeInBytesCapture);
}
#endif
@@ -13047,7 +15577,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
}
prevReadCursorInBytesCapture = lockOffsetInBytesCapture + mappedSizeInBytesCapture;
@@ -13063,7 +15593,8 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
DWORD availableBytesPlayback;
DWORD physicalPlayCursorInBytes;
DWORD physicalWriteCursorInBytes;
- if (FAILED(ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes))) {
+ hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes);
+ if (FAILED(hr)) {
break;
}
@@ -13081,7 +15612,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
- printf("[DirectSound] (Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
+ printf("[DirectSound] (Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
@@ -13092,7 +15623,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
- printf("[DirectSound] (Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
+ printf("[DirectSound] (Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
@@ -13106,8 +15637,9 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
if (availableBytesPlayback < pDevice->playback.internalPeriodSizeInFrames) {
/* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */
if (availableBytesPlayback == 0 && !isPlaybackDeviceStarted) {
- if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
+ if (FAILED(hr)) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
} else {
@@ -13128,7 +15660,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
- result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
+ result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
break;
}
@@ -13137,7 +15669,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, mappedSizeInBytesPlayback, NULL, 0);
if (FAILED(hr)) {
- result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
+ result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
break;
}
@@ -13153,8 +15685,9 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
*/
framesWrittenToPlaybackDevice += mappedSizeInBytesPlayback/bpfDevicePlayback;
if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames) {
- if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
+ if (FAILED(hr)) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
}
@@ -13171,8 +15704,9 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
/* Getting here means the device is being stopped. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- if (FAILED(ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer))) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Stop() failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ hr = ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
+ if (FAILED(hr)) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Stop() failed.", ma_result_from_HRESULT(hr));
}
}
@@ -13183,7 +15717,8 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
DWORD availableBytesPlayback = 0;
DWORD physicalPlayCursorInBytes;
DWORD physicalWriteCursorInBytes;
- if (FAILED(ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes))) {
+ hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes);
+ if (FAILED(hr)) {
break;
}
@@ -13217,8 +15752,9 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
}
}
- if (FAILED(ma_IDirectSoundBuffer_Stop((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer))) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Stop() failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ hr = ma_IDirectSoundBuffer_Stop((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer);
+ if (FAILED(hr)) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Stop() failed.", ma_result_from_HRESULT(hr));
}
ma_IDirectSoundBuffer_SetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0);
@@ -13336,7 +15872,7 @@ static ma_result ma_result_from_MMRESULT(MMRESULT resultMM)
case MMSYSERR_NOMEM: return MA_OUT_OF_MEMORY;
case MMSYSERR_INVALFLAG: return MA_INVALID_ARGS;
case MMSYSERR_INVALPARAM: return MA_INVALID_ARGS;
- case MMSYSERR_HANDLEBUSY: return MA_DEVICE_BUSY;
+ case MMSYSERR_HANDLEBUSY: return MA_BUSY;
case MMSYSERR_ERROR: return MA_ERROR;
default: return MA_ERROR;
}
@@ -13530,7 +16066,7 @@ static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD c
}
}
- pWF->nBlockAlign = (pWF->nChannels * pWF->wBitsPerSample) / 8;
+ pWF->nBlockAlign = (WORD)(pWF->nChannels * pWF->wBitsPerSample / 8);
pWF->nAvgBytesPerSec = pWF->nBlockAlign * pWF->nSamplesPerSec;
return MA_SUCCESS;
@@ -13850,9 +16386,9 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con
MMRESULT resultMM;
/* We use an event to know when a new fragment needs to be enqueued. */
- pDevice->winmm.hEventCapture = (ma_handle)CreateEvent(NULL, TRUE, TRUE, NULL);
+ pDevice->winmm.hEventCapture = (ma_handle)CreateEventW(NULL, TRUE, TRUE, NULL);
if (pDevice->winmm.hEventCapture == NULL) {
- errorMsg = "[WinMM] Failed to create event for fragment enqueing for the capture device.", errorCode = MA_FAILED_TO_CREATE_EVENT;
+ errorMsg = "[WinMM] Failed to create event for fragment enqueing for the capture device.", errorCode = ma_result_from_GetLastError(GetLastError());
goto on_error;
}
@@ -13890,7 +16426,7 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con
/* We use an event to know when a new fragment needs to be enqueued. */
pDevice->winmm.hEventPlayback = (ma_handle)CreateEvent(NULL, TRUE, TRUE, NULL);
if (pDevice->winmm.hEventPlayback == NULL) {
- errorMsg = "[WinMM] Failed to create event for fragment enqueing for the playback device.", errorCode = MA_FAILED_TO_CREATE_EVENT;
+ errorMsg = "[WinMM] Failed to create event for fragment enqueing for the playback device.", errorCode = ma_result_from_GetLastError(GetLastError());
goto on_error;
}
@@ -14512,7 +17048,22 @@ ALSA Backend
#ifdef MA_HAS_ALSA
#ifdef MA_NO_RUNTIME_LINKING
+
+/* asoundlib.h marks some functions with "inline" which isn't always supported. Need to emulate it. */
+#if !defined(__cplusplus)
+ #if defined(__STRICT_ANSI__)
+ #if !defined(inline)
+ #define inline __inline__ __attribute__((always_inline))
+ #define MA_INLINE_DEFINED
+ #endif
+ #endif
+#endif
#include
+#if defined(MA_INLINE_DEFINED)
+ #undef inline
+ #undef MA_INLINE_DEFINED
+#endif
+
typedef snd_pcm_uframes_t ma_snd_pcm_uframes_t;
typedef snd_pcm_sframes_t ma_snd_pcm_sframes_t;
typedef snd_pcm_stream_t ma_snd_pcm_stream_t;
@@ -14525,6 +17076,7 @@ typedef snd_pcm_format_mask_t ma_snd_pcm_format_mask_t;
typedef snd_pcm_info_t ma_snd_pcm_info_t;
typedef snd_pcm_channel_area_t ma_snd_pcm_channel_area_t;
typedef snd_pcm_chmap_t ma_snd_pcm_chmap_t;
+typedef snd_pcm_state_t ma_snd_pcm_state_t;
/* snd_pcm_stream_t */
#define MA_SND_PCM_STREAM_PLAYBACK SND_PCM_STREAM_PLAYBACK
@@ -14605,6 +17157,7 @@ typedef long ma_snd_pcm_sframes_t;
typedef int ma_snd_pcm_stream_t;
typedef int ma_snd_pcm_format_t;
typedef int ma_snd_pcm_access_t;
+typedef int ma_snd_pcm_state_t;
typedef struct ma_snd_pcm_t ma_snd_pcm_t;
typedef struct ma_snd_pcm_hw_params_t ma_snd_pcm_hw_params_t;
typedef struct ma_snd_pcm_sw_params_t ma_snd_pcm_sw_params_t;
@@ -14733,7 +17286,7 @@ typedef int (* ma_snd_pcm_hw_params_get_access_proc) (
typedef int (* ma_snd_pcm_hw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params);
typedef size_t (* ma_snd_pcm_sw_params_sizeof_proc) (void);
typedef int (* ma_snd_pcm_sw_params_current_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params);
-typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val);
+typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (const ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val);
typedef int (* ma_snd_pcm_sw_params_set_avail_min_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
typedef int (* ma_snd_pcm_sw_params_set_start_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
typedef int (* ma_snd_pcm_sw_params_set_stop_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
@@ -14741,7 +17294,7 @@ typedef int (* ma_snd_pcm_sw_params_proc) (
typedef size_t (* ma_snd_pcm_format_mask_sizeof_proc) (void);
typedef int (* ma_snd_pcm_format_mask_test_proc) (const ma_snd_pcm_format_mask_t *mask, ma_snd_pcm_format_t val);
typedef ma_snd_pcm_chmap_t * (* ma_snd_pcm_get_chmap_proc) (ma_snd_pcm_t *pcm);
-typedef int (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm);
+typedef ma_snd_pcm_state_t (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_prepare_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_start_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_drop_proc) (ma_snd_pcm_t *pcm);
@@ -14759,9 +17312,9 @@ typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_proc) (
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_update_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_wait_proc) (ma_snd_pcm_t *pcm, int timeout);
typedef int (* ma_snd_pcm_info_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_info_t* info);
-typedef size_t (* ma_snd_pcm_info_sizeof_proc) ();
+typedef size_t (* ma_snd_pcm_info_sizeof_proc) (void);
typedef const char* (* ma_snd_pcm_info_get_name_proc) (const ma_snd_pcm_info_t* info);
-typedef int (* ma_snd_config_update_free_global_proc) ();
+typedef int (* ma_snd_config_update_free_global_proc) (void);
/* This array specifies each of the common devices that can be used for both playback and capture. */
static const char* g_maCommonDeviceNamesALSA[] = {
@@ -15091,11 +17644,10 @@ static ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uin
}
-static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_snd_pcm_t** ppPCM)
+static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, int openMode, ma_snd_pcm_t** ppPCM)
{
ma_snd_pcm_t* pPCM;
ma_snd_pcm_stream_t stream;
- int openMode;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppPCM != NULL);
@@ -15103,8 +17655,7 @@ static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode s
*ppPCM = NULL;
pPCM = NULL;
- stream = (deviceType == ma_device_type_playback) ? MA_SND_PCM_STREAM_PLAYBACK : MA_SND_PCM_STREAM_CAPTURE;
- openMode = MA_SND_PCM_NO_AUTO_RESAMPLE | MA_SND_PCM_NO_AUTO_CHANNELS | MA_SND_PCM_NO_AUTO_FORMAT;
+ stream = (deviceType == ma_device_type_playback) ? MA_SND_PCM_STREAM_PLAYBACK : MA_SND_PCM_STREAM_CAPTURE;
if (pDeviceID == NULL) {
ma_bool32 isDeviceOpen;
@@ -15167,13 +17718,11 @@ static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode s
/* May end up needing to make small adjustments to the ID, so make a copy. */
ma_device_id deviceID = *pDeviceID;
- ma_bool32 isDeviceOpen = MA_FALSE;
+ int resultALSA = -ENODEV;
if (deviceID.alsa[0] != ':') {
/* The ID is not in ":0,0" format. Use the ID exactly as-is. */
- if (((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, deviceID.alsa, stream, openMode) == 0) {
- isDeviceOpen = MA_TRUE;
- }
+ resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, deviceID.alsa, stream, openMode);
} else {
char hwid[256];
@@ -15190,25 +17739,21 @@ static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode s
}
if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) {
- if (((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode) == 0) {
- isDeviceOpen = MA_TRUE;
- }
+ resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode);
}
}
/* If at this point we still don't have an open device it means we're either preferencing exclusive mode or opening with "dmix"/"dsnoop" failed. */
- if (!isDeviceOpen) {
+ if (resultALSA != 0) {
ma_strcpy_s(hwid, sizeof(hwid), "hw");
if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) {
- if (((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode) == 0) {
- isDeviceOpen = MA_TRUE;
- }
+ resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode);
}
}
}
- if (!isDeviceOpen) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ if (resultALSA < 0) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed.", ma_result_from_errno(-resultALSA));
}
}
@@ -15229,6 +17774,7 @@ static ma_bool32 ma_context_is_device_id_equal__alsa(ma_context* pContext, const
static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
+ int resultALSA;
ma_bool32 cbResult = MA_TRUE;
char** ppDeviceHints;
ma_device_id* pUniqueIDs = NULL;
@@ -15240,9 +17786,10 @@ static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enu
ma_mutex_lock(&pContext->alsa.internalDeviceEnumLock);
- if (((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints) < 0) {
+ resultALSA = ((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints);
+ if (resultALSA < 0) {
ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock);
- return MA_NO_BACKEND;
+ return ma_result_from_errno(-resultALSA);
}
ppNextDeviceHint = ppDeviceHints;
@@ -15418,6 +17965,7 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic
{
ma_context_get_device_info_enum_callback_data__alsa data;
ma_result result;
+ int resultALSA;
ma_snd_pcm_t* pPCM;
ma_snd_pcm_hw_params_t* pHWParams;
ma_snd_pcm_format_mask_t* pFormatMask;
@@ -15441,7 +17989,7 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic
}
/* For detailed info we need to open the device. */
- result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, &pPCM);
+ result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, 0, &pPCM);
if (result != MA_SUCCESS) {
return result;
}
@@ -15452,8 +18000,10 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic
return MA_OUT_OF_MEMORY;
}
- if (((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams) < 0) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams);
+ if (resultALSA < 0) {
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", ma_result_from_errno(-resultALSA));
}
((ma_snd_pcm_hw_params_get_channels_min_proc)pContext->alsa.snd_pcm_hw_params_get_channels_min)(pHWParams, &pDeviceInfo->minChannels);
@@ -15464,6 +18014,7 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic
/* Formats. */
pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks);
if (pFormatMask == NULL) {
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
@@ -15644,13 +18195,13 @@ static ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice)
framesWritten = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesWritten < 0) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to the internal device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to the internal device.", ma_result_from_errno((int)-framesWritten));
return MA_FALSE;
}
break; /* Success. */
} else {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_writei() failed when writing initial data.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_writei() failed when writing initial data.", ma_result_from_errno((int)-framesWritten));
return MA_FALSE;
}
} else {
@@ -15736,7 +18287,7 @@ static ma_bool32 ma_device_read_and_send_to_client__alsa(ma_device* pDevice)
framesRead = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesRead < 0) {
- ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", MA_FAILED_TO_READ_DATA_FROM_DEVICE);
+ ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", ma_result_from_errno((int)-framesRead));
return MA_FALSE;
}
@@ -15777,17 +18328,19 @@ static void ma_device_uninit__alsa(ma_device* pDevice)
static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
ma_result result;
+ int resultALSA;
ma_snd_pcm_t* pPCM;
ma_bool32 isUsingMMap;
ma_snd_pcm_format_t formatALSA;
ma_share_mode shareMode;
- ma_device_id* pDeviceID;
+ const ma_device_id* pDeviceID;
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
+ int openMode;
ma_snd_pcm_hw_params_t* pHWParams;
ma_snd_pcm_sw_params_t* pSWParams;
ma_snd_pcm_uframes_t bufferBoundary;
@@ -15802,7 +18355,18 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
shareMode = (deviceType == ma_device_type_capture) ? pConfig->capture.shareMode : pConfig->playback.shareMode;
pDeviceID = (deviceType == ma_device_type_capture) ? pConfig->capture.pDeviceID : pConfig->playback.pDeviceID;
- result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, &pPCM);
+ openMode = 0;
+ if (pConfig->alsa.noAutoResample) {
+ openMode |= MA_SND_PCM_NO_AUTO_RESAMPLE;
+ }
+ if (pConfig->alsa.noAutoChannels) {
+ openMode |= MA_SND_PCM_NO_AUTO_CHANNELS;
+ }
+ if (pConfig->alsa.noAutoFormat) {
+ openMode |= MA_SND_PCM_NO_AUTO_FORMAT;
+ }
+
+ result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, openMode, &pPCM);
if (result != MA_SUCCESS) {
return result;
}
@@ -15871,10 +18435,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
return MA_OUT_OF_MEMORY;
}
- if (((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", ma_result_from_errno(-resultALSA));
}
/* MMAP Mode. Try using interleaved MMAP access. If this fails, fall back to standard readi/writei. */
@@ -15890,10 +18455,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
#endif
if (!isUsingMMap) {
- if (((ma_snd_pcm_hw_params_set_access_proc)pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_RW_INTERLEAVED) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_access_proc)pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_RW_INTERLEAVED);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set access mode to neither SND_PCM_ACCESS_MMAP_INTERLEAVED nor SND_PCM_ACCESS_RW_INTERLEAVED. snd_pcm_hw_params_set_access() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set access mode to neither SND_PCM_ACCESS_MMAP_INTERLEAVED nor SND_PCM_ACCESS_RW_INTERLEAVED. snd_pcm_hw_params_set_access() failed.", ma_result_from_errno(-resultALSA));
}
}
@@ -15958,10 +18524,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
ma__free_from_callbacks(pFormatMask, &pContext->allocationCallbacks);
pFormatMask = NULL;
- if (((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, formatALSA) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, formatALSA);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed.", ma_result_from_errno(-resultALSA));
}
internalFormat = ma_format_from_alsa(formatALSA);
@@ -15975,10 +18542,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
/* Channels. */
{
unsigned int channels = (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels;
- if (((ma_snd_pcm_hw_params_set_channels_near_proc)pContext->alsa.snd_pcm_hw_params_set_channels_near)(pPCM, pHWParams, &channels) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_channels_near_proc)pContext->alsa.snd_pcm_hw_params_set_channels_near)(pPCM, pHWParams, &channels);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set channel count. snd_pcm_hw_params_set_channels_near() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set channel count. snd_pcm_hw_params_set_channels_near() failed.", ma_result_from_errno(-resultALSA));
}
internalChannels = (ma_uint32)channels;
}
@@ -16007,10 +18575,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
((ma_snd_pcm_hw_params_set_rate_resample_proc)pContext->alsa.snd_pcm_hw_params_set_rate_resample)(pPCM, pHWParams, 0);
sampleRate = pConfig->sampleRate;
- if (((ma_snd_pcm_hw_params_set_rate_near_proc)pContext->alsa.snd_pcm_hw_params_set_rate_near)(pPCM, pHWParams, &sampleRate, 0) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_rate_near_proc)pContext->alsa.snd_pcm_hw_params_set_rate_near)(pPCM, pHWParams, &sampleRate, 0);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Sample rate not supported. snd_pcm_hw_params_set_rate_near() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Sample rate not supported. snd_pcm_hw_params_set_rate_near() failed.", ma_result_from_errno(-resultALSA));
}
internalSampleRate = (ma_uint32)sampleRate;
}
@@ -16018,10 +18587,11 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
/* Periods. */
{
ma_uint32 periods = pConfig->periods;
- if (((ma_snd_pcm_hw_params_set_periods_near_proc)pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_periods_near_proc)pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed.", ma_result_from_errno(-resultALSA));
}
internalPeriods = periods;
}
@@ -16033,19 +18603,21 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
actualBufferSizeInFrames = ma_scale_buffer_size(ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate), bufferSizeScaleFactor) * internalPeriods;
}
- if (((ma_snd_pcm_hw_params_set_buffer_size_near_proc)pContext->alsa.snd_pcm_hw_params_set_buffer_size_near)(pPCM, pHWParams, &actualBufferSizeInFrames) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_set_buffer_size_near_proc)pContext->alsa.snd_pcm_hw_params_set_buffer_size_near)(pPCM, pHWParams, &actualBufferSizeInFrames);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set buffer size for device. snd_pcm_hw_params_set_buffer_size() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set buffer size for device. snd_pcm_hw_params_set_buffer_size() failed.", ma_result_from_errno(-resultALSA));
}
internalPeriodSizeInFrames = actualBufferSizeInFrames / internalPeriods;
}
/* Apply hardware parameters. */
- if (((ma_snd_pcm_hw_params_proc)pContext->alsa.snd_pcm_hw_params)(pPCM, pHWParams) < 0) {
+ resultALSA = ((ma_snd_pcm_hw_params_proc)pContext->alsa.snd_pcm_hw_params)(pPCM, pHWParams);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set hardware parameters. snd_pcm_hw_params() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set hardware parameters. snd_pcm_hw_params() failed.", ma_result_from_errno(-resultALSA));
}
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
@@ -16059,19 +18631,22 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
return MA_OUT_OF_MEMORY;
}
- if (((ma_snd_pcm_sw_params_current_proc)pContext->alsa.snd_pcm_sw_params_current)(pPCM, pSWParams) != 0) {
+ resultALSA = ((ma_snd_pcm_sw_params_current_proc)pContext->alsa.snd_pcm_sw_params_current)(pPCM, pSWParams);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize software parameters. snd_pcm_sw_params_current() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize software parameters. snd_pcm_sw_params_current() failed.", ma_result_from_errno(-resultALSA));
}
- if (((ma_snd_pcm_sw_params_set_avail_min_proc)pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalPeriodSizeInFrames)) != 0) {
+ resultALSA = ((ma_snd_pcm_sw_params_set_avail_min_proc)pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalPeriodSizeInFrames));
+ if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_sw_params_set_avail_min() failed.", MA_FORMAT_NOT_SUPPORTED);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_sw_params_set_avail_min() failed.", ma_result_from_errno(-resultALSA));
}
- if (((ma_snd_pcm_sw_params_get_boundary_proc)pContext->alsa.snd_pcm_sw_params_get_boundary)(pSWParams, &bufferBoundary) < 0) {
+ resultALSA = ((ma_snd_pcm_sw_params_get_boundary_proc)pContext->alsa.snd_pcm_sw_params_get_boundary)(pSWParams, &bufferBoundary);
+ if (resultALSA < 0) {
bufferBoundary = internalPeriodSizeInFrames * internalPeriods;
}
@@ -16082,22 +18657,26 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
Subtle detail here with the start threshold. When in playback-only mode (no full-duplex) we can set the start threshold to
the size of a period. But for full-duplex we need to set it such that it is at least two periods.
*/
- if (((ma_snd_pcm_sw_params_set_start_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, internalPeriodSizeInFrames*2) != 0) {
+ resultALSA = ((ma_snd_pcm_sw_params_set_start_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, internalPeriodSizeInFrames*2);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set start threshold for playback device. snd_pcm_sw_params_set_start_threshold() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set start threshold for playback device. snd_pcm_sw_params_set_start_threshold() failed.", ma_result_from_errno(-resultALSA));
}
- if (((ma_snd_pcm_sw_params_set_stop_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_stop_threshold)(pPCM, pSWParams, bufferBoundary) != 0) { /* Set to boundary to loop instead of stop in the event of an xrun. */
+
+ resultALSA = ((ma_snd_pcm_sw_params_set_stop_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_stop_threshold)(pPCM, pSWParams, bufferBoundary);
+ if (resultALSA < 0) { /* Set to boundary to loop instead of stop in the event of an xrun. */
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set stop threshold for playback device. snd_pcm_sw_params_set_stop_threshold() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set stop threshold for playback device. snd_pcm_sw_params_set_stop_threshold() failed.", ma_result_from_errno(-resultALSA));
}
}
- if (((ma_snd_pcm_sw_params_proc)pContext->alsa.snd_pcm_sw_params)(pPCM, pSWParams) != 0) {
+ resultALSA = ((ma_snd_pcm_sw_params_proc)pContext->alsa.snd_pcm_sw_params)(pPCM, pSWParams);
+ if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set software parameters. snd_pcm_sw_params() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set software parameters. snd_pcm_sw_params() failed.", ma_result_from_errno(-resultALSA));
}
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
@@ -16160,9 +18739,10 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev
/* We're done. Prepare the device. */
- if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)(pPCM) < 0) {
+ resultALSA = ((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)(pPCM);
+ if (resultALSA < 0) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to prepare device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to prepare device.", ma_result_from_errno(-resultALSA));
}
@@ -16241,17 +18821,19 @@ static ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_u
#endif
/* Overrun. Recover and try again. If this fails we need to return an error. */
- if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, resultALSA, MA_TRUE) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after overrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, resultALSA, MA_TRUE);
+ if (resultALSA < 0) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after overrun.", ma_result_from_errno((int)-resultALSA));
}
- if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
+ if (resultALSA < 0) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", ma_result_from_errno((int)-resultALSA));
}
resultALSA = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, pFramesOut, frameCount);
if (resultALSA < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", MA_FAILED_TO_READ_DATA_FROM_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", ma_result_from_errno((int)-resultALSA));
}
}
}
@@ -16289,8 +18871,9 @@ static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames,
#endif
/* Underrun. Recover and try again. If this fails we need to return an error. */
- if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, resultALSA, MA_TRUE) < 0) { /* MA_TRUE=silent (don't print anything on error). */
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after underrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, resultALSA, MA_TRUE);
+ if (resultALSA < 0) { /* MA_TRUE=silent (don't print anything on error). */
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after underrun.", ma_result_from_errno((int)-resultALSA));
}
/*
@@ -16300,13 +18883,14 @@ static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames,
if this is me just being stupid and not recovering the device properly, but this definitely feels like something isn't
quite right here.
*/
- if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback);
+ if (resultALSA < 0) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", ma_result_from_errno((int)-resultALSA));
}
resultALSA = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, pFrames, frameCount);
if (resultALSA < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to device after underrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to device after underrun.", ma_result_from_errno((int)-resultALSA));
}
}
}
@@ -16322,14 +18906,16 @@ static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames,
static ma_result ma_device_main_loop__alsa(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
+ int resultALSA;
ma_bool32 exitLoop = MA_FALSE;
MA_ASSERT(pDevice != NULL);
/* Capture devices need to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device in preparation for reading.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
+ if (resultALSA < 0) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device in preparation for reading.", ma_result_from_errno(-resultALSA));
}
}
@@ -16702,6 +19288,8 @@ static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_cont
pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)_snd_pcm_hw_params_get_channels_min;
pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)_snd_pcm_hw_params_get_channels_max;
pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)_snd_pcm_hw_params_get_rate;
+ pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)_snd_pcm_hw_params_get_rate_min;
+ pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)_snd_pcm_hw_params_get_rate_max;
pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)_snd_pcm_hw_params_get_buffer_size;
pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)_snd_pcm_hw_params_get_periods;
pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)_snd_pcm_hw_params_get_access;
@@ -16741,7 +19329,7 @@ static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_cont
pContext->alsa.useVerboseDeviceEnumeration = pConfig->alsa.useVerboseDeviceEnumeration;
- if (ma_mutex_init(pContext, &pContext->alsa.internalDeviceEnumLock) != MA_SUCCESS) {
+ if (ma_mutex_init(&pContext->alsa.internalDeviceEnumLock) != MA_SUCCESS) {
ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] WARNING: Failed to initialize mutex for internal device enumeration.", MA_ERROR);
}
@@ -16775,7 +19363,21 @@ When using compile time linking, each of our ma_* equivalents should use the sam
reason for this is that it allow us to take advantage of proper type safety.
*/
#ifdef MA_NO_RUNTIME_LINKING
+
+/* pulseaudio.h marks some functions with "inline" which isn't always supported. Need to emulate it. */
+#if !defined(__cplusplus)
+ #if defined(__STRICT_ANSI__)
+ #if !defined(inline)
+ #define inline __inline__ __attribute__((always_inline))
+ #define MA_INLINE_DEFINED
+ #endif
+ #endif
+#endif
#include
+#if defined(MA_INLINE_DEFINED)
+ #undef inline
+ #undef MA_INLINE_DEFINED
+#endif
#define MA_PA_OK PA_OK
#define MA_PA_ERR_ACCESS PA_ERR_ACCESS
@@ -17257,7 +19859,7 @@ typedef void (* ma_pa_free_cb_t) (void* p);
#endif
-typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) ();
+typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) (void);
typedef void (* ma_pa_mainloop_free_proc) (ma_pa_mainloop* m);
typedef ma_pa_mainloop_api* (* ma_pa_mainloop_get_api_proc) (ma_pa_mainloop* m);
typedef int (* ma_pa_mainloop_iterate_proc) (ma_pa_mainloop* m, int block, int* retval);
@@ -17861,7 +20463,7 @@ static void ma_pulse_device_state_callback(ma_pa_context* pPulseContext, void* p
pDevice->pulse.pulseContextState = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext);
}
-void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
+static void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_pa_sink_info* pInfoOut;
@@ -19099,7 +21701,7 @@ typedef void (* ma_JackShutdownCallback) (void* arg);
typedef ma_jack_client_t* (* ma_jack_client_open_proc) (const char* client_name, ma_jack_options_t options, ma_jack_status_t* status, ...);
typedef int (* ma_jack_client_close_proc) (ma_jack_client_t* client);
-typedef int (* ma_jack_client_name_size_proc) ();
+typedef int (* ma_jack_client_name_size_proc) (void);
typedef int (* ma_jack_set_process_callback_proc) (ma_jack_client_t* client, ma_JackProcessCallback process_callback, void* arg);
typedef int (* ma_jack_set_buffer_size_callback_proc)(ma_jack_client_t* client, ma_JackBufferSizeCallback bufsize_callback, void* arg);
typedef void (* ma_jack_on_shutdown_proc) (ma_jack_client_t* client, ma_JackShutdownCallback function, void* arg);
@@ -19210,7 +21812,7 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic
/* The channel count and sample rate can only be determined by opening the device. */
result = ma_context_open_client__jack(pContext, &pClient);
if (result != MA_SUCCESS) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result);
}
pDeviceInfo->minSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pClient);
@@ -19397,7 +21999,7 @@ static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_conf
/* Open the client. */
result = ma_context_open_client__jack(pContext, (ma_jack_client_t**)&pDevice->jack.pClient);
if (result != MA_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result);
}
/* Callbacks. */
@@ -19788,7 +22390,9 @@ typedef OSStatus (* ma_AudioUnitRender_proc)(AudioUnit inUnit, AudioUnitRenderAc
#define MA_COREAUDIO_OUTPUT_BUS 0
#define MA_COREAUDIO_INPUT_BUS 1
+#if defined(MA_APPLE_DESKTOP)
static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit);
+#endif
/*
Core Audio
@@ -19873,6 +22477,72 @@ static ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit)
}
#endif
+static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut)
+{
+ MA_ASSERT(pDescription != NULL);
+ MA_ASSERT(pFormatOut != NULL);
+
+ *pFormatOut = ma_format_unknown; /* Safety. */
+
+ /* There's a few things miniaudio doesn't support. */
+ if (pDescription->mFormatID != kAudioFormatLinearPCM) {
+ return MA_FORMAT_NOT_SUPPORTED;
+ }
+
+ /* We don't support any non-packed formats that are aligned high. */
+ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) != 0) {
+ return MA_FORMAT_NOT_SUPPORTED;
+ }
+
+ /* Only supporting native-endian. */
+ if ((ma_is_little_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) || (ma_is_big_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) == 0)) {
+ return MA_FORMAT_NOT_SUPPORTED;
+ }
+
+ /* We are not currently supporting non-interleaved formats (this will be added in a future version of miniaudio). */
+ /*if ((pDescription->mFormatFlags & kAudioFormatFlagIsNonInterleaved) != 0) {
+ return MA_FORMAT_NOT_SUPPORTED;
+ }*/
+
+ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsFloat) != 0) {
+ if (pDescription->mBitsPerChannel == 32) {
+ *pFormatOut = ma_format_f32;
+ return MA_SUCCESS;
+ }
+ } else {
+ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsSignedInteger) != 0) {
+ if (pDescription->mBitsPerChannel == 16) {
+ *pFormatOut = ma_format_s16;
+ return MA_SUCCESS;
+ } else if (pDescription->mBitsPerChannel == 24) {
+ if (pDescription->mBytesPerFrame == (pDescription->mBitsPerChannel/8 * pDescription->mChannelsPerFrame)) {
+ *pFormatOut = ma_format_s24;
+ return MA_SUCCESS;
+ } else {
+ if (pDescription->mBytesPerFrame/pDescription->mChannelsPerFrame == sizeof(ma_int32)) {
+ /* TODO: Implement ma_format_s24_32. */
+ /**pFormatOut = ma_format_s24_32;*/
+ /*return MA_SUCCESS;*/
+ return MA_FORMAT_NOT_SUPPORTED;
+ }
+ }
+ } else if (pDescription->mBitsPerChannel == 32) {
+ *pFormatOut = ma_format_s32;
+ return MA_SUCCESS;
+ }
+ } else {
+ if (pDescription->mBitsPerChannel == 8) {
+ *pFormatOut = ma_format_u8;
+ return MA_SUCCESS;
+ }
+ }
+ }
+
+ /* Getting here means the format is not supported. */
+ return MA_FORMAT_NOT_SUPPORTED;
+}
+
+#if defined(MA_APPLE_DESKTOP)
static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
{
switch (label)
@@ -19967,71 +22637,6 @@ static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
}
}
-static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut)
-{
- MA_ASSERT(pDescription != NULL);
- MA_ASSERT(pFormatOut != NULL);
-
- *pFormatOut = ma_format_unknown; /* Safety. */
-
- /* There's a few things miniaudio doesn't support. */
- if (pDescription->mFormatID != kAudioFormatLinearPCM) {
- return MA_FORMAT_NOT_SUPPORTED;
- }
-
- /* We don't support any non-packed formats that are aligned high. */
- if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) != 0) {
- return MA_FORMAT_NOT_SUPPORTED;
- }
-
- /* Only supporting native-endian. */
- if ((ma_is_little_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) || (ma_is_big_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) == 0)) {
- return MA_FORMAT_NOT_SUPPORTED;
- }
-
- /* We are not currently supporting non-interleaved formats (this will be added in a future version of miniaudio). */
- /*if ((pDescription->mFormatFlags & kAudioFormatFlagIsNonInterleaved) != 0) {
- return MA_FORMAT_NOT_SUPPORTED;
- }*/
-
- if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsFloat) != 0) {
- if (pDescription->mBitsPerChannel == 32) {
- *pFormatOut = ma_format_f32;
- return MA_SUCCESS;
- }
- } else {
- if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsSignedInteger) != 0) {
- if (pDescription->mBitsPerChannel == 16) {
- *pFormatOut = ma_format_s16;
- return MA_SUCCESS;
- } else if (pDescription->mBitsPerChannel == 24) {
- if (pDescription->mBytesPerFrame == (pDescription->mBitsPerChannel/8 * pDescription->mChannelsPerFrame)) {
- *pFormatOut = ma_format_s24;
- return MA_SUCCESS;
- } else {
- if (pDescription->mBytesPerFrame/pDescription->mChannelsPerFrame == sizeof(ma_int32)) {
- /* TODO: Implement ma_format_s24_32. */
- /**pFormatOut = ma_format_s24_32;*/
- /*return MA_SUCCESS;*/
- return MA_FORMAT_NOT_SUPPORTED;
- }
- }
- } else if (pDescription->mBitsPerChannel == 32) {
- *pFormatOut = ma_format_s32;
- return MA_SUCCESS;
- }
- } else {
- if (pDescription->mBitsPerChannel == 8) {
- *pFormatOut = ma_format_u8;
- return MA_SUCCESS;
- }
- }
- }
-
- /* Getting here means the format is not supported. */
- return MA_FORMAT_NOT_SUPPORTED;
-}
-
static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel channelMap[MA_MAX_CHANNELS])
{
MA_ASSERT(pChannelLayout != NULL);
@@ -20109,8 +22714,6 @@ static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout*
return MA_SUCCESS;
}
-
-#if defined(MA_APPLE_DESKTOP)
static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDeviceCount, AudioObjectID** ppDeviceObjectIDs) /* NOTE: Free the returned buffer with ma_free(). */
{
AudioObjectPropertyAddress propAddressDevices;
@@ -20867,7 +23470,6 @@ static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjec
ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
-#endif
static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
{
@@ -20913,6 +23515,7 @@ static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit au
ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
+#endif /* MA_APPLE_DESKTOP */
static ma_bool32 ma_context_is_device_id_equal__coreaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
@@ -21252,6 +23855,7 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl
(void)pActionFlags;
(void)pTimeStamp;
(void)busNumber;
+ (void)frameCount;
return noErr;
}
@@ -21448,6 +24052,7 @@ static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, Audio
}
#if defined(MA_APPLE_DESKTOP)
+static ma_spinlock g_DeviceTrackingInitLock_CoreAudio = 0; /* A spinlock for mutal exclusion of the init/uninit of the global tracking data. Initialization to 0 is what we need. */
static ma_uint32 g_DeviceTrackingInitCounter_CoreAudio = 0;
static ma_mutex g_DeviceTrackingMutex_CoreAudio;
static ma_device** g_ppTrackedDevices_CoreAudio = NULL;
@@ -21520,7 +24125,10 @@ static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UIn
}
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
- (void)objectID; /* Unused. */
+ /* Unused parameters. */
+ (void)objectID;
+ (void)pUserData;
+
return noErr;
}
@@ -21528,12 +24136,13 @@ static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContex
{
MA_ASSERT(pContext != NULL);
- if (ma_atomic_increment_32(&g_DeviceTrackingInitCounter_CoreAudio) == 1) {
+ ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio);
+ {
AudioObjectPropertyAddress propAddress;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
- ma_mutex_init(pContext, &g_DeviceTrackingMutex_CoreAudio);
+ ma_mutex_init(&g_DeviceTrackingMutex_CoreAudio);
propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;
((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
@@ -21541,7 +24150,8 @@ static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContex
propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
}
-
+ ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio);
+
return MA_SUCCESS;
}
@@ -21549,7 +24159,8 @@ static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pCont
{
MA_ASSERT(pContext != NULL);
- if (ma_atomic_decrement_32(&g_DeviceTrackingInitCounter_CoreAudio) == 0) {
+ ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio);
+ {
AudioObjectPropertyAddress propAddress;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
@@ -21566,21 +24177,15 @@ static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pCont
ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio);
}
+ ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio);
return MA_SUCCESS;
}
static ma_result ma_device__track__coreaudio(ma_device* pDevice)
{
- ma_result result;
-
MA_ASSERT(pDevice != NULL);
- result = ma_context__init_device_tracking__coreaudio(pDevice->pContext);
- if (result != MA_SUCCESS) {
- return result;
- }
-
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
{
/* Allocate memory if required. */
@@ -21615,8 +24220,6 @@ static ma_result ma_device__track__coreaudio(ma_device* pDevice)
static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
{
- ma_result result;
-
MA_ASSERT(pDevice != NULL);
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
@@ -21645,11 +24248,6 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
}
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
- result = ma_context__uninit_device_tracking__coreaudio(pDevice->pContext);
- if (result != MA_SUCCESS) {
- return result;
- }
-
return MA_SUCCESS;
}
#endif
@@ -22167,6 +24765,7 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev
return result;
}
+#if defined(MA_APPLE_DESKTOP)
static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit)
{
ma_device_init_internal_data__coreaudio data;
@@ -22256,7 +24855,7 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev
return MA_SUCCESS;
}
-
+#endif /* MA_APPLE_DESKTOP */
static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
@@ -22396,7 +24995,7 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device
When stopping the device, a callback is called on another thread. We need to wait for this callback
before returning from ma_device_stop(). This event is used for this.
*/
- ma_event_init(pContext, &pDevice->coreaudio.stopEvent);
+ ma_event_init(&pDevice->coreaudio.stopEvent);
/* Need a ring buffer for duplex mode. */
if (pConfig->deviceType == ma_device_type_duplex) {
@@ -22491,6 +25090,10 @@ static ma_result ma_context_uninit__coreaudio(ma_context* pContext)
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
#endif
+#if !defined(MA_APPLE_MOBILE)
+ ma_context__uninit_device_tracking__coreaudio(pContext);
+#endif
+
(void)pContext;
return MA_SUCCESS;
}
@@ -22518,6 +25121,8 @@ static AVAudioSessionCategory ma_to_AVAudioSessionCategory(ma_ios_session_catego
static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_context* pContext)
{
+ ma_result result;
+
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pContext != NULL);
@@ -22664,14 +25269,26 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma
pContext->coreaudio.component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc);
if (pContext->coreaudio.component == NULL) {
- #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
+ #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
- #endif
+ #endif
return MA_FAILED_TO_INIT_BACKEND;
}
}
+
+#if !defined(MA_APPLE_MOBILE)
+ result = ma_context__init_device_tracking__coreaudio(pContext);
+ if (result != MA_SUCCESS) {
+ #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
+ ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
+ ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
+ ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
+ #endif
+ return result;
+ }
+#endif
return MA_SUCCESS;
}
@@ -22686,7 +25303,6 @@ sndio Backend
******************************************************************************/
#ifdef MA_HAS_SNDIO
#include
-#include
/*
Only supporting OpenBSD. This did not work very well at all on FreeBSD when I tried it. Not sure if this is due
@@ -22850,7 +25466,7 @@ static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps
}
}
- return ma_format_unknown;
+ return bestFormat;
}
static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat)
@@ -23453,7 +26069,7 @@ static ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFram
result = ((ma_sio_write_proc)pDevice->pContext->sndio.sio_write)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (result == 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to send data from the client to the device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to send data from the client to the device.", MA_IO_ERROR);
}
if (pFramesWritten != NULL) {
@@ -23473,7 +26089,7 @@ static ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_
result = ((ma_sio_read_proc)pDevice->pContext->sndio.sio_read)((struct ma_sio_hdl*)pDevice->sndio.handleCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (result == 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to read data from the device to be sent to the device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to read data from the device to be sent to the device.", MA_IO_ERROR);
}
if (pFramesRead != NULL) {
@@ -24148,7 +26764,7 @@ static ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device
}
if (fd == -1) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to open device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to open device.", ma_result_from_errno(errno));
}
#if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */
@@ -24379,11 +26995,11 @@ static ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd)
#if !defined(MA_AUDIO4_USE_NEW_API)
if (ioctl(fd, AUDIO_FLUSH, 0) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_FLUSH failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_FLUSH failed.", ma_result_from_errno(errno));
}
#else
if (ioctl(fd, AUDIO_STOP, 0) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_STOP failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_STOP failed.", ma_result_from_errno(errno));
}
#endif
@@ -24431,7 +27047,7 @@ static ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFra
result = write(pDevice->audio4.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (result < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to write data to the device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to write data to the device.", ma_result_from_errno(errno));
}
if (pFramesWritten != NULL) {
@@ -24451,7 +27067,7 @@ static ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma
result = read(pDevice->audio4.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (result < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to read data from the device.", MA_FAILED_TO_READ_DATA_FROM_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to read data from the device.", ma_result_from_errno(errno));
}
if (pFramesRead != NULL) {
@@ -24710,7 +27326,7 @@ static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_typ
*pfd = open(deviceName, flags, 0);
if (*pfd == -1) {
- return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
+ return ma_result_from_errno(errno);
}
return MA_SUCCESS;
@@ -24978,7 +27594,7 @@ static ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_co
result = ma_context_open_device__oss(pContext, deviceType, pDeviceID, shareMode, &fd);
if (result != MA_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
/*
@@ -25092,14 +27708,14 @@ static ma_result ma_device_init__oss(ma_context* pContext, const ma_device_confi
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__oss(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__oss(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
}
@@ -25126,14 +27742,14 @@ static ma_result ma_device_stop__oss(ma_device* pDevice)
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
int result = ioctl(pDevice->oss.fdCapture, SNDCTL_DSP_HALT, 0);
if (result == -1) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", ma_result_from_errno(errno));
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
int result = ioctl(pDevice->oss.fdPlayback, SNDCTL_DSP_HALT, 0);
if (result == -1) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", ma_result_from_errno(errno));
}
}
@@ -25150,7 +27766,7 @@ static ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames
resultOSS = write(pDevice->oss.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (resultOSS < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to send data from the client to the device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to send data from the client to the device.", ma_result_from_errno(errno));
}
if (pFramesWritten != NULL) {
@@ -25170,7 +27786,7 @@ static ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_ui
resultOSS = read(pDevice->oss.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (resultOSS < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to read data from the device to be sent to the client.", MA_FAILED_TO_READ_DATA_FROM_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to read data from the device to be sent to the client.", ma_result_from_errno(errno));
}
if (pFramesRead != NULL) {
@@ -26095,6 +28711,31 @@ ma_uint32 g_maOpenSLInitCounter = 0;
#define MA_OPENSL_BUFFERQUEUE(p) (*((SLBufferQueueItf)(p)))
#endif
+static ma_result ma_result_from_OpenSL(SLuint32 result)
+{
+ switch (result)
+ {
+ case SL_RESULT_SUCCESS: return MA_SUCCESS;
+ case SL_RESULT_PRECONDITIONS_VIOLATED: return MA_ERROR;
+ case SL_RESULT_PARAMETER_INVALID: return MA_INVALID_ARGS;
+ case SL_RESULT_MEMORY_FAILURE: return MA_OUT_OF_MEMORY;
+ case SL_RESULT_RESOURCE_ERROR: return MA_INVALID_DATA;
+ case SL_RESULT_RESOURCE_LOST: return MA_ERROR;
+ case SL_RESULT_IO_ERROR: return MA_IO_ERROR;
+ case SL_RESULT_BUFFER_INSUFFICIENT: return MA_NO_SPACE;
+ case SL_RESULT_CONTENT_CORRUPTED: return MA_INVALID_DATA;
+ case SL_RESULT_CONTENT_UNSUPPORTED: return MA_FORMAT_NOT_SUPPORTED;
+ case SL_RESULT_CONTENT_NOT_FOUND: return MA_ERROR;
+ case SL_RESULT_PERMISSION_DENIED: return MA_ACCESS_DENIED;
+ case SL_RESULT_FEATURE_UNSUPPORTED: return MA_NOT_IMPLEMENTED;
+ case SL_RESULT_INTERNAL_ERROR: return MA_ERROR;
+ case SL_RESULT_UNKNOWN_ERROR: return MA_ERROR;
+ case SL_RESULT_OPERATION_ABORTED: return MA_ERROR;
+ case SL_RESULT_CONTROL_LOST: return MA_ERROR;
+ default: return MA_ERROR;
+ }
+}
+
/* Converts an individual OpenSL-style channel identifier (SL_SPEAKER_FRONT_LEFT, etc.) to miniaudio. */
static ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id)
{
@@ -26283,7 +28924,7 @@ static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_e
if (!isTerminated) {
resultSL = (*deviceCaps)->GetAvailableAudioOutputs(deviceCaps, &deviceCount, pDeviceIDs);
if (resultSL != SL_RESULT_SUCCESS) {
- return MA_NO_DEVICE;
+ return ma_result_from_OpenSL(resultSL);
}
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
@@ -26309,7 +28950,7 @@ static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_e
if (!isTerminated) {
resultSL = (*deviceCaps)->GetAvailableAudioInputs(deviceCaps, &deviceCount, pDeviceIDs);
if (resultSL != SL_RESULT_SUCCESS) {
- return MA_NO_DEVICE;
+ return ma_result_from_OpenSL(resultSL);
}
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
@@ -26389,7 +29030,7 @@ static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_dev
SLAudioOutputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioOutputCapabilities(deviceCaps, pDeviceID->opensl, &desc);
if (resultSL != SL_RESULT_SUCCESS) {
- return MA_NO_DEVICE;
+ return ma_result_from_OpenSL(resultSL);
}
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.pDeviceName, (size_t)-1);
@@ -26397,7 +29038,7 @@ static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_dev
SLAudioInputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioInputCapabilities(deviceCaps, pDeviceID->opensl, &desc);
if (resultSL != SL_RESULT_SUCCESS) {
- return MA_NO_DEVICE;
+ return ma_result_from_OpenSL(resultSL);
}
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.deviceName, (size_t)-1);
@@ -26736,27 +29377,31 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio recorder.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio recorder.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Realize((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_BOOLEAN_FALSE) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Realize((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_BOOLEAN_FALSE);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio recorder.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio recorder.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_RECORD, &pDevice->opensl.pAudioRecorder) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_RECORD, &pDevice->opensl.pAudioRecorder);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_RECORD interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_RECORD interface.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, ma_buffer_queue_callback_capture__opensl_android, pDevice) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, ma_buffer_queue_callback_capture__opensl_android, pDevice);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", ma_result_from_OpenSL(resultSL));
}
/* The internal format is determined by the "pcm" object. */
@@ -26791,17 +29436,19 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co
resultSL = (*g_maEngineSL)->CreateOutputMix(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pOutputMixObj, 0, NULL, NULL);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create output mix.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create output mix.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Realize((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_BOOLEAN_FALSE)) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Realize((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_BOOLEAN_FALSE);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize output mix object.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize output mix object.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_OUTPUTMIX interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_OUTPUTMIX interface.", ma_result_from_OpenSL(resultSL));
}
/* Set the output device. */
@@ -26833,27 +29480,31 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio player.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio player.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Realize((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_BOOLEAN_FALSE) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Realize((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_BOOLEAN_FALSE);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio player.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio player.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_PLAY, &pDevice->opensl.pAudioPlayer) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_PLAY, &pDevice->opensl.pAudioPlayer);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_PLAY interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_PLAY interface.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL));
}
- if (MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, ma_buffer_queue_callback_playback__opensl_android, pDevice) != SL_RESULT_SUCCESS) {
+ resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, ma_buffer_queue_callback_playback__opensl_android, pDevice);
+ if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", ma_result_from_OpenSL(resultSL));
}
/* The internal format is determined by the "pcm" object. */
@@ -26919,7 +29570,7 @@ static ma_result ma_device_start__opensl(ma_device* pDevice)
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_RECORDING);
if (resultSL != SL_RESULT_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal capture device.", ma_result_from_OpenSL(resultSL));
}
periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
@@ -26927,7 +29578,7 @@ static ma_result ma_device_start__opensl(ma_device* pDevice)
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pDevice->opensl.pBufferCapture + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for capture device.", ma_result_from_OpenSL(resultSL));
}
}
}
@@ -26935,7 +29586,7 @@ static ma_result ma_device_start__opensl(ma_device* pDevice)
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_PLAYING);
if (resultSL != SL_RESULT_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal playback device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal playback device.", ma_result_from_OpenSL(resultSL));
}
/* In playback mode (no duplex) we need to load some initial buffers. In duplex mode we need to enqueu silent buffers. */
@@ -26950,7 +29601,7 @@ static ma_result ma_device_start__opensl(ma_device* pDevice)
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pDevice->opensl.pBufferPlayback + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for playback device.", MA_FAILED_TO_START_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for playback device.", ma_result_from_OpenSL(resultSL));
}
}
}
@@ -27009,7 +29660,7 @@ static ma_result ma_device_stop__opensl(ma_device* pDevice)
resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal capture device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal capture device.", ma_result_from_OpenSL(resultSL));
}
MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture);
@@ -27020,7 +29671,7 @@ static ma_result ma_device_stop__opensl(ma_device* pDevice)
resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal playback device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal playback device.", ma_result_from_OpenSL(resultSL));
}
MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback);
@@ -27044,7 +29695,7 @@ static ma_result ma_context_uninit__opensl(ma_context* pContext)
/* Uninit global data. */
if (g_maOpenSLInitCounter > 0) {
- if (ma_atomic_decrement_32(&g_maOpenSLInitCounter) == 0) {
+ if (c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1) == 1) {
(*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL);
}
}
@@ -27059,11 +29710,11 @@ static ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_co
(void)pConfig;
/* Initialize global data first if applicable. */
- if (ma_atomic_increment_32(&g_maOpenSLInitCounter) == 1) {
+ if (c89atomic_fetch_add_32(&g_maOpenSLInitCounter, 1) == 0) {
SLresult resultSL = slCreateEngine(&g_maEngineObjectSL, 0, NULL, 0, NULL, NULL);
if (resultSL != SL_RESULT_SUCCESS) {
- ma_atomic_decrement_32(&g_maOpenSLInitCounter);
- return MA_NO_BACKEND;
+ c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1);
+ return ma_result_from_OpenSL(resultSL);
}
(*g_maEngineObjectSL)->Realize(g_maEngineObjectSL, SL_BOOLEAN_FALSE);
@@ -27071,8 +29722,8 @@ static ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_co
resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_ENGINE, &g_maEngineSL);
if (resultSL != SL_RESULT_SUCCESS) {
(*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL);
- ma_atomic_decrement_32(&g_maOpenSLInitCounter);
- return MA_NO_BACKEND;
+ c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1);
+ return ma_result_from_OpenSL(resultSL);
}
}
@@ -27110,7 +29761,7 @@ static ma_bool32 ma_is_capture_supported__webaudio()
#ifdef __cplusplus
extern "C" {
#endif
-EMSCRIPTEN_KEEPALIVE void ma_device_process_pcm_frames_capture__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
+void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_capture__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
{
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB);
@@ -27119,7 +29770,7 @@ EMSCRIPTEN_KEEPALIVE void ma_device_process_pcm_frames_capture__webaudio(ma_devi
}
}
-EMSCRIPTEN_KEEPALIVE void ma_device_process_pcm_frames_playback__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
+void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_playback__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
{
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB);
@@ -27188,6 +29839,7 @@ static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_d
MA_ZERO_MEMORY(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio));
/* Only supporting default devices for now. */
+ (void)pDeviceID;
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
@@ -27347,9 +29999,9 @@ static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma
For capture it is a bit unintuitive. We use the ScriptProccessorNode _only_ to get the raw PCM data. It is connected to an AudioContext just like the
playback case, however we just output silence to the AudioContext instead of passing any real data. It would make more sense to me to use the
MediaRecorder API, but unfortunately you need to specify a MIME time (Opus, Vorbis, etc.) for the binary blob that's returned to the client, but I've
- been unable to figure out how to get this as raw PCM. The closes I can think is to use the MIME type for WAV files and just parse it, but I don't know
+ been unable to figure out how to get this as raw PCM. The closest I can think is to use the MIME type for WAV files and just parse it, but I don't know
how well this would work. Although ScriptProccessorNode is deprecated, in practice it seems to have pretty good browser support so I'm leaving it like
- this for now. If anything knows how I could get raw PCM data using the MediaRecorder API please let me know!
+ this for now. If anyone knows how I could get raw PCM data using the MediaRecorder API please let me know!
*/
device.scriptNode = device.webaudio.createScriptProcessor(bufferSize, channels, channels);
@@ -27784,7 +30436,7 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->capture.channelMap, pDevice->capture.channels);
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
- converterConfig.resampling.linear.lpfCount = pDevice->resampling.linear.lpfCount;
+ converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
result = ma_data_converter_init(&converterConfig, &pDevice->capture.converter);
@@ -27806,7 +30458,7 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->playback.internalChannelMap, pDevice->playback.internalChannels);
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
- converterConfig.resampling.linear.lpfCount = pDevice->resampling.linear.lpfCount;
+ converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
result = ma_data_converter_init(&converterConfig, &pDevice->playback.converter);
@@ -28074,7 +30726,7 @@ static ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext)
}
-ma_context_config ma_context_config_init()
+MA_API ma_context_config ma_context_config_init()
{
ma_context_config config;
MA_ZERO_OBJECT(&config);
@@ -28082,7 +30734,7 @@ ma_context_config ma_context_config_init()
return config;
}
-ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext)
+MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext)
{
ma_result result;
ma_context_config config;
@@ -28104,9 +30756,10 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
config = ma_context_config_init();
}
- pContext->logCallback = config.logCallback;
- pContext->threadPriority = config.threadPriority;
- pContext->pUserData = config.pUserData;
+ pContext->logCallback = config.logCallback;
+ pContext->threadPriority = config.threadPriority;
+ pContext->threadStackSize = config.threadStackSize;
+ pContext->pUserData = config.pUserData;
result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &config.allocationCallbacks);
if (result != MA_SUCCESS) {
@@ -28227,13 +30880,13 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
/* If this iteration was successful, return. */
if (result == MA_SUCCESS) {
- result = ma_mutex_init(pContext, &pContext->deviceEnumLock);
+ result = ma_mutex_init(&pContext->deviceEnumLock);
if (result != MA_SUCCESS) {
- ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device enumeration. ma_context_get_devices() is not thread safe.", MA_FAILED_TO_CREATE_MUTEX);
+ ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device enumeration. ma_context_get_devices() is not thread safe.", result);
}
- result = ma_mutex_init(pContext, &pContext->deviceInfoLock);
+ result = ma_mutex_init(&pContext->deviceInfoLock);
if (result != MA_SUCCESS) {
- ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device info retrieval. ma_context_get_device_info() is not thread safe.", MA_FAILED_TO_CREATE_MUTEX);
+ ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device info retrieval. ma_context_get_device_info() is not thread safe.", result);
}
#ifdef MA_DEBUG_OUTPUT
@@ -28254,7 +30907,7 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
return MA_NO_BACKEND;
}
-ma_result ma_context_uninit(ma_context* pContext)
+MA_API ma_result ma_context_uninit(ma_context* pContext)
{
if (pContext == NULL) {
return MA_INVALID_ARGS;
@@ -28270,8 +30923,13 @@ ma_result ma_context_uninit(ma_context* pContext)
return MA_SUCCESS;
}
+MA_API size_t ma_context_sizeof()
+{
+ return sizeof(ma_context);
+}
-ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+
+MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_result result;
@@ -28338,7 +30996,7 @@ static ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_
return MA_TRUE;
}
-ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount)
+MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount)
{
ma_result result;
@@ -28384,7 +31042,7 @@ ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlayba
return result;
}
-ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_device_info deviceInfo;
@@ -28423,7 +31081,7 @@ ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type device
return MA_ERROR;
}
-ma_bool32 ma_context_is_loopback_supported(ma_context* pContext)
+MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext)
{
if (pContext == NULL) {
return MA_FALSE;
@@ -28433,7 +31091,7 @@ ma_bool32 ma_context_is_loopback_supported(ma_context* pContext)
}
-ma_device_config ma_device_config_init(ma_device_type deviceType)
+MA_API ma_device_config ma_device_config_init(ma_device_type deviceType)
{
ma_device_config config;
MA_ZERO_OBJECT(&config);
@@ -28441,13 +31099,13 @@ ma_device_config ma_device_config_init(ma_device_type deviceType)
/* Resampling defaults. We must never use the Speex backend by default because it uses licensed third party code. */
config.resampling.algorithm = ma_resample_algorithm_linear;
- config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
+ config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.resampling.speex.quality = 3;
return config;
}
-ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_device_config config;
@@ -28566,7 +31224,7 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
pDevice->type = config.deviceType;
pDevice->sampleRate = config.sampleRate;
pDevice->resampling.algorithm = config.resampling.algorithm;
- pDevice->resampling.linear.lpfCount = config.resampling.linear.lpfCount;
+ pDevice->resampling.linear.lpfOrder = config.resampling.linear.lpfOrder;
pDevice->resampling.speex.quality = config.resampling.speex.quality;
pDevice->capture.shareMode = config.capture.shareMode;
@@ -28591,9 +31249,9 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
pDevice->playback.internalSampleRate = pDevice->sampleRate;
ma_channel_map_copy(pDevice->playback.internalChannelMap, pDevice->playback.channelMap, pDevice->playback.channels);
-
- if (ma_mutex_init(pContext, &pDevice->lock) != MA_SUCCESS) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create mutex.", MA_FAILED_TO_CREATE_MUTEX);
+ result = ma_mutex_init(&pDevice->lock);
+ if (result != MA_SUCCESS) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create mutex.", result);
}
/*
@@ -28603,20 +31261,25 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
Each of these semaphores is released internally by the worker thread when the work is completed. The start
semaphore is also used to wake up the worker thread.
*/
- if (ma_event_init(pContext, &pDevice->wakeupEvent) != MA_SUCCESS) {
+ result = ma_event_init(&pDevice->wakeupEvent);
+ if (result != MA_SUCCESS) {
ma_mutex_uninit(&pDevice->lock);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread wakeup event.", MA_FAILED_TO_CREATE_EVENT);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread wakeup event.", result);
}
- if (ma_event_init(pContext, &pDevice->startEvent) != MA_SUCCESS) {
+
+ result = ma_event_init(&pDevice->startEvent);
+ if (result != MA_SUCCESS) {
ma_event_uninit(&pDevice->wakeupEvent);
ma_mutex_uninit(&pDevice->lock);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread start event.", MA_FAILED_TO_CREATE_EVENT);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread start event.", result);
}
- if (ma_event_init(pContext, &pDevice->stopEvent) != MA_SUCCESS) {
+
+ result = ma_event_init(&pDevice->stopEvent);
+ if (result != MA_SUCCESS) {
ma_event_uninit(&pDevice->startEvent);
ma_event_uninit(&pDevice->wakeupEvent);
ma_mutex_uninit(&pDevice->lock);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread stop event.", MA_FAILED_TO_CREATE_EVENT);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread stop event.", result);
}
@@ -28648,9 +31311,10 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
/* Some backends don't require the worker thread. */
if (!ma_context_is_backend_asynchronous(pContext)) {
/* The worker thread. */
- if (ma_thread_create(pContext, &pDevice->thread, ma_worker_thread, pDevice) != MA_SUCCESS) {
+ result = ma_thread_create(&pDevice->thread, pContext->threadPriority, pContext->threadStackSize, ma_worker_thread, pDevice);
+ if (result != MA_SUCCESS) {
ma_device_uninit(pDevice);
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread.", MA_FAILED_TO_CREATE_THREAD);
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread.", result);
}
/* Wait for the worker thread to put the device into it's stopped state for real. */
@@ -28660,42 +31324,39 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
}
-#ifdef MA_DEBUG_OUTPUT
- printf("[%s]\n", ma_get_backend_name(pDevice->pContext->backend));
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, "[%s]", ma_get_backend_name(pDevice->pContext->backend));
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- printf(" %s (%s)\n", pDevice->capture.name, "Capture");
- printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat));
- printf(" Channels: %d -> %d\n", pDevice->capture.channels, pDevice->capture.internalChannels);
- printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->capture.internalSampleRate);
- printf(" Buffer Size: %d*%d (%d)\n", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods));
- printf(" Conversion:\n");
- printf(" Pre Format Conversion: %s\n", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO");
- printf(" Post Format Conversion: %s\n", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO");
- printf(" Channel Routing: %s\n", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO");
- printf(" Resampling: %s\n", pDevice->capture.converter.hasResampler ? "YES" : "NO");
- printf(" Passthrough: %s\n", pDevice->capture.converter.isPassthrough ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->capture.name, "Capture");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat));
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->capture.channels, pDevice->capture.internalChannels);
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->capture.internalSampleRate);
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods));
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->capture.converter.hasResampler ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->capture.converter.isPassthrough ? "YES" : "NO");
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
- printf(" %s (%s)\n", pDevice->playback.name, "Playback");
- printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat));
- printf(" Channels: %d -> %d\n", pDevice->playback.channels, pDevice->playback.internalChannels);
- printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->playback.internalSampleRate);
- printf(" Buffer Size: %d*%d (%d)\n", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods));
- printf(" Conversion:\n");
- printf(" Pre Format Conversion: %s\n", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO");
- printf(" Post Format Conversion: %s\n", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO");
- printf(" Channel Routing: %s\n", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO");
- printf(" Resampling: %s\n", pDevice->playback.converter.hasResampler ? "YES" : "NO");
- printf(" Passthrough: %s\n", pDevice->playback.converter.isPassthrough ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->playback.name, "Playback");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat));
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->playback.channels, pDevice->playback.internalChannels);
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->playback.internalSampleRate);
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods));
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->playback.converter.hasResampler ? "YES" : "NO");
+ ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->playback.converter.isPassthrough ? "YES" : "NO");
}
-#endif
-
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
return MA_SUCCESS;
}
-ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice)
+MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_context* pContext;
@@ -28758,7 +31419,7 @@ ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount,
return result;
}
-void ma_device_uninit(ma_device* pDevice)
+MA_API void ma_device_uninit(ma_device* pDevice)
{
if (!ma_device__is_initialized(pDevice)) {
return;
@@ -28795,7 +31456,7 @@ void ma_device_uninit(ma_device* pDevice)
MA_ZERO_OBJECT(pDevice);
}
-ma_result ma_device_start(ma_device* pDevice)
+MA_API ma_result ma_device_start(ma_device* pDevice)
{
ma_result result;
@@ -28845,7 +31506,7 @@ ma_result ma_device_start(ma_device* pDevice)
return result;
}
-ma_result ma_device_stop(ma_device* pDevice)
+MA_API ma_result ma_device_stop(ma_device* pDevice)
{
ma_result result;
@@ -28896,7 +31557,7 @@ ma_result ma_device_stop(ma_device* pDevice)
return result;
}
-ma_bool32 ma_device_is_started(ma_device* pDevice)
+MA_API ma_bool32 ma_device_is_started(ma_device* pDevice)
{
if (pDevice == NULL) {
return MA_FALSE;
@@ -28905,7 +31566,7 @@ ma_bool32 ma_device_is_started(ma_device* pDevice)
return ma_device__get_state(pDevice) == MA_STATE_STARTED;
}
-ma_result ma_device_set_master_volume(ma_device* pDevice, float volume)
+MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume)
{
if (pDevice == NULL) {
return MA_INVALID_ARGS;
@@ -28920,7 +31581,7 @@ ma_result ma_device_set_master_volume(ma_device* pDevice, float volume)
return MA_SUCCESS;
}
-ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume)
+MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume)
{
if (pVolume == NULL) {
return MA_INVALID_ARGS;
@@ -28936,7 +31597,7 @@ ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume)
return MA_SUCCESS;
}
-ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB)
+MA_API ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB)
{
if (gainDB > 0) {
return MA_INVALID_ARGS;
@@ -28945,7 +31606,7 @@ ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB)
return ma_device_set_master_volume(pDevice, ma_gain_db_to_factor(gainDB));
}
-ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
+MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
{
float factor;
ma_result result;
@@ -28967,6 +31628,2650 @@ ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
#endif /* MA_NO_DEVICE_IO */
+MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale)
+{
+ return ma_max(1, (ma_uint32)(baseBufferSize*scale));
+}
+
+MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate)
+{
+ return bufferSizeInFrames / (sampleRate/1000);
+}
+
+MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate)
+{
+ return bufferSizeInMilliseconds * (sampleRate/1000);
+}
+
+MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ if (dst == src) {
+ return; /* No-op. */
+ }
+
+ ma_copy_memory_64(dst, src, frameCount * ma_get_bytes_per_frame(format, channels));
+}
+
+MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ if (format == ma_format_u8) {
+ ma_uint64 sampleCount = frameCount * channels;
+ ma_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ ((ma_uint8*)p)[iSample] = 128;
+ }
+ } else {
+ ma_zero_memory_64(p, frameCount * ma_get_bytes_per_frame(format, channels));
+ }
+}
+
+MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels)
+{
+ return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels));
+}
+
+MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels)
+{
+ return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels));
+}
+
+
+MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount)
+{
+ ma_uint32 iSample;
+
+ /* TODO: Research a branchless SSE implementation. */
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ p[iSample] = ma_clip_f32(p[iSample]);
+ }
+}
+
+
+MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor)
+{
+ ma_uint32 iSample;
+
+ if (pSamplesOut == NULL || pSamplesIn == NULL) {
+ return;
+ }
+
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor);
+ }
+}
+
+MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor)
+{
+ ma_uint32 iSample;
+
+ if (pSamplesOut == NULL || pSamplesIn == NULL) {
+ return;
+ }
+
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor);
+ }
+}
+
+MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor)
+{
+ ma_uint32 iSample;
+ ma_uint8* pSamplesOut8;
+ ma_uint8* pSamplesIn8;
+
+ if (pSamplesOut == NULL || pSamplesIn == NULL) {
+ return;
+ }
+
+ pSamplesOut8 = (ma_uint8*)pSamplesOut;
+ pSamplesIn8 = (ma_uint8*)pSamplesIn;
+
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ ma_int32 sampleS32;
+
+ sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24);
+ sampleS32 = (ma_int32)(sampleS32 * factor);
+
+ pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8);
+ pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16);
+ pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24);
+ }
+}
+
+MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor)
+{
+ ma_uint32 iSample;
+
+ if (pSamplesOut == NULL || pSamplesIn == NULL) {
+ return;
+ }
+
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor);
+ }
+}
+
+MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor)
+{
+ ma_uint32 iSample;
+
+ if (pSamplesOut == NULL || pSamplesIn == NULL) {
+ return;
+ }
+
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamplesOut[iSample] = pSamplesIn[iSample] * factor;
+ }
+}
+
+MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor)
+{
+ ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor);
+}
+
+MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor)
+{
+ ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor);
+}
+
+MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor)
+{
+ ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor);
+}
+
+MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor)
+{
+ ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor);
+}
+
+MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor)
+{
+ ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_u8(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_s16(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_s24(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_s32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_f32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
+}
+
+MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
+{
+ switch (format)
+ {
+ case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pPCMFramesOut, (const ma_uint8*)pPCMFramesIn, frameCount, channels, factor); return;
+ case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pPCMFramesOut, (const ma_int16*)pPCMFramesIn, frameCount, channels, factor); return;
+ case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pPCMFramesOut, pPCMFramesIn, frameCount, channels, factor); return;
+ case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pPCMFramesOut, (const ma_int32*)pPCMFramesIn, frameCount, channels, factor); return;
+ case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pPCMFramesOut, (const float*)pPCMFramesIn, frameCount, channels, factor); return;
+ default: return; /* Do nothing. */
+ }
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames_u8(pPCMFrames, pPCMFrames, frameCount, channels, factor);
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames_s16(pPCMFrames, pPCMFrames, frameCount, channels, factor);
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames_s24(pPCMFrames, pPCMFrames, frameCount, channels, factor);
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames_s32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames_f32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
+}
+
+MA_API void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
+{
+ ma_copy_and_apply_volume_factor_pcm_frames(pPCMFrames, pPCMFrames, frameCount, format, channels, factor);
+}
+
+
+MA_API float ma_factor_to_gain_db(float factor)
+{
+ return (float)(20*ma_log10f(factor));
+}
+
+MA_API float ma_gain_db_to_factor(float gain)
+{
+ return (float)ma_powf(10, gain/20.0f);
+}
+
+
+/**************************************************************************************************************************************************************
+
+Format Conversion
+
+**************************************************************************************************************************************************************/
+
+static MA_INLINE ma_int16 ma_pcm_sample_f32_to_s16(float x)
+{
+ return (ma_int16)(x * 32767.0f);
+}
+
+static MA_INLINE ma_int16 ma_pcm_sample_u8_to_s16_no_scale(ma_uint8 x)
+{
+ return (ma_int16)((ma_int16)x - 128);
+}
+
+static MA_INLINE ma_int64 ma_pcm_sample_s24_to_s32_no_scale(const ma_uint8* x)
+{
+ return (ma_int64)(((ma_uint64)x[0] << 40) | ((ma_uint64)x[1] << 48) | ((ma_uint64)x[2] << 56)) >> 40; /* Make sure the sign bits are maintained. */
+}
+
+static MA_INLINE void ma_pcm_sample_s32_to_s24_no_scale(ma_int64 x, ma_uint8* s24)
+{
+ s24[0] = (ma_uint8)((x & 0x000000FF) >> 0);
+ s24[1] = (ma_uint8)((x & 0x0000FF00) >> 8);
+ s24[2] = (ma_uint8)((x & 0x00FF0000) >> 16);
+}
+
+
+static MA_INLINE ma_uint8 ma_clip_u8(ma_int16 x)
+{
+ return (ma_uint8)(ma_clamp(x, -128, 127) + 128);
+}
+
+static MA_INLINE ma_int16 ma_clip_s16(ma_int32 x)
+{
+ return (ma_int16)ma_clamp(x, -32768, 32767);
+}
+
+static MA_INLINE ma_int64 ma_clip_s24(ma_int64 x)
+{
+ return (ma_int64)ma_clamp(x, -8388608, 8388607);
+}
+
+static MA_INLINE ma_int32 ma_clip_s32(ma_int64 x)
+{
+ /* This dance is to silence warnings with -std=c89. A good compiler should be able to optimize this away. */
+ ma_int64 clipMin;
+ ma_int64 clipMax;
+ clipMin = -((ma_int64)2147483647 + 1);
+ clipMax = (ma_int64)2147483647;
+
+ return (ma_int32)ma_clamp(x, clipMin, clipMax);
+}
+
+
+/* u8 */
+MA_API void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ (void)ditherMode;
+ ma_copy_memory_64(dst, src, count * sizeof(ma_uint8));
+}
+
+
+static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const ma_uint8* src_u8 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int16 x = src_u8[i];
+ x = (ma_int16)(x - 128);
+ x = (ma_int16)(x << 8);
+ dst_s16[i] = x;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_s24 = (ma_uint8*)dst;
+ const ma_uint8* src_u8 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int16 x = src_u8[i];
+ x = (ma_int16)(x - 128);
+
+ dst_s24[i*3+0] = 0;
+ dst_s24[i*3+1] = 0;
+ dst_s24[i*3+2] = (ma_uint8)((ma_int8)x);
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int32* dst_s32 = (ma_int32*)dst;
+ const ma_uint8* src_u8 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = src_u8[i];
+ x = x - 128;
+ x = x << 24;
+ dst_s32[i] = x;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ float* dst_f32 = (float*)dst;
+ const ma_uint8* src_u8 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ float x = (float)src_u8[i];
+ x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */
+ x = x - 1; /* 0..2 to -1..1 */
+
+ dst_f32[i] = x;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const ma_uint8** src_u8 = (const ma_uint8**)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
+ }
+ }
+}
+#else
+static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const ma_uint8** src_u8 = (const ma_uint8**)src;
+
+ if (channels == 1) {
+ ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8));
+ } else if (channels == 2) {
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ dst_u8[iFrame*2 + 0] = src_u8[0][iFrame];
+ dst_u8[iFrame*2 + 1] = src_u8[1][iFrame];
+ }
+ } else {
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
+ }
+ }
+ }
+}
+#endif
+
+MA_API void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_interleave_u8__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_uint8** dst_u8 = (ma_uint8**)dst;
+ const ma_uint8* src_u8 = (const ma_uint8*)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+/* s16 */
+static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const ma_int16* src_s16 = (const ma_int16*)src;
+
+ if (ditherMode == ma_dither_mode_none) {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int16 x = src_s16[i];
+ x = (ma_int16)(x >> 8);
+ x = (ma_int16)(x + 128);
+ dst_u8[i] = (ma_uint8)x;
+ }
+ } else {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int16 x = src_s16[i];
+
+ /* Dither. Don't overflow. */
+ ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F);
+ if ((x + dither) <= 0x7FFF) {
+ x = (ma_int16)(x + dither);
+ } else {
+ x = 0x7FFF;
+ }
+
+ x = (ma_int16)(x >> 8);
+ x = (ma_int16)(x + 128);
+ dst_u8[i] = (ma_uint8)x;
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+MA_API void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ (void)ditherMode;
+ ma_copy_memory_64(dst, src, count * sizeof(ma_int16));
+}
+
+
+static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_s24 = (ma_uint8*)dst;
+ const ma_int16* src_s16 = (const ma_int16*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ dst_s24[i*3+0] = 0;
+ dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF);
+ dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8);
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int32* dst_s32 = (ma_int32*)dst;
+ const ma_int16* src_s16 = (const ma_int16*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ dst_s32[i] = src_s16[i] << 16;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ float* dst_f32 = (float*)dst;
+ const ma_int16* src_s16 = (const ma_int16*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ float x = (float)src_s16[i];
+
+#if 0
+ /* The accurate way. */
+ x = x + 32768.0f; /* -32768..32767 to 0..65535 */
+ x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */
+ x = x - 1; /* 0..2 to -1..1 */
+#else
+ /* The fast way. */
+ x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */
+#endif
+
+ dst_f32[i] = x;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const ma_int16** src_s16 = (const ma_int16**)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_int16** dst_s16 = (ma_int16**)dst;
+ const ma_int16* src_s16 = (const ma_int16*)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+/* s24 */
+static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const ma_uint8* src_s24 = (const ma_uint8*)src;
+
+ if (ditherMode == ma_dither_mode_none) {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ dst_u8[i] = (ma_uint8)((ma_int8)src_s24[i*3 + 2] + 128);
+ }
+ } else {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
+
+ /* Dither. Don't overflow. */
+ ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
+ if ((ma_int64)x + dither <= 0x7FFFFFFF) {
+ x = x + dither;
+ } else {
+ x = 0x7FFFFFFF;
+ }
+
+ x = x >> 24;
+ x = x + 128;
+ dst_u8[i] = (ma_uint8)x;
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const ma_uint8* src_s24 = (const ma_uint8*)src;
+
+ if (ditherMode == ma_dither_mode_none) {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]);
+ ma_uint16 dst_hi = (ma_uint16)((ma_uint16)src_s24[i*3 + 2] << 8);
+ dst_s16[i] = (ma_int16)(dst_lo | dst_hi);
+ }
+ } else {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
+
+ /* Dither. Don't overflow. */
+ ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
+ if ((ma_int64)x + dither <= 0x7FFFFFFF) {
+ x = x + dither;
+ } else {
+ x = 0x7FFFFFFF;
+ }
+
+ x = x >> 16;
+ dst_s16[i] = (ma_int16)x;
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+MA_API void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ (void)ditherMode;
+
+ ma_copy_memory_64(dst, src, count * 3);
+}
+
+
+static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int32* dst_s32 = (ma_int32*)dst;
+ const ma_uint8* src_s24 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ float* dst_f32 = (float*)dst;
+ const ma_uint8* src_s24 = (const ma_uint8*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8);
+
+#if 0
+ /* The accurate way. */
+ x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */
+ x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */
+ x = x - 1; /* 0..2 to -1..1 */
+#else
+ /* The fast way. */
+ x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */
+#endif
+
+ dst_f32[i] = x;
+ }
+
+ (void)ditherMode;
+}
+
+static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_uint8* dst8 = (ma_uint8*)dst;
+ const ma_uint8** src8 = (const ma_uint8**)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0];
+ dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1];
+ dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_uint8** dst8 = (ma_uint8**)dst;
+ const ma_uint8* src8 = (const ma_uint8*)src;
+
+ ma_uint32 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0];
+ dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1];
+ dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+
+/* s32 */
+static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const ma_int32* src_s32 = (const ma_int32*)src;
+
+ if (ditherMode == ma_dither_mode_none) {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = src_s32[i];
+ x = x >> 24;
+ x = x + 128;
+ dst_u8[i] = (ma_uint8)x;
+ }
+ } else {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = src_s32[i];
+
+ /* Dither. Don't overflow. */
+ ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
+ if ((ma_int64)x + dither <= 0x7FFFFFFF) {
+ x = x + dither;
+ } else {
+ x = 0x7FFFFFFF;
+ }
+
+ x = x >> 24;
+ x = x + 128;
+ dst_u8[i] = (ma_uint8)x;
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const ma_int32* src_s32 = (const ma_int32*)src;
+
+ if (ditherMode == ma_dither_mode_none) {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = src_s32[i];
+ x = x >> 16;
+ dst_s16[i] = (ma_int16)x;
+ }
+ } else {
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 x = src_s32[i];
+
+ /* Dither. Don't overflow. */
+ ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
+ if ((ma_int64)x + dither <= 0x7FFFFFFF) {
+ x = x + dither;
+ } else {
+ x = 0x7FFFFFFF;
+ }
+
+ x = x >> 16;
+ dst_s16[i] = (ma_int16)x;
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_s24 = (ma_uint8*)dst;
+ const ma_int32* src_s32 = (const ma_int32*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_uint32 x = (ma_uint32)src_s32[i];
+ dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8);
+ dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16);
+ dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24);
+ }
+
+ (void)ditherMode; /* No dithering for s32 -> s24. */
+}
+
+static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+MA_API void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ (void)ditherMode;
+
+ ma_copy_memory_64(dst, src, count * sizeof(ma_int32));
+}
+
+
+static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ float* dst_f32 = (float*)dst;
+ const ma_int32* src_s32 = (const ma_int32*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ double x = src_s32[i];
+
+#if 0
+ x = x + 2147483648.0;
+ x = x * 0.0000000004656612873077392578125;
+ x = x - 1;
+#else
+ x = x / 2147483648.0;
+#endif
+
+ dst_f32[i] = (float)x;
+ }
+
+ (void)ditherMode; /* No dithering for s32 -> f32. */
+}
+
+static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_int32* dst_s32 = (ma_int32*)dst;
+ const ma_int32** src_s32 = (const ma_int32**)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_int32** dst_s32 = (ma_int32**)dst;
+ const ma_int32* src_s32 = (const ma_int32*)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel];
+ }
+ }
+}
+
+static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+/* f32 */
+static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+
+ ma_uint8* dst_u8 = (ma_uint8*)dst;
+ const float* src_f32 = (const float*)src;
+
+ float ditherMin = 0;
+ float ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -128;
+ ditherMax = 1.0f / 127;
+ }
+
+ for (i = 0; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+ x = x + 1; /* -1..1 to 0..2 */
+ x = x * 127.5f; /* 0..2 to 0..255 */
+
+ dst_u8[i] = (ma_uint8)x;
+ }
+}
+
+static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const float* src_f32 = (const float*)src;
+
+ float ditherMin = 0;
+ float ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -32768;
+ ditherMax = 1.0f / 32767;
+ }
+
+ for (i = 0; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+
+#if 0
+ /* The accurate way. */
+ x = x + 1; /* -1..1 to 0..2 */
+ x = x * 32767.5f; /* 0..2 to 0..65535 */
+ x = x - 32768.0f; /* 0...65535 to -32768..32767 */
+#else
+ /* The fast way. */
+ x = x * 32767.0f; /* -1..1 to -32767..32767 */
+#endif
+
+ dst_s16[i] = (ma_int16)x;
+ }
+}
+#else
+static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+ ma_uint64 i4;
+ ma_uint64 count4;
+
+ ma_int16* dst_s16 = (ma_int16*)dst;
+ const float* src_f32 = (const float*)src;
+
+ float ditherMin = 0;
+ float ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -32768;
+ ditherMax = 1.0f / 32767;
+ }
+
+ /* Unrolled. */
+ i = 0;
+ count4 = count >> 2;
+ for (i4 = 0; i4 < count4; i4 += 1) {
+ float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
+
+ float x0 = src_f32[i+0];
+ float x1 = src_f32[i+1];
+ float x2 = src_f32[i+2];
+ float x3 = src_f32[i+3];
+
+ x0 = x0 + d0;
+ x1 = x1 + d1;
+ x2 = x2 + d2;
+ x3 = x3 + d3;
+
+ x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0));
+ x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1));
+ x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2));
+ x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3));
+
+ x0 = x0 * 32767.0f;
+ x1 = x1 * 32767.0f;
+ x2 = x2 * 32767.0f;
+ x3 = x3 * 32767.0f;
+
+ dst_s16[i+0] = (ma_int16)x0;
+ dst_s16[i+1] = (ma_int16)x1;
+ dst_s16[i+2] = (ma_int16)x2;
+ dst_s16[i+3] = (ma_int16)x3;
+
+ i += 4;
+ }
+
+ /* Leftover. */
+ for (; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+ x = x * 32767.0f; /* -1..1 to -32767..32767 */
+
+ dst_s16[i] = (ma_int16)x;
+ }
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+ ma_uint64 i8;
+ ma_uint64 count8;
+ ma_int16* dst_s16;
+ const float* src_f32;
+ float ditherMin;
+ float ditherMax;
+
+ /* Both the input and output buffers need to be aligned to 16 bytes. */
+ if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
+ ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ return;
+ }
+
+ dst_s16 = (ma_int16*)dst;
+ src_f32 = (const float*)src;
+
+ ditherMin = 0;
+ ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -32768;
+ ditherMax = 1.0f / 32767;
+ }
+
+ i = 0;
+
+ /* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
+ count8 = count >> 3;
+ for (i8 = 0; i8 < count8; i8 += 1) {
+ __m128 d0;
+ __m128 d1;
+ __m128 x0;
+ __m128 x1;
+
+ if (ditherMode == ma_dither_mode_none) {
+ d0 = _mm_set1_ps(0);
+ d1 = _mm_set1_ps(0);
+ } else if (ditherMode == ma_dither_mode_rectangle) {
+ d0 = _mm_set_ps(
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax)
+ );
+ d1 = _mm_set_ps(
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax)
+ );
+ } else {
+ d0 = _mm_set_ps(
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax)
+ );
+ d1 = _mm_set_ps(
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax)
+ );
+ }
+
+ x0 = *((__m128*)(src_f32 + i) + 0);
+ x1 = *((__m128*)(src_f32 + i) + 1);
+
+ x0 = _mm_add_ps(x0, d0);
+ x1 = _mm_add_ps(x1, d1);
+
+ x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f));
+ x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f));
+
+ _mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1)));
+
+ i += 8;
+ }
+
+
+ /* Leftover. */
+ for (; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+ x = x * 32767.0f; /* -1..1 to -32767..32767 */
+
+ dst_s16[i] = (ma_int16)x;
+ }
+}
+#endif /* SSE2 */
+
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+ ma_uint64 i16;
+ ma_uint64 count16;
+ ma_int16* dst_s16;
+ const float* src_f32;
+ float ditherMin;
+ float ditherMax;
+
+ /* Both the input and output buffers need to be aligned to 32 bytes. */
+ if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) {
+ ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ return;
+ }
+
+ dst_s16 = (ma_int16*)dst;
+ src_f32 = (const float*)src;
+
+ ditherMin = 0;
+ ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -32768;
+ ditherMax = 1.0f / 32767;
+ }
+
+ i = 0;
+
+ /* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */
+ count16 = count >> 4;
+ for (i16 = 0; i16 < count16; i16 += 1) {
+ __m256 d0;
+ __m256 d1;
+ __m256 x0;
+ __m256 x1;
+ __m256i i0;
+ __m256i i1;
+ __m256i p0;
+ __m256i p1;
+ __m256i r;
+
+ if (ditherMode == ma_dither_mode_none) {
+ d0 = _mm256_set1_ps(0);
+ d1 = _mm256_set1_ps(0);
+ } else if (ditherMode == ma_dither_mode_rectangle) {
+ d0 = _mm256_set_ps(
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax)
+ );
+ d1 = _mm256_set_ps(
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax),
+ ma_dither_f32_rectangle(ditherMin, ditherMax)
+ );
+ } else {
+ d0 = _mm256_set_ps(
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax)
+ );
+ d1 = _mm256_set_ps(
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax),
+ ma_dither_f32_triangle(ditherMin, ditherMax)
+ );
+ }
+
+ x0 = *((__m256*)(src_f32 + i) + 0);
+ x1 = *((__m256*)(src_f32 + i) + 1);
+
+ x0 = _mm256_add_ps(x0, d0);
+ x1 = _mm256_add_ps(x1, d1);
+
+ x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f));
+ x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f));
+
+ /* Computing the final result is a little more complicated for AVX2 than SSE2. */
+ i0 = _mm256_cvttps_epi32(x0);
+ i1 = _mm256_cvttps_epi32(x1);
+ p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32);
+ p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48);
+ r = _mm256_packs_epi32(p0, p1);
+
+ _mm256_stream_si256(((__m256i*)(dst_s16 + i)), r);
+
+ i += 16;
+ }
+
+
+ /* Leftover. */
+ for (; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+ x = x * 32767.0f; /* -1..1 to -32767..32767 */
+
+ dst_s16[i] = (ma_int16)x;
+ }
+}
+#endif /* AVX2 */
+
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint64 i;
+ ma_uint64 i8;
+ ma_uint64 count8;
+ ma_int16* dst_s16;
+ const float* src_f32;
+ float ditherMin;
+ float ditherMax;
+
+ if (!ma_has_neon()) {
+ return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ }
+
+ /* Both the input and output buffers need to be aligned to 16 bytes. */
+ if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
+ ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ return;
+ }
+
+ dst_s16 = (ma_int16*)dst;
+ src_f32 = (const float*)src;
+
+ ditherMin = 0;
+ ditherMax = 0;
+ if (ditherMode != ma_dither_mode_none) {
+ ditherMin = 1.0f / -32768;
+ ditherMax = 1.0f / 32767;
+ }
+
+ i = 0;
+
+ /* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
+ count8 = count >> 3;
+ for (i8 = 0; i8 < count8; i8 += 1) {
+ float32x4_t d0;
+ float32x4_t d1;
+ float32x4_t x0;
+ float32x4_t x1;
+ int32x4_t i0;
+ int32x4_t i1;
+
+ if (ditherMode == ma_dither_mode_none) {
+ d0 = vmovq_n_f32(0);
+ d1 = vmovq_n_f32(0);
+ } else if (ditherMode == ma_dither_mode_rectangle) {
+ float d0v[4];
+ d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d0 = vld1q_f32(d0v);
+
+ float d1v[4];
+ d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
+ d1 = vld1q_f32(d1v);
+ } else {
+ float d0v[4];
+ d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d0 = vld1q_f32(d0v);
+
+ float d1v[4];
+ d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
+ d1 = vld1q_f32(d1v);
+ }
+
+ x0 = *((float32x4_t*)(src_f32 + i) + 0);
+ x1 = *((float32x4_t*)(src_f32 + i) + 1);
+
+ x0 = vaddq_f32(x0, d0);
+ x1 = vaddq_f32(x1, d1);
+
+ x0 = vmulq_n_f32(x0, 32767.0f);
+ x1 = vmulq_n_f32(x1, 32767.0f);
+
+ i0 = vcvtq_s32_f32(x0);
+ i1 = vcvtq_s32_f32(x1);
+ *((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1));
+
+ i += 8;
+ }
+
+
+ /* Leftover. */
+ for (; i < count; i += 1) {
+ float x = src_f32[i];
+ x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+ x = x * 32767.0f; /* -1..1 to -32767..32767 */
+
+ dst_s16[i] = (ma_int16)x;
+ }
+}
+#endif /* Neon */
+#endif /* MA_USE_REFERENCE_CONVERSION_APIS */
+
+MA_API void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_uint8* dst_s24 = (ma_uint8*)dst;
+ const float* src_f32 = (const float*)src;
+
+ ma_uint64 i;
+ for (i = 0; i < count; i += 1) {
+ ma_int32 r;
+ float x = src_f32[i];
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+
+#if 0
+ /* The accurate way. */
+ x = x + 1; /* -1..1 to 0..2 */
+ x = x * 8388607.5f; /* 0..2 to 0..16777215 */
+ x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */
+#else
+ /* The fast way. */
+ x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */
+#endif
+
+ r = (ma_int32)x;
+ dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0);
+ dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8);
+ dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16);
+ }
+
+ (void)ditherMode; /* No dithering for f32 -> s24. */
+}
+
+static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_int32* dst_s32 = (ma_int32*)dst;
+ const float* src_f32 = (const float*)src;
+
+ ma_uint32 i;
+ for (i = 0; i < count; i += 1) {
+ double x = src_f32[i];
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
+
+#if 0
+ /* The accurate way. */
+ x = x + 1; /* -1..1 to 0..2 */
+ x = x * 2147483647.5; /* 0..2 to 0..4294967295 */
+ x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */
+#else
+ /* The fast way. */
+ x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */
+#endif
+
+ dst_s32[i] = (ma_int32)x;
+ }
+
+ (void)ditherMode; /* No dithering for f32 -> s32. */
+}
+
+static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
+}
+
+#if defined(MA_SUPPORT_SSE2)
+static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_AVX2)
+static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+#if defined(MA_SUPPORT_NEON)
+static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+}
+#endif
+
+MA_API void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
+#else
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+ }
+#endif
+}
+
+
+MA_API void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+{
+ (void)ditherMode;
+
+ ma_copy_memory_64(dst, src, count * sizeof(float));
+}
+
+
+static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ float* dst_f32 = (float*)dst;
+ const float** src_f32 = (const float**)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame];
+ }
+ }
+}
+
+static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ float** dst_f32 = (float**)dst;
+ const float* src_f32 = (const float*)src;
+
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel];
+ }
+ }
+}
+
+static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+ ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
+}
+
+MA_API void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+{
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+ ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
+#else
+ ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels);
+#endif
+}
+
+
+MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode)
+{
+ if (formatOut == formatIn) {
+ ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut));
+ return;
+ }
+
+ switch (formatIn)
+ {
+ case ma_format_u8:
+ {
+ switch (formatOut)
+ {
+ case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return;
+ default: break;
+ }
+ } break;
+
+ case ma_format_s16:
+ {
+ switch (formatOut)
+ {
+ case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return;
+ default: break;
+ }
+ } break;
+
+ case ma_format_s24:
+ {
+ switch (formatOut)
+ {
+ case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return;
+ default: break;
+ }
+ } break;
+
+ case ma_format_s32:
+ {
+ switch (formatOut)
+ {
+ case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return;
+ default: break;
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ switch (formatOut)
+ {
+ case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
+ case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return;
+ default: break;
+ }
+ } break;
+
+ default: break;
+ }
+}
+
+MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode)
+{
+ ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode);
+}
+
+MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames)
+{
+ if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) {
+ return; /* Invalid args. */
+ }
+
+ /* For efficiency we do this per format. */
+ switch (format) {
+ case ma_format_s16:
+ {
+ const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames;
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel];
+ pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel];
+ }
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ const float* pSrcF32 = (const float*)pInterleavedPCMFrames;
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel];
+ pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel];
+ }
+ }
+ } break;
+
+ default:
+ {
+ ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
+ const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
+ memcpy(pDst, pSrc, sampleSizeInBytes);
+ }
+ }
+ } break;
+ }
+}
+
+MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames)
+{
+ switch (format)
+ {
+ case ma_format_s16:
+ {
+ ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames;
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel];
+ pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame];
+ }
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ float* pDstF32 = (float*)pInterleavedPCMFrames;
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel];
+ pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame];
+ }
+ }
+ } break;
+
+ default:
+ {
+ ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
+ ma_uint64 iPCMFrame;
+ for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
+ const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
+ memcpy(pDst, pSrc, sampleSizeInBytes);
+ }
+ }
+ } break;
+ }
+}
+
+
/**************************************************************************************************************************************************************
Biquad Filter
@@ -28981,7 +34286,7 @@ static ma_int32 ma_biquad_float_to_fp(double x)
return (ma_int32)(x * (1 << MA_BIQUAD_FIXED_POINT_SHIFT));
}
-ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2)
+MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2)
{
ma_biquad_config config;
@@ -28998,7 +34303,7 @@ ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, dou
return config;
}
-ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ)
+MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ)
{
if (pBQ == NULL) {
return MA_INVALID_ARGS;
@@ -29013,7 +34318,7 @@ ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ)
return ma_biquad_reinit(pConfig, pBQ);
}
-ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ)
+MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ)
{
if (pBQ == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
@@ -29120,7 +34425,7 @@ static MA_INLINE void ma_biquad_process_pcm_frame_s16(ma_biquad* pBQ, ma_int16*
ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX);
}
-ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 n;
@@ -29156,7 +34461,7 @@ ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const v
return MA_SUCCESS;
}
-ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ)
+MA_API ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ)
{
if (pBQ == NULL) {
return 0;
@@ -29171,20 +34476,174 @@ ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ)
Low-Pass Filter
**************************************************************************************************************************************************************/
-ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
{
- ma_lpf_config config;
+ ma_lpf1_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
+ config.q = 0.5;
return config;
}
-static MA_INLINE ma_biquad_config ma_lpf__get_biquad_config(const ma_lpf_config* pConfig)
+MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
+{
+ ma_lpf2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+ config.q = q;
+
+ /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
+ if (config.q == 0) {
+ config.q = 0.707107;
+ }
+
+ return config;
+}
+
+
+MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, ma_lpf1* pLPF)
+{
+ if (pLPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pLPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_lpf1_reinit(pConfig, pLPF);
+}
+
+MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF)
+{
+ double a;
+
+ if (pLPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+ pLPF->format = pConfig->format;
+ pLPF->channels = pConfig->channels;
+
+ a = ma_exp(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate);
+ if (pConfig->format == ma_format_f32) {
+ pLPF->a.f32 = (float)a;
+ } else {
+ pLPF->a.s32 = ma_biquad_float_to_fp(a);
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, const float* pX)
+{
+ ma_uint32 c;
+ const float a = pLPF->a.f32;
+ const float b = 1 - a;
+
+ for (c = 0; c < pLPF->channels; c += 1) {
+ float r1 = pLPF->r1[c].f32;
+ float x = pX[c];
+ float y;
+
+ y = b*x + a*r1;
+
+ pY[c] = y;
+ pLPF->r1[c].f32 = y;
+ }
+}
+
+static MA_INLINE void ma_lpf1_process_pcm_frame_s16(ma_lpf1* pLPF, ma_int16* pY, const ma_int16* pX)
+{
+ ma_uint32 c;
+ const ma_int32 a = pLPF->a.s32;
+ const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
+
+ for (c = 0; c < pLPF->channels; c += 1) {
+ ma_int32 r1 = pLPF->r1[c].s32;
+ ma_int32 x = pX[c];
+ ma_int32 y;
+
+ y = (b*x + a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
+
+ pY[c] = (ma_int16)y;
+ pLPF->r1[c].s32 = (ma_int32)y;
+ }
+}
+
+MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint32 n;
+
+ if (pLPF == NULL || pFramesOut == NULL || pFramesIn == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
+
+ if (pLPF->format == ma_format_f32) {
+ /* */ float* pY = ( float*)pFramesOut;
+ const float* pX = (const float*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_lpf1_process_pcm_frame_f32(pLPF, pY, pX);
+ pY += pLPF->channels;
+ pX += pLPF->channels;
+ }
+ } else if (pLPF->format == ma_format_s16) {
+ /* */ ma_int16* pY = ( ma_int16*)pFramesOut;
+ const ma_int16* pX = (const ma_int16*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_lpf1_process_pcm_frame_s16(pLPF, pY, pX);
+ pY += pLPF->channels;
+ pX += pLPF->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_uint32 ma_lpf1_get_latency(ma_lpf1* pLPF)
+{
+ if (pLPF == NULL) {
+ return 0;
+ }
+
+ return 1;
+}
+
+
+static MA_INLINE ma_biquad_config ma_lpf2__get_biquad_config(const ma_lpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
@@ -29195,7 +34654,7 @@ static MA_INLINE ma_biquad_config ma_lpf__get_biquad_config(const ma_lpf_config*
MA_ASSERT(pConfig != NULL);
- q = 0.707107;
+ q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
@@ -29214,7 +34673,7 @@ static MA_INLINE ma_biquad_config ma_lpf__get_biquad_config(const ma_lpf_config*
return bqConfig;
}
-ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
+MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, ma_lpf2* pLPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29229,7 +34688,7 @@ ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_lpf__get_biquad_config(pConfig);
+ bqConfig = ma_lpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pLPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29238,7 +34697,7 @@ ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
return MA_SUCCESS;
}
-ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
+MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29247,7 +34706,7 @@ ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_lpf__get_biquad_config(pConfig);
+ bqConfig = ma_lpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pLPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29256,17 +34715,17 @@ ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
return MA_SUCCESS;
}
-static MA_INLINE void ma_lpf_process_pcm_frame_s16(ma_lpf* pLPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+static MA_INLINE void ma_lpf2_process_pcm_frame_s16(ma_lpf2* pLPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pLPF->bq, pFrameOut, pFrameIn);
}
-static MA_INLINE void ma_lpf_process_pcm_frame_f32(ma_lpf* pLPF, float* pFrameOut, const float* pFrameIn)
+static MA_INLINE void ma_lpf2_process_pcm_frame_f32(ma_lpf2* pLPF, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pLPF->bq, pFrameOut, pFrameIn);
}
-ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pLPF == NULL) {
return MA_INVALID_ARGS;
@@ -29275,7 +34734,7 @@ ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void*
return ma_biquad_process_pcm_frames(&pLPF->bq, pFramesOut, pFramesIn, frameCount);
}
-ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF)
+MA_API ma_uint32 ma_lpf2_get_latency(ma_lpf2* pLPF)
{
if (pLPF == NULL) {
return 0;
@@ -29285,14 +34744,244 @@ ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF)
}
+MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
+{
+ ma_lpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+ config.order = ma_min(order, MA_MAX_FILTER_ORDER);
+
+ return config;
+}
+
+static ma_result ma_lpf_reinit__internal(const ma_lpf_config* pConfig, ma_lpf* pLPF, ma_bool32 isNew)
+{
+ ma_result result;
+ ma_uint32 lpf1Count;
+ ma_uint32 lpf2Count;
+ ma_uint32 ilpf1;
+ ma_uint32 ilpf2;
+
+ if (pLPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+ if (pConfig->order > MA_MAX_FILTER_ORDER) {
+ return MA_INVALID_ARGS;
+ }
+
+ lpf1Count = pConfig->order % 2;
+ lpf2Count = pConfig->order / 2;
+
+ MA_ASSERT(lpf1Count <= ma_countof(pLPF->lpf1));
+ MA_ASSERT(lpf2Count <= ma_countof(pLPF->lpf2));
+
+ /* The filter order can't change between reinits. */
+ if (!isNew) {
+ if (pLPF->lpf1Count != lpf1Count || pLPF->lpf2Count != lpf2Count) {
+ return MA_INVALID_OPERATION;
+ }
+ }
+
+ for (ilpf1 = 0; ilpf1 < lpf1Count; ilpf1 += 1) {
+ ma_lpf1_config lpf1Config = ma_lpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
+
+ if (isNew) {
+ result = ma_lpf1_init(&lpf1Config, &pLPF->lpf1[ilpf1]);
+ } else {
+ result = ma_lpf1_reinit(&lpf1Config, &pLPF->lpf1[ilpf1]);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ for (ilpf2 = 0; ilpf2 < lpf2Count; ilpf2 += 1) {
+ ma_lpf2_config lpf2Config;
+ double q;
+ double a;
+
+ /* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */
+ if (lpf1Count == 1) {
+ a = (1 + ilpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */
+ } else {
+ a = (1 + ilpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */
+ }
+ q = 1 / (2*ma_cos(a));
+
+ lpf2Config = ma_lpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
+
+ if (isNew) {
+ result = ma_lpf2_init(&lpf2Config, &pLPF->lpf2[ilpf2]);
+ } else {
+ result = ma_lpf2_reinit(&lpf2Config, &pLPF->lpf2[ilpf2]);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ pLPF->lpf1Count = lpf1Count;
+ pLPF->lpf2Count = lpf2Count;
+ pLPF->format = pConfig->format;
+ pLPF->channels = pConfig->channels;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
+{
+ if (pLPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pLPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_lpf_reinit__internal(pConfig, pLPF, /*isNew*/MA_TRUE);
+}
+
+MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
+{
+ return ma_lpf_reinit__internal(pConfig, pLPF, /*isNew*/MA_FALSE);
+}
+
+static MA_INLINE void ma_lpf_process_pcm_frame_f32(ma_lpf* pLPF, float* pY, const void* pX)
+{
+ ma_uint32 ilpf1;
+ ma_uint32 ilpf2;
+
+ MA_ASSERT(pLPF->format == ma_format_f32);
+
+ MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels));
+
+ for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
+ ma_lpf1_process_pcm_frame_f32(&pLPF->lpf1[ilpf1], pY, pY);
+ }
+
+ for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
+ ma_lpf2_process_pcm_frame_f32(&pLPF->lpf2[ilpf2], pY, pY);
+ }
+}
+
+static MA_INLINE void ma_lpf_process_pcm_frame_s16(ma_lpf* pLPF, ma_int16* pY, const ma_int16* pX)
+{
+ ma_uint32 ilpf1;
+ ma_uint32 ilpf2;
+
+ MA_ASSERT(pLPF->format == ma_format_s16);
+
+ MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels));
+
+ for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
+ ma_lpf1_process_pcm_frame_s16(&pLPF->lpf1[ilpf1], pY, pY);
+ }
+
+ for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
+ ma_lpf2_process_pcm_frame_s16(&pLPF->lpf2[ilpf2], pY, pY);
+ }
+}
+
+MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_result result;
+ ma_uint32 ilpf1;
+ ma_uint32 ilpf2;
+
+ if (pLPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Faster path for in-place. */
+ if (pFramesOut == pFramesIn) {
+ for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
+ result = ma_lpf1_process_pcm_frames(&pLPF->lpf1[ilpf1], pFramesOut, pFramesOut, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
+ result = ma_lpf2_process_pcm_frames(&pLPF->lpf2[ilpf2], pFramesOut, pFramesOut, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+ }
+
+ /* Slightly slower path for copying. */
+ if (pFramesOut != pFramesIn) {
+ ma_uint32 iFrame;
+
+ /* */ if (pLPF->format == ma_format_f32) {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_lpf_process_pcm_frame_f32(pLPF, pFramesOutF32, pFramesInF32);
+ pFramesOutF32 += pLPF->channels;
+ pFramesInF32 += pLPF->channels;
+ }
+ } else if (pLPF->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_lpf_process_pcm_frame_s16(pLPF, pFramesOutS16, pFramesInS16);
+ pFramesOutS16 += pLPF->channels;
+ pFramesInS16 += pLPF->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_OPERATION; /* Should never hit this. */
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF)
+{
+ if (pLPF == NULL) {
+ return 0;
+ }
+
+ return pLPF->lpf2Count*2 + pLPF->lpf1Count;
+}
+
+
/**************************************************************************************************************************************************************
High-Pass Filtering
**************************************************************************************************************************************************************/
-ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
{
- ma_hpf_config config;
+ ma_hpf1_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
@@ -29303,7 +34992,160 @@ ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32
return config;
}
-static MA_INLINE ma_biquad_config ma_hpf__get_biquad_config(const ma_hpf_config* pConfig)
+MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
+{
+ ma_hpf2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+ config.q = q;
+
+ /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
+ if (config.q == 0) {
+ config.q = 0.707107;
+ }
+
+ return config;
+}
+
+
+MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, ma_hpf1* pHPF)
+{
+ if (pHPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pHPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_hpf1_reinit(pConfig, pHPF);
+}
+
+MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF)
+{
+ double a;
+
+ if (pHPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+ pHPF->format = pConfig->format;
+ pHPF->channels = pConfig->channels;
+
+ a = ma_exp(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate);
+ if (pConfig->format == ma_format_f32) {
+ pHPF->a.f32 = (float)a;
+ } else {
+ pHPF->a.s32 = ma_biquad_float_to_fp(a);
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, const float* pX)
+{
+ ma_uint32 c;
+ const float a = 1 - pHPF->a.f32;
+ const float b = 1 - a;
+
+ for (c = 0; c < pHPF->channels; c += 1) {
+ float r1 = pHPF->r1[c].f32;
+ float x = pX[c];
+ float y;
+
+ y = b*x - a*r1;
+
+ pY[c] = y;
+ pHPF->r1[c].f32 = y;
+ }
+}
+
+static MA_INLINE void ma_hpf1_process_pcm_frame_s16(ma_hpf1* pHPF, ma_int16* pY, const ma_int16* pX)
+{
+ ma_uint32 c;
+ const ma_int32 a = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - pHPF->a.s32);
+ const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
+
+ for (c = 0; c < pHPF->channels; c += 1) {
+ ma_int32 r1 = pHPF->r1[c].s32;
+ ma_int32 x = pX[c];
+ ma_int32 y;
+
+ y = (b*x - a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
+
+ pY[c] = (ma_int16)y;
+ pHPF->r1[c].s32 = (ma_int32)y;
+ }
+}
+
+MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint32 n;
+
+ if (pHPF == NULL || pFramesOut == NULL || pFramesIn == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
+
+ if (pHPF->format == ma_format_f32) {
+ /* */ float* pY = ( float*)pFramesOut;
+ const float* pX = (const float*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_hpf1_process_pcm_frame_f32(pHPF, pY, pX);
+ pY += pHPF->channels;
+ pX += pHPF->channels;
+ }
+ } else if (pHPF->format == ma_format_s16) {
+ /* */ ma_int16* pY = ( ma_int16*)pFramesOut;
+ const ma_int16* pX = (const ma_int16*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_hpf1_process_pcm_frame_s16(pHPF, pY, pX);
+ pY += pHPF->channels;
+ pX += pHPF->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_uint32 ma_hpf1_get_latency(ma_hpf1* pHPF)
+{
+ if (pHPF == NULL) {
+ return 0;
+ }
+
+ return 1;
+}
+
+
+static MA_INLINE ma_biquad_config ma_hpf2__get_biquad_config(const ma_hpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
@@ -29314,7 +35156,7 @@ static MA_INLINE ma_biquad_config ma_hpf__get_biquad_config(const ma_hpf_config*
MA_ASSERT(pConfig != NULL);
- q = 0.707107;
+ q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
@@ -29333,7 +35175,7 @@ static MA_INLINE ma_biquad_config ma_hpf__get_biquad_config(const ma_hpf_config*
return bqConfig;
}
-ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, ma_hpf2* pHPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29348,7 +35190,7 @@ ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_hpf__get_biquad_config(pConfig);
+ bqConfig = ma_hpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pHPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29357,7 +35199,7 @@ ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
return MA_SUCCESS;
}
-ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29366,7 +35208,7 @@ ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_hpf__get_biquad_config(pConfig);
+ bqConfig = ma_hpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pHPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29375,7 +35217,17 @@ ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
return MA_SUCCESS;
}
-ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+static MA_INLINE void ma_hpf2_process_pcm_frame_s16(ma_hpf2* pHPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pHPF->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_hpf2_process_pcm_frame_f32(ma_hpf2* pHPF, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pHPF->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pHPF == NULL) {
return MA_INVALID_ARGS;
@@ -29384,7 +35236,7 @@ ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void*
return ma_biquad_process_pcm_frames(&pHPF->bq, pFramesOut, pFramesIn, frameCount);
}
-ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
+MA_API ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF)
{
if (pHPF == NULL) {
return 0;
@@ -29394,26 +35246,244 @@ ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
}
+MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
+{
+ ma_hpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+ config.order = ma_min(order, MA_MAX_FILTER_ORDER);
+
+ return config;
+}
+
+static ma_result ma_hpf_reinit__internal(const ma_hpf_config* pConfig, ma_hpf* pHPF, ma_bool32 isNew)
+{
+ ma_result result;
+ ma_uint32 hpf1Count;
+ ma_uint32 hpf2Count;
+ ma_uint32 ihpf1;
+ ma_uint32 ihpf2;
+
+ if (pHPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+ if (pConfig->order > MA_MAX_FILTER_ORDER) {
+ return MA_INVALID_ARGS;
+ }
+
+ hpf1Count = pConfig->order % 2;
+ hpf2Count = pConfig->order / 2;
+
+ MA_ASSERT(hpf1Count <= ma_countof(pHPF->hpf1));
+ MA_ASSERT(hpf2Count <= ma_countof(pHPF->hpf2));
+
+ /* The filter order can't change between reinits. */
+ if (!isNew) {
+ if (pHPF->hpf1Count != hpf1Count || pHPF->hpf2Count != hpf2Count) {
+ return MA_INVALID_OPERATION;
+ }
+ }
+
+ for (ihpf1 = 0; ihpf1 < hpf1Count; ihpf1 += 1) {
+ ma_hpf1_config hpf1Config = ma_hpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
+
+ if (isNew) {
+ result = ma_hpf1_init(&hpf1Config, &pHPF->hpf1[ihpf1]);
+ } else {
+ result = ma_hpf1_reinit(&hpf1Config, &pHPF->hpf1[ihpf1]);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ for (ihpf2 = 0; ihpf2 < hpf2Count; ihpf2 += 1) {
+ ma_hpf2_config hpf2Config;
+ double q;
+ double a;
+
+ /* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */
+ if (hpf1Count == 1) {
+ a = (1 + ihpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */
+ } else {
+ a = (1 + ihpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */
+ }
+ q = 1 / (2*ma_cos(a));
+
+ hpf2Config = ma_hpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
+
+ if (isNew) {
+ result = ma_hpf2_init(&hpf2Config, &pHPF->hpf2[ihpf2]);
+ } else {
+ result = ma_hpf2_reinit(&hpf2Config, &pHPF->hpf2[ihpf2]);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ pHPF->hpf1Count = hpf1Count;
+ pHPF->hpf2Count = hpf2Count;
+ pHPF->format = pConfig->format;
+ pHPF->channels = pConfig->channels;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+{
+ if (pHPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pHPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_TRUE);
+}
+
+MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+{
+ return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_FALSE);
+}
+
+MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_result result;
+ ma_uint32 ihpf1;
+ ma_uint32 ihpf2;
+
+ if (pHPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Faster path for in-place. */
+ if (pFramesOut == pFramesIn) {
+ for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
+ result = ma_hpf1_process_pcm_frames(&pHPF->hpf1[ihpf1], pFramesOut, pFramesOut, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
+ result = ma_hpf2_process_pcm_frames(&pHPF->hpf2[ihpf2], pFramesOut, pFramesOut, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+ }
+
+ /* Slightly slower path for copying. */
+ if (pFramesOut != pFramesIn) {
+ ma_uint32 iFrame;
+
+ /* */ if (pHPF->format == ma_format_f32) {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
+
+ for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
+ ma_hpf1_process_pcm_frame_f32(&pHPF->hpf1[ihpf1], pFramesOutF32, pFramesOutF32);
+ }
+
+ for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
+ ma_hpf2_process_pcm_frame_f32(&pHPF->hpf2[ihpf2], pFramesOutF32, pFramesOutF32);
+ }
+
+ pFramesOutF32 += pHPF->channels;
+ pFramesInF32 += pHPF->channels;
+ }
+ } else if (pHPF->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
+
+ for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
+ ma_hpf1_process_pcm_frame_s16(&pHPF->hpf1[ihpf1], pFramesOutS16, pFramesOutS16);
+ }
+
+ for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
+ ma_hpf2_process_pcm_frame_s16(&pHPF->hpf2[ihpf2], pFramesOutS16, pFramesOutS16);
+ }
+
+ pFramesOutS16 += pHPF->channels;
+ pFramesInS16 += pHPF->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_OPERATION; /* Should never hit this. */
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
+{
+ if (pHPF == NULL) {
+ return 0;
+ }
+
+ return pHPF->hpf2Count*2 + pHPF->hpf1Count;
+}
+
+
/**************************************************************************************************************************************************************
Band-Pass Filtering
**************************************************************************************************************************************************************/
-ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
{
- ma_bpf_config config;
+ ma_bpf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
+ config.q = q;
+
+ /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
+ if (config.q == 0) {
+ config.q = 0.707107;
+ }
return config;
}
-static MA_INLINE ma_biquad_config ma_bpf__get_biquad_config(const ma_bpf_config* pConfig)
+static MA_INLINE ma_biquad_config ma_bpf2__get_biquad_config(const ma_bpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
@@ -29424,7 +35494,7 @@ static MA_INLINE ma_biquad_config ma_bpf__get_biquad_config(const ma_bpf_config*
MA_ASSERT(pConfig != NULL);
- q = 0.707107;
+ q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
@@ -29443,7 +35513,7 @@ static MA_INLINE ma_biquad_config ma_bpf__get_biquad_config(const ma_bpf_config*
return bqConfig;
}
-ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, ma_bpf2* pBPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29458,7 +35528,7 @@ ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_bpf__get_biquad_config(pConfig);
+ bqConfig = ma_bpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pBPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29467,7 +35537,7 @@ ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
return MA_SUCCESS;
}
-ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF)
{
ma_result result;
ma_biquad_config bqConfig;
@@ -29476,7 +35546,7 @@ ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
return MA_INVALID_ARGS;
}
- bqConfig = ma_bpf__get_biquad_config(pConfig);
+ bqConfig = ma_bpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pBPF->bq);
if (result != MA_SUCCESS) {
return result;
@@ -29485,7 +35555,17 @@ ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
return MA_SUCCESS;
}
-ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+static MA_INLINE void ma_bpf2_process_pcm_frame_s16(ma_bpf2* pBPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pBPF->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_bpf2_process_pcm_frame_f32(ma_bpf2* pBPF, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pBPF->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pBPF == NULL) {
return MA_INVALID_ARGS;
@@ -29494,7 +35574,7 @@ ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void*
return ma_biquad_process_pcm_frames(&pBPF->bq, pFramesOut, pFramesIn, frameCount);
}
-ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF)
+MA_API ma_uint32 ma_bpf2_get_latency(ma_bpf2* pBPF)
{
if (pBPF == NULL) {
return 0;
@@ -29504,13 +35584,695 @@ ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF)
}
+MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
+{
+ ma_bpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+ config.order = ma_min(order, MA_MAX_FILTER_ORDER);
+
+ return config;
+}
+
+static ma_result ma_bpf_reinit__internal(const ma_bpf_config* pConfig, ma_bpf* pBPF, ma_bool32 isNew)
+{
+ ma_result result;
+ ma_uint32 bpf2Count;
+ ma_uint32 ibpf2;
+
+ if (pBPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pBPF->format != ma_format_unknown && pBPF->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pBPF->channels != 0 && pBPF->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+ if (pConfig->order > MA_MAX_FILTER_ORDER) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* We must have an even number of order. */
+ if ((pConfig->order & 0x1) != 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ bpf2Count = pConfig->order / 2;
+
+ MA_ASSERT(bpf2Count <= ma_countof(pBPF->bpf2));
+
+ /* The filter order can't change between reinits. */
+ if (!isNew) {
+ if (pBPF->bpf2Count != bpf2Count) {
+ return MA_INVALID_OPERATION;
+ }
+ }
+
+ for (ibpf2 = 0; ibpf2 < bpf2Count; ibpf2 += 1) {
+ ma_bpf2_config bpf2Config;
+ double q;
+
+ /* TODO: Calculate Q to make this a proper Butterworth filter. */
+ q = 0.707107;
+
+ bpf2Config = ma_bpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
+
+ if (isNew) {
+ result = ma_bpf2_init(&bpf2Config, &pBPF->bpf2[ibpf2]);
+ } else {
+ result = ma_bpf2_reinit(&bpf2Config, &pBPF->bpf2[ibpf2]);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ pBPF->bpf2Count = bpf2Count;
+ pBPF->format = pConfig->format;
+ pBPF->channels = pConfig->channels;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+{
+ if (pBPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pBPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_bpf_reinit__internal(pConfig, pBPF, /*isNew*/MA_TRUE);
+}
+
+MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+{
+ return ma_bpf_reinit__internal(pConfig, pBPF, /*isNew*/MA_FALSE);
+}
+
+MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_result result;
+ ma_uint32 ibpf2;
+
+ if (pBPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Faster path for in-place. */
+ if (pFramesOut == pFramesIn) {
+ for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
+ result = ma_bpf2_process_pcm_frames(&pBPF->bpf2[ibpf2], pFramesOut, pFramesOut, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+ }
+
+ /* Slightly slower path for copying. */
+ if (pFramesOut != pFramesIn) {
+ ma_uint32 iFrame;
+
+ /* */ if (pBPF->format == ma_format_f32) {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pBPF->format, pBPF->channels));
+
+ for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
+ ma_bpf2_process_pcm_frame_f32(&pBPF->bpf2[ibpf2], pFramesOutF32, pFramesOutF32);
+ }
+
+ pFramesOutF32 += pBPF->channels;
+ pFramesInF32 += pBPF->channels;
+ }
+ } else if (pBPF->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pBPF->format, pBPF->channels));
+
+ for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
+ ma_bpf2_process_pcm_frame_s16(&pBPF->bpf2[ibpf2], pFramesOutS16, pFramesOutS16);
+ }
+
+ pFramesOutS16 += pBPF->channels;
+ pFramesInS16 += pBPF->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_OPERATION; /* Should never hit this. */
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF)
+{
+ if (pBPF == NULL) {
+ return 0;
+ }
+
+ return pBPF->bpf2Count*2;
+}
+
+
+/**************************************************************************************************************************************************************
+
+Notching Filter
+
+**************************************************************************************************************************************************************/
+MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency)
+{
+ ma_notch2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.q = q;
+ config.frequency = frequency;
+
+ if (config.q == 0) {
+ config.q = 0.707107;
+ }
+
+ return config;
+}
+
+
+static MA_INLINE ma_biquad_config ma_notch2__get_biquad_config(const ma_notch2_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double q;
+ double w;
+ double s;
+ double c;
+ double a;
+
+ MA_ASSERT(pConfig != NULL);
+
+ q = pConfig->q;
+ w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ a = s / (2*q);
+
+ bqConfig.b0 = 1;
+ bqConfig.b1 = -2 * c;
+ bqConfig.b2 = 1;
+ bqConfig.a0 = 1 + a;
+ bqConfig.a1 = -2 * c;
+ bqConfig.a2 = 1 - a;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, ma_notch2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pFilter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_notch2__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_notch2__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_notch2_process_pcm_frame_s16(ma_notch2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_notch2_process_pcm_frame_f32(ma_notch2* pFilter, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+MA_API ma_uint32 ma_notch2_get_latency(ma_notch2* pFilter)
+{
+ if (pFilter == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pFilter->bq);
+}
+
+
+
+/**************************************************************************************************************************************************************
+
+Peaking EQ Filter
+
+**************************************************************************************************************************************************************/
+MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency)
+{
+ ma_peak2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.gainDB = gainDB;
+ config.q = q;
+ config.frequency = frequency;
+
+ if (config.q == 0) {
+ config.q = 0.707107;
+ }
+
+ return config;
+}
+
+
+static MA_INLINE ma_biquad_config ma_peak2__get_biquad_config(const ma_peak2_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double q;
+ double w;
+ double s;
+ double c;
+ double a;
+ double A;
+
+ MA_ASSERT(pConfig != NULL);
+
+ q = pConfig->q;
+ w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ a = s / (2*q);
+ A = ma_pow(10, (pConfig->gainDB / 40));
+
+ bqConfig.b0 = 1 + (a * A);
+ bqConfig.b1 = -2 * c;
+ bqConfig.b2 = 1 - (a * A);
+ bqConfig.a0 = 1 + (a / A);
+ bqConfig.a1 = -2 * c;
+ bqConfig.a2 = 1 - (a / A);
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, ma_peak2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pFilter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_peak2__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_peak2__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_peak2_process_pcm_frame_s16(ma_peak2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_peak2_process_pcm_frame_f32(ma_peak2* pFilter, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+MA_API ma_uint32 ma_peak2_get_latency(ma_peak2* pFilter)
+{
+ if (pFilter == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pFilter->bq);
+}
+
+
+/**************************************************************************************************************************************************************
+
+Low Shelf Filter
+
+**************************************************************************************************************************************************************/
+MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency)
+{
+ ma_loshelf2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.gainDB = gainDB;
+ config.shelfSlope = shelfSlope;
+ config.frequency = frequency;
+
+ return config;
+}
+
+
+static MA_INLINE ma_biquad_config ma_loshelf2__get_biquad_config(const ma_loshelf2_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double w;
+ double s;
+ double c;
+ double A;
+ double S;
+ double a;
+ double sqrtA;
+
+ MA_ASSERT(pConfig != NULL);
+
+ w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ A = ma_pow(10, (pConfig->gainDB / 40));
+ S = pConfig->shelfSlope;
+ a = s/2 * ma_sqrt((A + 1/A) * (1/S - 1) + 2);
+ sqrtA = 2*ma_sqrt(A)*a;
+
+ bqConfig.b0 = A * ((A + 1) - (A - 1)*c + sqrtA);
+ bqConfig.b1 = 2 * A * ((A - 1) - (A + 1)*c);
+ bqConfig.b2 = A * ((A + 1) - (A - 1)*c - sqrtA);
+ bqConfig.a0 = (A + 1) + (A - 1)*c + sqrtA;
+ bqConfig.a1 = -2 * ((A - 1) + (A + 1)*c);
+ bqConfig.a2 = (A + 1) + (A - 1)*c - sqrtA;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pFilter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_loshelf2__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_loshelf2__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_loshelf2_process_pcm_frame_s16(ma_loshelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_loshelf2_process_pcm_frame_f32(ma_loshelf2* pFilter, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+MA_API ma_uint32 ma_loshelf2_get_latency(ma_loshelf2* pFilter)
+{
+ if (pFilter == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pFilter->bq);
+}
+
+
+/**************************************************************************************************************************************************************
+
+High Shelf Filter
+
+**************************************************************************************************************************************************************/
+MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency)
+{
+ ma_hishelf2_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.gainDB = gainDB;
+ config.shelfSlope = shelfSlope;
+ config.frequency = frequency;
+
+ return config;
+}
+
+
+static MA_INLINE ma_biquad_config ma_hishelf2__get_biquad_config(const ma_hishelf2_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double w;
+ double s;
+ double c;
+ double A;
+ double S;
+ double a;
+ double sqrtA;
+
+ MA_ASSERT(pConfig != NULL);
+
+ w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ A = ma_pow(10, (pConfig->gainDB / 40));
+ S = pConfig->shelfSlope;
+ a = s/2 * ma_sqrt((A + 1/A) * (1/S - 1) + 2);
+ sqrtA = 2*ma_sqrt(A)*a;
+
+ bqConfig.b0 = A * ((A + 1) + (A - 1)*c + sqrtA);
+ bqConfig.b1 = -2 * A * ((A - 1) + (A + 1)*c);
+ bqConfig.b2 = A * ((A + 1) + (A - 1)*c - sqrtA);
+ bqConfig.a0 = (A + 1) - (A - 1)*c + sqrtA;
+ bqConfig.a1 = 2 * ((A - 1) - (A + 1)*c);
+ bqConfig.a2 = (A + 1) - (A - 1)*c - sqrtA;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pFilter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_hishelf2__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pFilter == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_hishelf2__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_hishelf2_process_pcm_frame_s16(ma_hishelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_hishelf2_process_pcm_frame_f32(ma_hishelf2* pFilter, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
+}
+
+MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pFilter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+MA_API ma_uint32 ma_hishelf2_get_latency(ma_hishelf2* pFilter)
+{
+ if (pFilter == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pFilter->bq);
+}
+
+
/**************************************************************************************************************************************************************
Resampling
**************************************************************************************************************************************************************/
-ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
ma_linear_resampler_config config;
MA_ZERO_OBJECT(&config);
@@ -29518,15 +36280,38 @@ ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_
config.channels = channels;
config.sampleRateIn = sampleRateIn;
config.sampleRateOut = sampleRateOut;
- config.lpfCount = 1;
+ config.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.lpfNyquistFactor = 1;
return config;
}
+static void ma_linear_resampler_adjust_timer_for_new_rate(ma_linear_resampler* pResampler, ma_uint32 oldSampleRateOut, ma_uint32 newSampleRateOut)
+{
+ /*
+ So what's happening here? Basically we need to adjust the fractional component of the time advance based on the new rate. The old time advance will
+ be based on the old sample rate, but we are needing to adjust it to that it's based on the new sample rate.
+ */
+ ma_uint32 oldRateTimeWhole = pResampler->inTimeFrac / oldSampleRateOut; /* <-- This should almost never be anything other than 0, but leaving it here to make this more general and robust just in case. */
+ ma_uint32 oldRateTimeFract = pResampler->inTimeFrac % oldSampleRateOut;
+
+ pResampler->inTimeFrac =
+ (oldRateTimeWhole * newSampleRateOut) +
+ ((oldRateTimeFract * newSampleRateOut) / oldSampleRateOut);
+
+ /* Make sure the fractional part is less than the output sample rate. */
+ pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut;
+ pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut;
+}
+
static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_bool32 isResamplerAlreadyInitialized)
{
+ ma_result result;
ma_uint32 gcf;
+ ma_uint32 lpfSampleRate;
+ double lpfCutoffFrequency;
+ ma_lpf_config lpfConfig;
+ ma_uint32 oldSampleRateOut; /* Required for adjusting time advance down the bottom. */
if (pResampler == NULL) {
return MA_INVALID_ARGS;
@@ -29536,60 +36321,51 @@ static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pRes
return MA_INVALID_ARGS;
}
+ oldSampleRateOut = pResampler->config.sampleRateOut;
+
+ pResampler->config.sampleRateIn = sampleRateIn;
+ pResampler->config.sampleRateOut = sampleRateOut;
+
/* Simplify the sample rate. */
gcf = ma_gcf_u32(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut);
pResampler->config.sampleRateIn /= gcf;
pResampler->config.sampleRateOut /= gcf;
- if (pResampler->config.lpfCount > 0) {
- ma_result result;
- ma_uint32 iFilter;
- ma_uint32 lpfSampleRate;
- double lpfCutoffFrequency;
- ma_lpf_config lpfConfig;
-
- if (pResampler->config.lpfCount > MA_MAX_RESAMPLER_LPF_FILTERS) {
- return MA_INVALID_ARGS;
- }
-
- lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut));
- lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor);
-
- lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency);
-
- /*
- If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames
- getting cleared. Instead we re-initialize the filter which will maintain any cached frames.
- */
- result = MA_SUCCESS;
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- if (isResamplerAlreadyInitialized) {
- result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf[iFilter]);
- } else {
- result = ma_lpf_init(&lpfConfig, &pResampler->lpf[iFilter]);
- }
-
- if (result != MA_SUCCESS) {
- break;
- }
- }
-
- if (result != MA_SUCCESS) {
- return result; /* Failed to initialize the low-pass filter. */
- }
+ /* Always initialize the low-pass filter, even when the order is 0. */
+ if (pResampler->config.lpfOrder > MA_MAX_FILTER_ORDER) {
+ return MA_INVALID_ARGS;
}
+ lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut));
+ lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor);
+
+ lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency, pResampler->config.lpfOrder);
+
+ /*
+ If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames
+ getting cleared. Instead we re-initialize the filter which will maintain any cached frames.
+ */
+ if (isResamplerAlreadyInitialized) {
+ result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf);
+ } else {
+ result = ma_lpf_init(&lpfConfig, &pResampler->lpf);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+
pResampler->inAdvanceInt = pResampler->config.sampleRateIn / pResampler->config.sampleRateOut;
pResampler->inAdvanceFrac = pResampler->config.sampleRateIn % pResampler->config.sampleRateOut;
- /* Make sure the fractional part is less than the output sample rate. */
- pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut;
- pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut;
+ /* Our timer was based on the old rate. We need to adjust it so that it's based on the new rate. */
+ ma_linear_resampler_adjust_timer_for_new_rate(pResampler, oldSampleRateOut, pResampler->config.sampleRateOut);
return MA_SUCCESS;
}
-ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler)
+MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler)
{
ma_result result;
@@ -29617,7 +36393,7 @@ ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma
return MA_SUCCESS;
}
-void ma_linear_resampler_uninit(ma_linear_resampler* pResampler)
+MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler)
{
if (pResampler == NULL) {
return;
@@ -29693,14 +36469,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear
framesProcessedIn = 0;
framesProcessedOut = 0;
- for (;;) {
- if (framesProcessedOut >= frameCountOut) {
- break;
- }
-
+ while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
- while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
- ma_uint32 iFilter;
+ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInS16 != NULL) {
@@ -29717,11 +36488,8 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear
}
/* Filter. */
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- ma_lpf_process_pcm_frame_s16(&pResampler->lpf[iFilter], pResampler->x1.s16, pResampler->x1.s16);
- }
+ ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pResampler->x1.s16, pResampler->x1.s16);
- frameCountIn -= 1;
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
@@ -29775,15 +36543,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_r
framesProcessedIn = 0;
framesProcessedOut = 0;
- for (;;) {
- ma_uint32 iFilter;
-
- if (framesProcessedOut >= frameCountOut) {
- break;
- }
-
+ while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. */
- while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInS16 != NULL) {
@@ -29799,7 +36561,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_r
}
}
- frameCountIn -= 1;
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
@@ -29814,9 +36575,7 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_r
ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16);
/* Filter. */
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- ma_lpf_process_pcm_frame_s16(&pResampler->lpf[iFilter], pFramesOutS16, pFramesOutS16);
- }
+ ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pFramesOutS16, pFramesOutS16);
pFramesOutS16 += pResampler->config.channels;
}
@@ -29870,14 +36629,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear
framesProcessedIn = 0;
framesProcessedOut = 0;
- for (;;) {
- if (framesProcessedOut >= frameCountOut) {
- break;
- }
-
+ while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
- while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
- ma_uint32 iFilter;
+ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInF32 != NULL) {
@@ -29894,11 +36648,8 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear
}
/* Filter. */
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- ma_lpf_process_pcm_frame_f32(&pResampler->lpf[iFilter], pResampler->x1.f32, pResampler->x1.f32);
- }
+ ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pResampler->x1.f32, pResampler->x1.f32);
- frameCountIn -= 1;
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
@@ -29952,15 +36703,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_r
framesProcessedIn = 0;
framesProcessedOut = 0;
- for (;;) {
- ma_uint32 iFilter;
-
- if (framesProcessedOut >= frameCountOut) {
- break;
- }
-
+ while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. */
- while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInF32 != NULL) {
@@ -29976,7 +36721,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_r
}
}
- frameCountIn -= 1;
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
@@ -29991,9 +36735,7 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_r
ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32);
/* Filter. */
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- ma_lpf_process_pcm_frame_f32(&pResampler->lpf[iFilter], pFramesOutF32, pFramesOutF32);
- }
+ ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pFramesOutF32, pFramesOutF32);
pFramesOutF32 += pResampler->config.channels;
}
@@ -30027,7 +36769,7 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32(ma_linear_resampler*
}
-ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
@@ -30045,17 +36787,17 @@ ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler
}
-ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
return ma_linear_resampler_set_rate_internal(pResampler, sampleRateIn, sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_TRUE);
}
-ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut)
+MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut)
{
ma_uint32 n;
ma_uint32 d;
- d = 1000000; /* We use up to 6 decimal places. */
+ d = 1000;
n = (ma_uint32)(ratioInOut * d);
if (n == 0) {
@@ -30068,9 +36810,9 @@ ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, fl
}
-ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount)
+MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount)
{
- ma_uint64 count;
+ ma_uint64 inputFrameCount;
if (pResampler == NULL) {
return 0;
@@ -30081,74 +36823,63 @@ ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler
}
/* Any whole input frames are consumed before the first output frame is generated. */
- count = pResampler->inTimeInt;
+ inputFrameCount = pResampler->inTimeInt;
outputFrameCount -= 1;
/* The rest of the output frames can be calculated in constant time. */
- count += outputFrameCount * pResampler->inAdvanceInt;
- count += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut;
+ inputFrameCount += outputFrameCount * pResampler->inAdvanceInt;
+ inputFrameCount += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut;
- return count;
+ return inputFrameCount;
}
-ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount)
+MA_API ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount)
{
ma_uint64 outputFrameCount;
- ma_uint64 inTimeInt;
- ma_uint64 inTimeFrac;
-
+ ma_uint64 preliminaryInputFrameCountFromFrac;
+ ma_uint64 preliminaryInputFrameCount;
+
if (pResampler == NULL) {
return 0;
}
- /* TODO: Try making this run in constant time. */
+ /*
+ The first step is to get a preliminary output frame count. This will either be exactly equal to what we need, or less by 1. We need to
+ determine how many input frames will be consumed by this value. If it's greater than our original input frame count it means we won't
+ be able to generate an extra frame because we will have run out of input data. Otherwise we will have enough input for the generation
+ of an extra output frame. This add-by-one logic is necessary due to how the data loading logic works when processing frames.
+ */
+ outputFrameCount = (inputFrameCount * pResampler->config.sampleRateOut) / pResampler->config.sampleRateIn;
- outputFrameCount = 0;
- inTimeInt = pResampler->inTimeInt;
- inTimeFrac = pResampler->inTimeFrac;
-
- for (;;) {
- while (inTimeInt > 0 && inputFrameCount > 0) {
- inputFrameCount -= 1;
- inTimeInt -= 1;
- }
-
- if (inTimeInt > 0) {
- break;
- }
+ /*
+ We need to determine how many *whole* input frames will have been processed to generate our preliminary output frame count. This is
+ used in the logic below to determine whether or not we need to add an extra output frame.
+ */
+ preliminaryInputFrameCountFromFrac = (pResampler->inTimeFrac + outputFrameCount*pResampler->inAdvanceFrac) / pResampler->config.sampleRateOut;
+ preliminaryInputFrameCount = (pResampler->inTimeInt + outputFrameCount*pResampler->inAdvanceInt ) + preliminaryInputFrameCountFromFrac;
+ /*
+ If the total number of *whole* input frames that would be required to generate our preliminary output frame count is greather than
+ the amount of whole input frames we have available as input we need to *not* add an extra output frame as there won't be enough data
+ to actually process. Otherwise we need to add the extra output frame.
+ */
+ if (preliminaryInputFrameCount <= inputFrameCount) {
outputFrameCount += 1;
-
- /* Advance time forward. */
- inTimeInt += pResampler->inAdvanceInt;
- inTimeFrac += pResampler->inAdvanceFrac;
- if (inTimeFrac >= pResampler->config.sampleRateOut) {
- inTimeFrac -= pResampler->config.sampleRateOut;
- inTimeInt += 1;
- }
}
return outputFrameCount;
}
-ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler)
+MA_API ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler)
{
- ma_uint32 latency;
- ma_uint32 iFilter;
-
if (pResampler == NULL) {
return 0;
}
- latency = 1;
- for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
- latency += ma_lpf_get_latency(&pResampler->lpf[iFilter]);
- }
-
- return latency;
+ return 1 + ma_lpf_get_latency(&pResampler->lpf);
}
-ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler)
+MA_API ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
@@ -30176,7 +36907,7 @@ static ma_result ma_result_from_speex_err(int err)
}
#endif /* ma_speex_resampler_h */
-ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm)
+MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm)
{
ma_resampler_config config;
@@ -30188,7 +36919,7 @@ ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channel
config.algorithm = algorithm;
/* Linear. */
- config.linear.lpfCount = 1;
+ config.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.linear.lpfNyquistFactor = 1;
/* Speex. */
@@ -30197,7 +36928,7 @@ ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channel
return config;
}
-ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler)
+MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler)
{
ma_result result;
@@ -30223,7 +36954,7 @@ ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pR
{
ma_linear_resampler_config linearConfig;
linearConfig = ma_linear_resampler_config_init(pConfig->format, pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut);
- linearConfig.lpfCount = pConfig->linear.lpfCount;
+ linearConfig.lpfOrder = pConfig->linear.lpfOrder;
linearConfig.lpfNyquistFactor = pConfig->linear.lpfNyquistFactor;
result = ma_linear_resampler_init(&linearConfig, &pResampler->state.linear);
@@ -30252,7 +36983,7 @@ ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pR
return MA_SUCCESS;
}
-void ma_resampler_uninit(ma_resampler* pResampler)
+MA_API void ma_resampler_uninit(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return;
@@ -30496,7 +37227,7 @@ static ma_result ma_resampler_process_pcm_frames__seek(ma_resampler* pResampler,
}
-ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
@@ -30515,7 +37246,7 @@ ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void*
}
}
-ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
@@ -30552,7 +37283,7 @@ ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn
return MA_INVALID_OPERATION;
}
-ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
+MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
@@ -30565,7 +37296,7 @@ ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
ma_uint32 n;
ma_uint32 d;
- d = 1000000; /* We use up to 6 decimal places. */
+ d = 1000;
n = (ma_uint32)(ratio * d);
if (n == 0) {
@@ -30578,7 +37309,7 @@ ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
}
}
-ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount)
+MA_API ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount)
{
if (pResampler == NULL) {
return 0;
@@ -30618,7 +37349,7 @@ ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler,
return 0;
}
-ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount)
+MA_API ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount)
{
if (pResampler == NULL) {
return 0; /* Invalid args. */
@@ -30658,7 +37389,7 @@ ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler,
return 0;
}
-ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler)
+MA_API ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
@@ -30688,7 +37419,7 @@ ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler)
return 0;
}
-ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler)
+MA_API ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
@@ -30734,7 +37465,7 @@ Channel Conversion
#define MA_PLANE_BOTTOM 4
#define MA_PLANE_TOP 5
-float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
+static float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_NONE */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_MONO */
{ 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT */
@@ -30789,7 +37520,7 @@ float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */
};
-float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositionA, ma_channel channelPositionB)
+static float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositionA, ma_channel channelPositionB)
{
/*
Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to
@@ -30832,7 +37563,7 @@ float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositio
return contribution;
}
-ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode)
+MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode)
{
ma_channel_converter_config config;
MA_ZERO_OBJECT(&config);
@@ -30846,7 +37577,7 @@ ma_channel_converter_config ma_channel_converter_config_init(ma_format format, m
return config;
}
-static ma_int32 ma_channel_converter_float_to_fp(float x)
+static ma_int32 ma_channel_converter_float_to_fixed(float x)
{
return (ma_int32)(x * (1<format != ma_format_s16 && pConfig->format != ma_format_f32) {
- return MA_INVALID_ARGS; /* Invalid format. */
- }
-
pConverter->format = pConfig->format;
pConverter->channelsIn = pConfig->channelsIn;
pConverter->channelsOut = pConfig->channelsOut;
@@ -30903,10 +37630,10 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
- if (pConverter->format == ma_format_s16) {
+ if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = pConfig->weights[iChannelIn][iChannelOut];
} else {
- pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(pConfig->weights[iChannelIn][iChannelOut]);
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(pConfig->weights[iChannelIn][iChannelOut]);
}
}
}
@@ -31013,10 +37740,10 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (channelPosIn == channelPosOut) {
- if (pConverter->format == ma_format_s16) {
- pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
- } else {
+ if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
+ } else {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
}
}
}
@@ -31034,10 +37761,10 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (channelPosOut != MA_CHANNEL_NONE && channelPosOut != MA_CHANNEL_MONO && channelPosOut != MA_CHANNEL_LFE) {
- if (pConverter->format == ma_format_s16) {
- pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
- } else {
+ if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
+ } else {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
}
}
}
@@ -31066,10 +37793,10 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
- if (pConverter->format == ma_format_s16) {
- pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(monoWeight);
- } else {
+ if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = monoWeight;
+ } else {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(monoWeight);
}
}
}
@@ -31100,14 +37827,14 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
- if (pConverter->format == ma_format_s16) {
- if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
- pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight);
- }
- } else {
+ if (pConverter->format == ma_format_f32) {
if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
}
+ } else {
+ if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight);
+ }
}
}
}
@@ -31131,14 +37858,14 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
- if (pConverter->format == ma_format_s16) {
- if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
- pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight);
- }
- } else {
+ if (pConverter->format == ma_format_f32) {
if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
}
+ } else {
+ if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight);
+ }
}
}
}
@@ -31159,7 +37886,7 @@ ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig,
return MA_SUCCESS;
}
-void ma_channel_converter_uninit(ma_channel_converter* pConverter)
+MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter)
{
if (pConverter == NULL) {
return;
@@ -31186,24 +37913,87 @@ static ma_result ma_channel_converter_process_pcm_frames__simple_shuffle(ma_chan
MA_ASSERT(pFramesIn != NULL);
MA_ASSERT(pConverter->channelsIn == pConverter->channelsOut);
- if (pConverter->format == ma_format_s16) {
- /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
- const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+ switch (pConverter->format)
+ {
+ case ma_format_u8:
+ {
+ /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
- pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn];
- }
- }
- } else {
- /* */ float* pFramesOutF32 = ( float*)pFramesOut;
- const float* pFramesInF32 = (const float*)pFramesIn;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutU8[pConverter->shuffleTable[iChannelIn]] = pFramesInU8[iChannelIn];
+ }
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
- pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn];
+ pFramesOutU8 += pConverter->channelsOut;
+ pFramesInU8 += pConverter->channelsIn;
}
- }
+ } break;
+
+ case ma_format_s16:
+ {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn];
+ }
+
+ pFramesOutS16 += pConverter->channelsOut;
+ pFramesInS16 += pConverter->channelsIn;
+ }
+ } break;
+
+ case ma_format_s24:
+ {
+ /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_uint32 iChannelOut = pConverter->shuffleTable[iChannelIn];
+ pFramesOutS24[iChannelOut*3 + 0] = pFramesInS24[iChannelIn*3 + 0];
+ pFramesOutS24[iChannelOut*3 + 1] = pFramesInS24[iChannelIn*3 + 1];
+ pFramesOutS24[iChannelOut*3 + 2] = pFramesInS24[iChannelIn*3 + 2];
+ }
+
+ pFramesOutS24 += pConverter->channelsOut*3;
+ pFramesInS24 += pConverter->channelsIn*3;
+ }
+ } break;
+
+ case ma_format_s32:
+ {
+ /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
+ const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutS32[pConverter->shuffleTable[iChannelIn]] = pFramesInS32[iChannelIn];
+ }
+
+ pFramesOutS32 += pConverter->channelsOut;
+ pFramesInS32 += pConverter->channelsIn;
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn];
+ }
+
+ pFramesOutF32 += pConverter->channelsOut;
+ pFramesInF32 += pConverter->channelsIn;
+ }
+ } break;
+
+ default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
@@ -31216,41 +38006,94 @@ static ma_result ma_channel_converter_process_pcm_frames__simple_mono_expansion(
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
+ MA_ASSERT(pConverter->channelsIn == 1);
- if (pConverter->format == ma_format_s16) {
- /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
- const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+ switch (pConverter->format)
+ {
+ case ma_format_u8:
+ {
+ /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
- if (pConverter->channelsOut == 2) {
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame];
- pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame];
- }
- } else {
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
- pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame];
+ pFramesOutU8[iFrame*pConverter->channelsOut + iChannel] = pFramesInU8[iFrame];
}
}
- }
- } else {
- /* */ float* pFramesOutF32 = ( float*)pFramesOut;
- const float* pFramesInF32 = (const float*)pFramesIn;
+ } break;
- if (pConverter->channelsOut == 2) {
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame];
- pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame];
+ case ma_format_s16:
+ {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ if (pConverter->channelsOut == 2) {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame];
+ pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame];
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
+ pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame];
+ }
+ }
}
- } else {
+ } break;
+
+ case ma_format_s24:
+ {
+ /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
+
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
- pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame];
+ ma_uint64 iSampleOut = iFrame*pConverter->channelsOut + iChannel;
+ ma_uint64 iSampleIn = iFrame;
+ pFramesOutS24[iSampleOut*3 + 0] = pFramesInS24[iSampleIn*3 + 0];
+ pFramesOutS24[iSampleOut*3 + 1] = pFramesInS24[iSampleIn*3 + 1];
+ pFramesOutS24[iSampleOut*3 + 2] = pFramesInS24[iSampleIn*3 + 2];
}
}
- }
+ } break;
+
+ case ma_format_s32:
+ {
+ /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
+ const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
+ pFramesOutS32[iFrame*pConverter->channelsOut + iChannel] = pFramesInS32[iFrame];
+ }
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ if (pConverter->channelsOut == 2) {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame];
+ pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame];
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
+ pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame];
+ }
+ }
+ }
+ } break;
+
+ default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
@@ -31266,20 +38109,61 @@ static ma_result ma_channel_converter_process_pcm_frames__stereo_to_mono(ma_chan
MA_ASSERT(pConverter->channelsIn == 2);
MA_ASSERT(pConverter->channelsOut == 1);
- if (pConverter->format == ma_format_s16) {
- /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
- const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+ switch (pConverter->format)
+ {
+ case ma_format_u8:
+ {
+ /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2);
- }
- } else {
- /* */ float* pFramesOutF32 = ( float*)pFramesOut;
- const float* pFramesInF32 = (const float*)pFramesIn;
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutU8[iFrame] = ma_clip_u8((ma_int16)((ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+0]) + ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+1])) / 2));
+ }
+ } break;
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f;
- }
+ case ma_format_s16:
+ {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2);
+ }
+ } break;
+
+ case ma_format_s24:
+ {
+ /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_int64 s24_0 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+0)*3]);
+ ma_int64 s24_1 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+1)*3]);
+ ma_pcm_sample_s32_to_s24_no_scale((s24_0 + s24_1) / 2, &pFramesOutS24[iFrame*3]);
+ }
+ } break;
+
+ case ma_format_s32:
+ {
+ /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
+ const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutS32[iFrame] = (ma_int16)(((ma_int32)pFramesInS32[iFrame*2+0] + (ma_int32)pFramesInS32[iFrame*2+1]) / 2);
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f;
+ }
+ } break;
+
+ default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
@@ -31301,37 +38185,97 @@ static ma_result ma_channel_converter_process_pcm_frames__weights(ma_channel_con
ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
/* Accumulate. */
- if (pConverter->format == ma_format_s16) {
- /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
- const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+ switch (pConverter->format)
+ {
+ case ma_format_u8:
+ {
+ /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
- for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
- ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut];
- s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
-
- pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767);
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_int16 u8_O = ma_pcm_sample_u8_to_s16_no_scale(pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut]);
+ ma_int16 u8_I = ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8 [iFrame*pConverter->channelsIn + iChannelIn ]);
+ ma_int32 s = (ma_int32)ma_clamp(u8_O + ((u8_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -128, 127);
+ pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_u8((ma_int16)s);
+ }
}
}
- }
- } else {
- /* */ float* pFramesOutF32 = ( float*)pFramesOut;
- const float* pFramesInF32 = (const float*)pFramesIn;
+ } break;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
- for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
- pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut];
+ case ma_format_s16:
+ {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut];
+ s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
+
+ pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767);
+ }
}
}
- }
+ } break;
+
+ case ma_format_s24:
+ {
+ /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
+ const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_int64 s24_O = ma_pcm_sample_s24_to_s32_no_scale(&pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]);
+ ma_int64 s24_I = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24 [(iFrame*pConverter->channelsIn + iChannelIn )*3]);
+ ma_int64 s24 = (ma_int32)ma_clamp(s24_O + ((s24_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -8388608, 8388607);
+ ma_pcm_sample_s32_to_s24_no_scale(s24, &pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]);
+ }
+ }
+ }
+ } break;
+
+ case ma_format_s32:
+ {
+ /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
+ const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_int64 s = pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut];
+ s += (pFramesInS32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
+
+ pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_s32(s);
+ }
+ }
+ }
+ } break;
+
+ case ma_format_f32:
+ {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut];
+ }
+ }
+ }
+ } break;
+
+ default: return MA_INVALID_OPERATION; /* Unknown format. */
}
-
+
return MA_SUCCESS;
}
-ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
@@ -31365,7 +38309,7 @@ ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConvert
Data Conversion
**************************************************************************************************************************************************************/
-ma_data_converter_config ma_data_converter_config_init_default()
+MA_API ma_data_converter_config ma_data_converter_config_init_default()
{
ma_data_converter_config config;
MA_ZERO_OBJECT(&config);
@@ -31375,7 +38319,7 @@ ma_data_converter_config ma_data_converter_config_init_default()
config.resampling.allowDynamicSampleRate = MA_FALSE; /* Disable dynamic sample rates by default because dynamic rate adjustments should be quite rare and it allows an optimization for cases when the in and out sample rates are the same. */
/* Linear resampling defaults. */
- config.resampling.linear.lpfCount = 1;
+ config.resampling.linear.lpfOrder = 1;
config.resampling.linear.lpfNyquistFactor = 1;
/* Speex resampling defaults. */
@@ -31384,7 +38328,7 @@ ma_data_converter_config ma_data_converter_config_init_default()
return config;
}
-ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
ma_data_converter_config config = ma_data_converter_config_init_default();
config.formatIn = formatIn;
@@ -31397,7 +38341,7 @@ ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_fo
return config;
}
-ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter)
+MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter)
{
ma_result result;
ma_format midFormat;
@@ -31414,6 +38358,12 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
pConverter->config = *pConfig;
+ /* Basic validation. */
+ if (pConfig->channelsIn < MA_MIN_CHANNELS || pConfig->channelsOut < MA_MIN_CHANNELS ||
+ pConfig->channelsIn > MA_MAX_CHANNELS || pConfig->channelsOut > MA_MAX_CHANNELS) {
+ return MA_INVALID_ARGS;
+ }
+
/*
We want to avoid as much data conversion as possible. The channel converter and resampler both support s16 and f32 natively. We need to decide
on the format to use for this stage. We call this the mid format because it's used in the middle stage of the conversion pipeline. If the output
@@ -31428,14 +38378,6 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
midFormat = ma_format_f32;
}
- if (pConverter->config.formatIn != midFormat) {
- pConverter->hasPreFormatConversion = MA_TRUE;
- }
- if (pConverter->config.formatOut != midFormat) {
- pConverter->hasPostFormatConversion = MA_TRUE;
- }
-
-
/* Channel converter. We always initialize this, but we check if it configures itself as a passthrough to determine whether or not it's needed. */
{
ma_uint32 iChannelIn;
@@ -31481,7 +38423,7 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
}
resamplerConfig = ma_resampler_config_init(midFormat, resamplerChannels, pConverter->config.sampleRateIn, pConverter->config.sampleRateOut, pConverter->config.resampling.algorithm);
- resamplerConfig.linear.lpfCount = pConverter->config.resampling.linear.lpfCount;
+ resamplerConfig.linear.lpfOrder = pConverter->config.resampling.linear.lpfOrder;
resamplerConfig.linear.lpfNyquistFactor = pConverter->config.resampling.linear.lpfNyquistFactor;
resamplerConfig.speex.quality = pConverter->config.resampling.speex.quality;
@@ -31493,6 +38435,29 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
pConverter->hasResampler = MA_TRUE;
}
+
+ /* We can simplify pre- and post-format conversion if we have neither channel conversion nor resampling. */
+ if (pConverter->hasChannelConverter == MA_FALSE && pConverter->hasResampler == MA_FALSE) {
+ /* We have neither channel conversion nor resampling so we'll only need one of pre- or post-format conversion, or none if the input and output formats are the same. */
+ if (pConverter->config.formatIn == pConverter->config.formatOut) {
+ /* The formats are the same so we can just pass through. */
+ pConverter->hasPreFormatConversion = MA_FALSE;
+ pConverter->hasPostFormatConversion = MA_FALSE;
+ } else {
+ /* The formats are different so we need to do either pre- or post-format conversion. It doesn't matter which. */
+ pConverter->hasPreFormatConversion = MA_FALSE;
+ pConverter->hasPostFormatConversion = MA_TRUE;
+ }
+ } else {
+ /* We have a channel converter and/or resampler so we'll need channel conversion based on the mid format. */
+ if (pConverter->config.formatIn != midFormat) {
+ pConverter->hasPreFormatConversion = MA_TRUE;
+ }
+ if (pConverter->config.formatOut != midFormat) {
+ pConverter->hasPostFormatConversion = MA_TRUE;
+ }
+ }
+
/* We can enable passthrough optimizations if applicable. Note that we'll only be able to do this if the sample rate is static. */
if (pConverter->hasPreFormatConversion == MA_FALSE &&
pConverter->hasPostFormatConversion == MA_FALSE &&
@@ -31504,7 +38469,7 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
return MA_SUCCESS;
}
-void ma_data_converter_uninit(ma_data_converter* pConverter)
+MA_API void ma_data_converter_uninit(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return;
@@ -32136,7 +39101,7 @@ static ma_result ma_data_converter_process_pcm_frames__channels_first(ma_data_co
return MA_SUCCESS;
}
-ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
@@ -32185,7 +39150,7 @@ ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, co
}
}
-ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
@@ -32198,7 +39163,7 @@ ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sa
return ma_resampler_set_rate(&pConverter->resampler, sampleRateIn, sampleRateOut);
}
-ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut)
+MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
@@ -32211,7 +39176,7 @@ ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float
return ma_resampler_set_rate_ratio(&pConverter->resampler, ratioInOut);
}
-ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount)
+MA_API ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount)
{
if (pConverter == NULL) {
return 0;
@@ -32224,7 +39189,7 @@ ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pC
}
}
-ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount)
+MA_API ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount)
{
if (pConverter == NULL) {
return 0;
@@ -32237,7 +39202,7 @@ ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* p
}
}
-ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter)
+MA_API ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return 0;
@@ -32250,7 +39215,7 @@ ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter)
return 0; /* No latency without a resampler. */
}
-ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter)
+MA_API ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return 0;
@@ -32265,2359 +39230,6 @@ ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter)
-/**************************************************************************************************************************************************************
-
-Format Conversion
-
-**************************************************************************************************************************************************************/
-
-/* u8 */
-void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- (void)ditherMode;
- ma_copy_memory_64(dst, src, count * sizeof(ma_uint8));
-}
-
-
-static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int16* dst_s16 = (ma_int16*)dst;
- const ma_uint8* src_u8 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int16 x = src_u8[i];
- x = x - 128;
- x = x << 8;
- dst_s16[i] = x;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_s24 = (ma_uint8*)dst;
- const ma_uint8* src_u8 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int16 x = src_u8[i];
- x = x - 128;
-
- dst_s24[i*3+0] = 0;
- dst_s24[i*3+1] = 0;
- dst_s24[i*3+2] = (ma_uint8)((ma_int8)x);
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int32* dst_s32 = (ma_int32*)dst;
- const ma_uint8* src_u8 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = src_u8[i];
- x = x - 128;
- x = x << 24;
- dst_s32[i] = x;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- float* dst_f32 = (float*)dst;
- const ma_uint8* src_u8 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- float x = (float)src_u8[i];
- x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */
- x = x - 1; /* 0..2 to -1..1 */
-
- dst_f32[i] = x;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
-static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const ma_uint8** src_u8 = (const ma_uint8**)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
- }
- }
-}
-#else
-static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const ma_uint8** src_u8 = (const ma_uint8**)src;
-
- if (channels == 1) {
- ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8));
- } else if (channels == 2) {
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- dst_u8[iFrame*2 + 0] = src_u8[0][iFrame];
- dst_u8[iFrame*2 + 1] = src_u8[1][iFrame];
- }
- } else {
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
- }
- }
- }
-}
-#endif
-
-void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_interleave_u8__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_uint8** dst_u8 = (ma_uint8**)dst;
- const ma_uint8* src_u8 = (const ma_uint8*)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-/* s16 */
-static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const ma_int16* src_s16 = (const ma_int16*)src;
-
- if (ditherMode == ma_dither_mode_none) {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int16 x = src_s16[i];
- x = x >> 8;
- x = x + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- } else {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int16 x = src_s16[i];
-
- /* Dither. Don't overflow. */
- ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F);
- if ((x + dither) <= 0x7FFF) {
- x = (ma_int16)(x + dither);
- } else {
- x = 0x7FFF;
- }
-
- x = x >> 8;
- x = x + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- }
-}
-
-static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- (void)ditherMode;
- ma_copy_memory_64(dst, src, count * sizeof(ma_int16));
-}
-
-
-static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_s24 = (ma_uint8*)dst;
- const ma_int16* src_s16 = (const ma_int16*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- dst_s24[i*3+0] = 0;
- dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF);
- dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8);
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int32* dst_s32 = (ma_int32*)dst;
- const ma_int16* src_s16 = (const ma_int16*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- dst_s32[i] = src_s16[i] << 16;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- float* dst_f32 = (float*)dst;
- const ma_int16* src_s16 = (const ma_int16*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- float x = (float)src_s16[i];
-
-#if 0
- /* The accurate way. */
- x = x + 32768.0f; /* -32768..32767 to 0..65535 */
- x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */
- x = x - 1; /* 0..2 to -1..1 */
-#else
- /* The fast way. */
- x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */
-#endif
-
- dst_f32[i] = x;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_int16* dst_s16 = (ma_int16*)dst;
- const ma_int16** src_s16 = (const ma_int16**)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_int16** dst_s16 = (ma_int16**)dst;
- const ma_int16* src_s16 = (const ma_int16*)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-/* s24 */
-static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const ma_uint8* src_s24 = (const ma_uint8*)src;
-
- if (ditherMode == ma_dither_mode_none) {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int8 x = (ma_int8)src_s24[i*3 + 2] + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- } else {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
-
- /* Dither. Don't overflow. */
- ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
- if ((ma_int64)x + dither <= 0x7FFFFFFF) {
- x = x + dither;
- } else {
- x = 0x7FFFFFFF;
- }
-
- x = x >> 24;
- x = x + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- }
-}
-
-static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int16* dst_s16 = (ma_int16*)dst;
- const ma_uint8* src_s24 = (const ma_uint8*)src;
-
- if (ditherMode == ma_dither_mode_none) {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]);
- ma_uint16 dst_hi = ((ma_uint16)src_s24[i*3 + 2]) << 8;
- dst_s16[i] = (ma_int16)dst_lo | dst_hi;
- }
- } else {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
-
- /* Dither. Don't overflow. */
- ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
- if ((ma_int64)x + dither <= 0x7FFFFFFF) {
- x = x + dither;
- } else {
- x = 0x7FFFFFFF;
- }
-
- x = x >> 16;
- dst_s16[i] = (ma_int16)x;
- }
- }
-}
-
-static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- (void)ditherMode;
-
- ma_copy_memory_64(dst, src, count * 3);
-}
-
-
-static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int32* dst_s32 = (ma_int32*)dst;
- const ma_uint8* src_s24 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- float* dst_f32 = (float*)dst;
- const ma_uint8* src_s24 = (const ma_uint8*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8);
-
-#if 0
- /* The accurate way. */
- x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */
- x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */
- x = x - 1; /* 0..2 to -1..1 */
-#else
- /* The fast way. */
- x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */
-#endif
-
- dst_f32[i] = x;
- }
-
- (void)ditherMode;
-}
-
-static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_uint8* dst8 = (ma_uint8*)dst;
- const ma_uint8** src8 = (const ma_uint8**)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0];
- dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1];
- dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_uint8** dst8 = (ma_uint8**)dst;
- const ma_uint8* src8 = (const ma_uint8*)src;
-
- ma_uint32 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0];
- dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1];
- dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-
-/* s32 */
-static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const ma_int32* src_s32 = (const ma_int32*)src;
-
- if (ditherMode == ma_dither_mode_none) {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = src_s32[i];
- x = x >> 24;
- x = x + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- } else {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = src_s32[i];
-
- /* Dither. Don't overflow. */
- ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
- if ((ma_int64)x + dither <= 0x7FFFFFFF) {
- x = x + dither;
- } else {
- x = 0x7FFFFFFF;
- }
-
- x = x >> 24;
- x = x + 128;
- dst_u8[i] = (ma_uint8)x;
- }
- }
-}
-
-static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int16* dst_s16 = (ma_int16*)dst;
- const ma_int32* src_s32 = (const ma_int32*)src;
-
- if (ditherMode == ma_dither_mode_none) {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = src_s32[i];
- x = x >> 16;
- dst_s16[i] = (ma_int16)x;
- }
- } else {
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 x = src_s32[i];
-
- /* Dither. Don't overflow. */
- ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
- if ((ma_int64)x + dither <= 0x7FFFFFFF) {
- x = x + dither;
- } else {
- x = 0x7FFFFFFF;
- }
-
- x = x >> 16;
- dst_s16[i] = (ma_int16)x;
- }
- }
-}
-
-static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_s24 = (ma_uint8*)dst;
- const ma_int32* src_s32 = (const ma_int32*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_uint32 x = (ma_uint32)src_s32[i];
- dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8);
- dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16);
- dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24);
- }
-
- (void)ditherMode; /* No dithering for s32 -> s24. */
-}
-
-static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- (void)ditherMode;
-
- ma_copy_memory_64(dst, src, count * sizeof(ma_int32));
-}
-
-
-static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- float* dst_f32 = (float*)dst;
- const ma_int32* src_s32 = (const ma_int32*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- double x = src_s32[i];
-
-#if 0
- x = x + 2147483648.0;
- x = x * 0.0000000004656612873077392578125;
- x = x - 1;
-#else
- x = x / 2147483648.0;
-#endif
-
- dst_f32[i] = (float)x;
- }
-
- (void)ditherMode; /* No dithering for s32 -> f32. */
-}
-
-static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_int32* dst_s32 = (ma_int32*)dst;
- const ma_int32** src_s32 = (const ma_int32**)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_int32** dst_s32 = (ma_int32**)dst;
- const ma_int32* src_s32 = (const ma_int32*)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel];
- }
- }
-}
-
-static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-/* f32 */
-static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
-
- ma_uint8* dst_u8 = (ma_uint8*)dst;
- const float* src_f32 = (const float*)src;
-
- float ditherMin = 0;
- float ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -128;
- ditherMax = 1.0f / 127;
- }
-
- for (i = 0; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
- x = x + 1; /* -1..1 to 0..2 */
- x = x * 127.5f; /* 0..2 to 0..255 */
-
- dst_u8[i] = (ma_uint8)x;
- }
-}
-
-static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
-static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
-
- ma_int16* dst_s16 = (ma_int16*)dst;
- const float* src_f32 = (const float*)src;
-
- float ditherMin = 0;
- float ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -32768;
- ditherMax = 1.0f / 32767;
- }
-
- for (i = 0; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
-
-#if 0
- /* The accurate way. */
- x = x + 1; /* -1..1 to 0..2 */
- x = x * 32767.5f; /* 0..2 to 0..65535 */
- x = x - 32768.0f; /* 0...65535 to -32768..32767 */
-#else
- /* The fast way. */
- x = x * 32767.0f; /* -1..1 to -32767..32767 */
-#endif
-
- dst_s16[i] = (ma_int16)x;
- }
-}
-#else
-static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
- ma_uint64 i4;
- ma_uint64 count4;
-
- ma_int16* dst_s16 = (ma_int16*)dst;
- const float* src_f32 = (const float*)src;
-
- float ditherMin = 0;
- float ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -32768;
- ditherMax = 1.0f / 32767;
- }
-
- /* Unrolled. */
- i = 0;
- count4 = count >> 2;
- for (i4 = 0; i4 < count4; i4 += 1) {
- float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
- float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
- float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
- float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
-
- float x0 = src_f32[i+0];
- float x1 = src_f32[i+1];
- float x2 = src_f32[i+2];
- float x3 = src_f32[i+3];
-
- x0 = x0 + d0;
- x1 = x1 + d1;
- x2 = x2 + d2;
- x3 = x3 + d3;
-
- x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0));
- x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1));
- x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2));
- x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3));
-
- x0 = x0 * 32767.0f;
- x1 = x1 * 32767.0f;
- x2 = x2 * 32767.0f;
- x3 = x3 * 32767.0f;
-
- dst_s16[i+0] = (ma_int16)x0;
- dst_s16[i+1] = (ma_int16)x1;
- dst_s16[i+2] = (ma_int16)x2;
- dst_s16[i+3] = (ma_int16)x3;
-
- i += 4;
- }
-
- /* Leftover. */
- for (; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
- x = x * 32767.0f; /* -1..1 to -32767..32767 */
-
- dst_s16[i] = (ma_int16)x;
- }
-}
-#endif
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
- ma_uint64 i8;
- ma_uint64 count8;
- ma_int16* dst_s16;
- const float* src_f32;
- float ditherMin;
- float ditherMax;
-
- /* Both the input and output buffers need to be aligned to 16 bytes. */
- if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
- ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
- return;
- }
-
- dst_s16 = (ma_int16*)dst;
- src_f32 = (const float*)src;
-
- ditherMin = 0;
- ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -32768;
- ditherMax = 1.0f / 32767;
- }
-
- i = 0;
-
- /* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
- count8 = count >> 3;
- for (i8 = 0; i8 < count8; i8 += 1) {
- __m128 d0;
- __m128 d1;
- __m128 x0;
- __m128 x1;
-
- if (ditherMode == ma_dither_mode_none) {
- d0 = _mm_set1_ps(0);
- d1 = _mm_set1_ps(0);
- } else if (ditherMode == ma_dither_mode_rectangle) {
- d0 = _mm_set_ps(
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax)
- );
- d1 = _mm_set_ps(
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax)
- );
- } else {
- d0 = _mm_set_ps(
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax)
- );
- d1 = _mm_set_ps(
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax)
- );
- }
-
- x0 = *((__m128*)(src_f32 + i) + 0);
- x1 = *((__m128*)(src_f32 + i) + 1);
-
- x0 = _mm_add_ps(x0, d0);
- x1 = _mm_add_ps(x1, d1);
-
- x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f));
- x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f));
-
- _mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1)));
-
- i += 8;
- }
-
-
- /* Leftover. */
- for (; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
- x = x * 32767.0f; /* -1..1 to -32767..32767 */
-
- dst_s16[i] = (ma_int16)x;
- }
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
- ma_uint64 i16;
- ma_uint64 count16;
- ma_int16* dst_s16;
- const float* src_f32;
- float ditherMin;
- float ditherMax;
-
- /* Both the input and output buffers need to be aligned to 32 bytes. */
- if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) {
- ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
- return;
- }
-
- dst_s16 = (ma_int16*)dst;
- src_f32 = (const float*)src;
-
- ditherMin = 0;
- ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -32768;
- ditherMax = 1.0f / 32767;
- }
-
- i = 0;
-
- /* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */
- count16 = count >> 4;
- for (i16 = 0; i16 < count16; i16 += 1) {
- __m256 d0;
- __m256 d1;
- __m256 x0;
- __m256 x1;
- __m256i i0;
- __m256i i1;
- __m256i p0;
- __m256i p1;
- __m256i r;
-
- if (ditherMode == ma_dither_mode_none) {
- d0 = _mm256_set1_ps(0);
- d1 = _mm256_set1_ps(0);
- } else if (ditherMode == ma_dither_mode_rectangle) {
- d0 = _mm256_set_ps(
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax)
- );
- d1 = _mm256_set_ps(
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax),
- ma_dither_f32_rectangle(ditherMin, ditherMax)
- );
- } else {
- d0 = _mm256_set_ps(
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax)
- );
- d1 = _mm256_set_ps(
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax),
- ma_dither_f32_triangle(ditherMin, ditherMax)
- );
- }
-
- x0 = *((__m256*)(src_f32 + i) + 0);
- x1 = *((__m256*)(src_f32 + i) + 1);
-
- x0 = _mm256_add_ps(x0, d0);
- x1 = _mm256_add_ps(x1, d1);
-
- x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f));
- x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f));
-
- /* Computing the final result is a little more complicated for AVX2 than SSE2. */
- i0 = _mm256_cvttps_epi32(x0);
- i1 = _mm256_cvttps_epi32(x1);
- p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32);
- p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48);
- r = _mm256_packs_epi32(p0, p1);
-
- _mm256_stream_si256(((__m256i*)(dst_s16 + i)), r);
-
- i += 16;
- }
-
-
- /* Leftover. */
- for (; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
- x = x * 32767.0f; /* -1..1 to -32767..32767 */
-
- dst_s16[i] = (ma_int16)x;
- }
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint64 i;
- ma_uint64 i8;
- ma_uint64 count8;
- ma_int16* dst_s16;
- const float* src_f32;
- float ditherMin;
- float ditherMax;
-
- if (!ma_has_neon()) {
- return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
- }
-
- /* Both the input and output buffers need to be aligned to 16 bytes. */
- if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
- ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
- return;
- }
-
- dst_s16 = (ma_int16*)dst;
- src_f32 = (const float*)src;
-
- ditherMin = 0;
- ditherMax = 0;
- if (ditherMode != ma_dither_mode_none) {
- ditherMin = 1.0f / -32768;
- ditherMax = 1.0f / 32767;
- }
-
- i = 0;
-
- /* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
- count8 = count >> 3;
- for (i8 = 0; i8 < count8; i8 += 1) {
- float32x4_t d0;
- float32x4_t d1;
- float32x4_t x0;
- float32x4_t x1;
- int32x4_t i0;
- int32x4_t i1;
-
- if (ditherMode == ma_dither_mode_none) {
- d0 = vmovq_n_f32(0);
- d1 = vmovq_n_f32(0);
- } else if (ditherMode == ma_dither_mode_rectangle) {
- float d0v[4];
- d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d0 = vld1q_f32(d0v);
-
- float d1v[4];
- d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
- d1 = vld1q_f32(d1v);
- } else {
- float d0v[4];
- d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d0 = vld1q_f32(d0v);
-
- float d1v[4];
- d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
- d1 = vld1q_f32(d1v);
- }
-
- x0 = *((float32x4_t*)(src_f32 + i) + 0);
- x1 = *((float32x4_t*)(src_f32 + i) + 1);
-
- x0 = vaddq_f32(x0, d0);
- x1 = vaddq_f32(x1, d1);
-
- x0 = vmulq_n_f32(x0, 32767.0f);
- x1 = vmulq_n_f32(x1, 32767.0f);
-
- i0 = vcvtq_s32_f32(x0);
- i1 = vcvtq_s32_f32(x1);
- *((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1));
-
- i += 8;
- }
-
-
- /* Leftover. */
- for (; i < count; i += 1) {
- float x = src_f32[i];
- x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
- x = x * 32767.0f; /* -1..1 to -32767..32767 */
-
- dst_s16[i] = (ma_int16)x;
- }
-}
-#endif
-
-void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_uint8* dst_s24 = (ma_uint8*)dst;
- const float* src_f32 = (const float*)src;
-
- ma_uint64 i;
- for (i = 0; i < count; i += 1) {
- ma_int32 r;
- float x = src_f32[i];
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
-
-#if 0
- /* The accurate way. */
- x = x + 1; /* -1..1 to 0..2 */
- x = x * 8388607.5f; /* 0..2 to 0..16777215 */
- x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */
-#else
- /* The fast way. */
- x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */
-#endif
-
- r = (ma_int32)x;
- dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0);
- dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8);
- dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16);
- }
-
- (void)ditherMode; /* No dithering for f32 -> s24. */
-}
-
-static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_int32* dst_s32 = (ma_int32*)dst;
- const float* src_f32 = (const float*)src;
-
- ma_uint32 i;
- for (i = 0; i < count; i += 1) {
- double x = src_f32[i];
- x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
-
-#if 0
- /* The accurate way. */
- x = x + 1; /* -1..1 to 0..2 */
- x = x * 2147483647.5; /* 0..2 to 0..4294967295 */
- x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */
-#else
- /* The fast way. */
- x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */
-#endif
-
- dst_s32[i] = (ma_int32)x;
- }
-
- (void)ditherMode; /* No dithering for f32 -> s32. */
-}
-
-static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
-}
-#endif
-
-void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
-#else
- # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
- if (ma_has_avx2()) {
- ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
- if (ma_has_sse2()) {
- ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode);
- } else
- #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
- if (ma_has_neon()) {
- ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode);
- } else
- #endif
- {
- ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
- }
-#endif
-}
-
-
-void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- (void)ditherMode;
-
- ma_copy_memory_64(dst, src, count * sizeof(float));
-}
-
-
-static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- float* dst_f32 = (float*)dst;
- const float** src_f32 = (const float**)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame];
- }
- }
-}
-
-static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- float** dst_f32 = (float**)dst;
- const float* src_f32 = (const float*)src;
-
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel];
- }
- }
-}
-
-static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
- ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
-}
-
-void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
-{
-#ifdef MA_USE_REFERENCE_CONVERSION_APIS
- ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
-#else
- ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels);
-#endif
-}
-
-
-void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode)
-{
- if (formatOut == formatIn) {
- ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut));
- return;
- }
-
- switch (formatIn)
- {
- case ma_format_u8:
- {
- switch (formatOut)
- {
- case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return;
- default: break;
- }
- } break;
-
- case ma_format_s16:
- {
- switch (formatOut)
- {
- case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return;
- default: break;
- }
- } break;
-
- case ma_format_s24:
- {
- switch (formatOut)
- {
- case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return;
- default: break;
- }
- } break;
-
- case ma_format_s32:
- {
- switch (formatOut)
- {
- case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return;
- default: break;
- }
- } break;
-
- case ma_format_f32:
- {
- switch (formatOut)
- {
- case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
- case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return;
- default: break;
- }
- } break;
-
- default: break;
- }
-}
-
-void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode)
-{
- ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode);
-}
-
-void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames)
-{
- if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) {
- return; /* Invalid args. */
- }
-
- /* For efficiency we do this per format. */
- switch (format) {
- case ma_format_s16:
- {
- const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames;
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel];
- pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel];
- }
- }
- } break;
-
- case ma_format_f32:
- {
- const float* pSrcF32 = (const float*)pInterleavedPCMFrames;
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel];
- pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel];
- }
- }
- } break;
-
- default:
- {
- ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
- const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
- memcpy(pDst, pSrc, sampleSizeInBytes);
- }
- }
- } break;
- }
-}
-
-void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames)
-{
- switch (format)
- {
- case ma_format_s16:
- {
- ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames;
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel];
- pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame];
- }
- }
- } break;
-
- case ma_format_f32:
- {
- float* pDstF32 = (float*)pInterleavedPCMFrames;
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel];
- pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame];
- }
- }
- } break;
-
- default:
- {
- ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
- ma_uint64 iPCMFrame;
- for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
- const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
- memcpy(pDst, pSrc, sampleSizeInBytes);
- }
- }
- } break;
- }
-}
-
-
-
/**************************************************************************************************************************************************************
Channel Maps
@@ -35168,7 +39780,7 @@ static void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel cha
}
}
-void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (standardChannelMap)
{
@@ -35210,14 +39822,14 @@ void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_
}
}
-void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels)
+MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels)
{
if (pOut != NULL && pIn != NULL && channels > 0) {
MA_COPY_MEMORY(pOut, pIn, sizeof(*pOut) * channels);
}
}
-ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
+MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channelMap == NULL) {
return MA_FALSE;
@@ -35241,7 +39853,7 @@ ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[M
return MA_TRUE;
}
-ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS])
+MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS])
{
ma_uint32 iChannel;
@@ -35262,7 +39874,7 @@ ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[
return MA_TRUE;
}
-ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
+MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
ma_uint32 iChannel;
@@ -35275,7 +39887,7 @@ ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[M
return MA_TRUE;
}
-ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition)
+MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition)
{
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
@@ -35294,19 +39906,19 @@ ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_
Conversion Helpers
**************************************************************************************************************************************************************/
-ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn)
+MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn)
{
ma_data_converter_config config;
config = ma_data_converter_config_init(formatIn, formatOut, channelsIn, channelsOut, sampleRateIn, sampleRateOut);
ma_get_standard_channel_map(ma_standard_channel_map_default, channelsOut, config.channelMapOut);
ma_get_standard_channel_map(ma_standard_channel_map_default, channelsIn, config.channelMapIn);
- config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
+ config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
return ma_convert_frames_ex(pOut, frameCountOut, pIn, frameCountIn, &config);
}
-ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig)
+MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig)
{
ma_result result;
ma_data_converter converter;
@@ -35339,34 +39951,34 @@ ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void*
Ring Buffer
**************************************************************************************************************************************************************/
-MA_INLINE ma_uint32 ma_rb__extract_offset_in_bytes(ma_uint32 encodedOffset)
+static MA_INLINE ma_uint32 ma_rb__extract_offset_in_bytes(ma_uint32 encodedOffset)
{
return encodedOffset & 0x7FFFFFFF;
}
-MA_INLINE ma_uint32 ma_rb__extract_offset_loop_flag(ma_uint32 encodedOffset)
+static MA_INLINE ma_uint32 ma_rb__extract_offset_loop_flag(ma_uint32 encodedOffset)
{
return encodedOffset & 0x80000000;
}
-MA_INLINE void* ma_rb__get_read_ptr(ma_rb* pRB)
+static MA_INLINE void* ma_rb__get_read_ptr(ma_rb* pRB)
{
MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedReadOffset));
}
-MA_INLINE void* ma_rb__get_write_ptr(ma_rb* pRB)
+static MA_INLINE void* ma_rb__get_write_ptr(ma_rb* pRB)
{
MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedWriteOffset));
}
-MA_INLINE ma_uint32 ma_rb__construct_offset(ma_uint32 offsetInBytes, ma_uint32 offsetLoopFlag)
+static MA_INLINE ma_uint32 ma_rb__construct_offset(ma_uint32 offsetInBytes, ma_uint32 offsetLoopFlag)
{
return offsetLoopFlag | offsetInBytes;
}
-MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOffsetInBytes, ma_uint32* pOffsetLoopFlag)
+static MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOffsetInBytes, ma_uint32* pOffsetLoopFlag)
{
MA_ASSERT(pOffsetInBytes != NULL);
MA_ASSERT(pOffsetLoopFlag != NULL);
@@ -35376,7 +39988,7 @@ MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOf
}
-ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
+MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
ma_result result;
const ma_uint32 maxSubBufferSize = 0x7FFFFFFF - (MA_SIMD_ALIGNMENT-1);
@@ -35429,12 +40041,12 @@ ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size
return MA_SUCCESS;
}
-ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
+MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
return ma_rb_init_ex(bufferSizeInBytes, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
-void ma_rb_uninit(ma_rb* pRB)
+MA_API void ma_rb_uninit(ma_rb* pRB)
{
if (pRB == NULL) {
return;
@@ -35445,7 +40057,7 @@ void ma_rb_uninit(ma_rb* pRB)
}
}
-void ma_rb_reset(ma_rb* pRB)
+MA_API void ma_rb_reset(ma_rb* pRB)
{
if (pRB == NULL) {
return;
@@ -35455,7 +40067,7 @@ void ma_rb_reset(ma_rb* pRB)
pRB->encodedWriteOffset = 0;
}
-ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
+MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
{
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
@@ -35498,7 +40110,7 @@ ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOu
return MA_SUCCESS;
}
-ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
+MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
@@ -35531,11 +40143,11 @@ ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
newReadOffsetLoopFlag ^= 0x80000000;
}
- ma_atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes));
+ c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes));
return MA_SUCCESS;
}
-ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
+MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
@@ -35584,7 +40196,7 @@ ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferO
return MA_SUCCESS;
}
-ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
+MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
{
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
@@ -35617,11 +40229,11 @@ ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
newWriteOffsetLoopFlag ^= 0x80000000;
}
- ma_atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes));
+ c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes));
return MA_SUCCESS;
}
-ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes)
+MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
@@ -35662,11 +40274,11 @@ ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes)
}
}
- ma_atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag));
+ c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag));
return MA_SUCCESS;
}
-ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes)
+MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
@@ -35707,11 +40319,11 @@ ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes)
}
}
- ma_atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag));
+ c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag));
return MA_SUCCESS;
}
-ma_int32 ma_rb_pointer_distance(ma_rb* pRB)
+MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
@@ -35737,7 +40349,7 @@ ma_int32 ma_rb_pointer_distance(ma_rb* pRB)
}
}
-ma_uint32 ma_rb_available_read(ma_rb* pRB)
+MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB)
{
ma_int32 dist;
@@ -35753,7 +40365,7 @@ ma_uint32 ma_rb_available_read(ma_rb* pRB)
return dist;
}
-ma_uint32 ma_rb_available_write(ma_rb* pRB)
+MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35762,7 +40374,7 @@ ma_uint32 ma_rb_available_write(ma_rb* pRB)
return (ma_uint32)(ma_rb_get_subbuffer_size(pRB) - ma_rb_pointer_distance(pRB));
}
-size_t ma_rb_get_subbuffer_size(ma_rb* pRB)
+MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35771,7 +40383,7 @@ size_t ma_rb_get_subbuffer_size(ma_rb* pRB)
return pRB->subbufferSizeInBytes;
}
-size_t ma_rb_get_subbuffer_stride(ma_rb* pRB)
+MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35784,7 +40396,7 @@ size_t ma_rb_get_subbuffer_stride(ma_rb* pRB)
return (size_t)pRB->subbufferStrideInBytes;
}
-size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex)
+MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex)
{
if (pRB == NULL) {
return 0;
@@ -35793,7 +40405,7 @@ size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex)
return subbufferIndex * ma_rb_get_subbuffer_stride(pRB);
}
-void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer)
+MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer)
{
if (pRB == NULL) {
return NULL;
@@ -35810,7 +40422,7 @@ static MA_INLINE ma_uint32 ma_pcm_rb_get_bpf(ma_pcm_rb* pRB)
return ma_get_bytes_per_frame(pRB->format, pRB->channels);
}
-ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
+MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
ma_uint32 bpf;
ma_result result;
@@ -35837,12 +40449,12 @@ ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subb
return MA_SUCCESS;
}
-ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
+MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
return ma_pcm_rb_init_ex(format, channels, bufferSizeInFrames, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
-void ma_pcm_rb_uninit(ma_pcm_rb* pRB)
+MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return;
@@ -35851,7 +40463,7 @@ void ma_pcm_rb_uninit(ma_pcm_rb* pRB)
ma_rb_uninit(&pRB->rb);
}
-void ma_pcm_rb_reset(ma_pcm_rb* pRB)
+MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return;
@@ -35860,7 +40472,7 @@ void ma_pcm_rb_reset(ma_pcm_rb* pRB)
ma_rb_reset(&pRB->rb);
}
-ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
+MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
{
size_t sizeInBytes;
ma_result result;
@@ -35880,7 +40492,7 @@ ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void*
return MA_SUCCESS;
}
-ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
+MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
@@ -35889,7 +40501,7 @@ ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pB
return ma_rb_commit_read(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB), pBufferOut);
}
-ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
+MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
{
size_t sizeInBytes;
ma_result result;
@@ -35909,7 +40521,7 @@ ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void
return MA_SUCCESS;
}
-ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
+MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
@@ -35918,7 +40530,7 @@ ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* p
return ma_rb_commit_write(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB), pBufferOut);
}
-ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
+MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
@@ -35927,7 +40539,7 @@ ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
return ma_rb_seek_read(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB));
}
-ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
+MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
@@ -35936,7 +40548,7 @@ ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
return ma_rb_seek_write(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB));
}
-ma_int32 ma_pcm_rb_pointer_disance(ma_pcm_rb* pRB)
+MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35945,7 +40557,7 @@ ma_int32 ma_pcm_rb_pointer_disance(ma_pcm_rb* pRB)
return ma_rb_pointer_distance(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
-ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB)
+MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35954,7 +40566,7 @@ ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB)
return ma_rb_available_read(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
-ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB)
+MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35963,7 +40575,7 @@ ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB)
return ma_rb_available_write(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
-ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB)
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35972,7 +40584,7 @@ ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB)
return (ma_uint32)(ma_rb_get_subbuffer_size(&pRB->rb) / ma_pcm_rb_get_bpf(pRB));
}
-ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB)
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
@@ -35981,7 +40593,7 @@ ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB)
return (ma_uint32)(ma_rb_get_subbuffer_stride(&pRB->rb) / ma_pcm_rb_get_bpf(pRB));
}
-ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex)
+MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex)
{
if (pRB == NULL) {
return 0;
@@ -35990,7 +40602,7 @@ ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferInde
return (ma_uint32)(ma_rb_get_subbuffer_offset(&pRB->rb, subbufferIndex) / ma_pcm_rb_get_bpf(pRB));
}
-void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer)
+MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer)
{
if (pRB == NULL) {
return NULL;
@@ -36006,7 +40618,86 @@ void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void
Miscellaneous Helpers
**************************************************************************************************************************************************************/
-void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API const char* ma_result_description(ma_result result)
+{
+ switch (result)
+ {
+ case MA_SUCCESS: return "No error";
+ case MA_ERROR: return "Unknown error";
+ case MA_INVALID_ARGS: return "Invalid argument";
+ case MA_INVALID_OPERATION: return "Invalid operation";
+ case MA_OUT_OF_MEMORY: return "Out of memory";
+ case MA_OUT_OF_RANGE: return "Out of range";
+ case MA_ACCESS_DENIED: return "Permission denied";
+ case MA_DOES_NOT_EXIST: return "Resource does not exist";
+ case MA_ALREADY_EXISTS: return "Resource already exists";
+ case MA_TOO_MANY_OPEN_FILES: return "Too many open files";
+ case MA_INVALID_FILE: return "Invalid file";
+ case MA_TOO_BIG: return "Too large";
+ case MA_PATH_TOO_LONG: return "Path too long";
+ case MA_NAME_TOO_LONG: return "Name too long";
+ case MA_NOT_DIRECTORY: return "Not a directory";
+ case MA_IS_DIRECTORY: return "Is a directory";
+ case MA_DIRECTORY_NOT_EMPTY: return "Directory not empty";
+ case MA_END_OF_FILE: return "End of file";
+ case MA_NO_SPACE: return "No space available";
+ case MA_BUSY: return "Device or resource busy";
+ case MA_IO_ERROR: return "Input/output error";
+ case MA_INTERRUPT: return "Interrupted";
+ case MA_UNAVAILABLE: return "Resource unavailable";
+ case MA_ALREADY_IN_USE: return "Resource already in use";
+ case MA_BAD_ADDRESS: return "Bad address";
+ case MA_BAD_SEEK: return "Illegal seek";
+ case MA_BAD_PIPE: return "Broken pipe";
+ case MA_DEADLOCK: return "Deadlock";
+ case MA_TOO_MANY_LINKS: return "Too many links";
+ case MA_NOT_IMPLEMENTED: return "Not implemented";
+ case MA_NO_MESSAGE: return "No message of desired type";
+ case MA_BAD_MESSAGE: return "Invalid message";
+ case MA_NO_DATA_AVAILABLE: return "No data available";
+ case MA_INVALID_DATA: return "Invalid data";
+ case MA_TIMEOUT: return "Timeout";
+ case MA_NO_NETWORK: return "Network unavailable";
+ case MA_NOT_UNIQUE: return "Not unique";
+ case MA_NOT_SOCKET: return "Socket operation on non-socket";
+ case MA_NO_ADDRESS: return "Destination address required";
+ case MA_BAD_PROTOCOL: return "Protocol wrong type for socket";
+ case MA_PROTOCOL_UNAVAILABLE: return "Protocol not available";
+ case MA_PROTOCOL_NOT_SUPPORTED: return "Protocol not supported";
+ case MA_PROTOCOL_FAMILY_NOT_SUPPORTED: return "Protocol family not supported";
+ case MA_ADDRESS_FAMILY_NOT_SUPPORTED: return "Address family not supported";
+ case MA_SOCKET_NOT_SUPPORTED: return "Socket type not supported";
+ case MA_CONNECTION_RESET: return "Connection reset";
+ case MA_ALREADY_CONNECTED: return "Already connected";
+ case MA_NOT_CONNECTED: return "Not connected";
+ case MA_CONNECTION_REFUSED: return "Connection refused";
+ case MA_NO_HOST: return "No host";
+ case MA_IN_PROGRESS: return "Operation in progress";
+ case MA_CANCELLED: return "Operation cancelled";
+ case MA_MEMORY_ALREADY_MAPPED: return "Memory already mapped";
+ case MA_AT_END: return "Reached end of collection";
+
+ case MA_FORMAT_NOT_SUPPORTED: return "Format not supported";
+ case MA_DEVICE_TYPE_NOT_SUPPORTED: return "Device type not supported";
+ case MA_SHARE_MODE_NOT_SUPPORTED: return "Share mode not supported";
+ case MA_NO_BACKEND: return "No backend";
+ case MA_NO_DEVICE: return "No device";
+ case MA_API_NOT_FOUND: return "API not found";
+ case MA_INVALID_DEVICE_CONFIG: return "Invalid device config";
+
+ case MA_DEVICE_NOT_INITIALIZED: return "Device not initialized";
+ case MA_DEVICE_NOT_STARTED: return "Device not started";
+
+ case MA_FAILED_TO_INIT_BACKEND: return "Failed to initialize backend";
+ case MA_FAILED_TO_OPEN_BACKEND_DEVICE: return "Failed to open backend device";
+ case MA_FAILED_TO_START_BACKEND_DEVICE: return "Failed to start backend device";
+ case MA_FAILED_TO_STOP_BACKEND_DEVICE: return "Failed to stop backend device";
+
+ default: return "Unknown error";
+ }
+}
+
+MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
return ma__malloc_from_callbacks(sz, pAllocationCallbacks);
@@ -36015,7 +40706,7 @@ void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
}
}
-void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
if (pAllocationCallbacks->onRealloc != NULL) {
@@ -36028,7 +40719,7 @@ void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationC
}
}
-void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
ma__free_from_callbacks(p, pAllocationCallbacks);
@@ -36037,7 +40728,7 @@ void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
}
}
-void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t extraBytes;
void* pUnaligned;
@@ -36060,12 +40751,12 @@ void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbac
return pAligned;
}
-void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
+MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
ma_free(((void**)p)[-1], pAllocationCallbacks);
}
-const char* ma_get_format_name(ma_format format)
+MA_API const char* ma_get_format_name(ma_format format)
{
switch (format)
{
@@ -36079,7 +40770,7 @@ const char* ma_get_format_name(ma_format format)
}
}
-void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels)
+MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels)
{
ma_uint32 i;
for (i = 0; i < channels; ++i) {
@@ -36088,7 +40779,7 @@ void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32
}
-ma_uint32 ma_get_bytes_per_sample(ma_format format)
+MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format)
{
ma_uint32 sizes[] = {
0, /* unknown */
@@ -36102,6 +40793,2246 @@ ma_uint32 ma_get_bytes_per_sample(ma_format format)
}
+
+MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop)
+{
+ ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
+ if (pCallbacks == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onRead == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ /* A very small optimization for the non looping case. */
+ if (loop == MA_FALSE) {
+ return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead);
+ } else {
+ ma_format format;
+ ma_uint32 channels;
+ if (ma_data_source_get_data_format(pDataSource, &format, &channels) != MA_SUCCESS) {
+ return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead); /* We don't have a way to retrieve the data format which means we don't know how to offset the output buffer. Just read as much as we can. */
+ } else {
+ ma_result result = MA_SUCCESS;
+ ma_uint64 totalFramesProcessed;
+ void* pRunningFramesOut = pFramesOut;
+
+ totalFramesProcessed = 0;
+ while (totalFramesProcessed < frameCount) {
+ ma_uint64 framesProcessed;
+ ma_uint64 framesRemaining = frameCount - totalFramesProcessed;
+
+ result = pCallbacks->onRead(pDataSource, pRunningFramesOut, framesRemaining, &framesProcessed);
+ totalFramesProcessed += framesProcessed;
+
+ /*
+ If we encounted an error from the read callback, make sure it's propagated to the caller. The caller may need to know whether or not MA_BUSY is returned which is
+ not necessarily considered an error.
+ */
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ /*
+ We can determine if we've reached the end by checking the return value of the onRead() callback. If it's less than what we requested it means
+ we've reached the end. To loop back to the start, all we need to do is seek back to the first frame.
+ */
+ if (framesProcessed < framesRemaining) {
+ if (ma_data_source_seek_to_pcm_frame(pDataSource, 0) != MA_SUCCESS) {
+ break;
+ }
+ }
+
+ if (pRunningFramesOut != NULL) {
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesProcessed * ma_get_bytes_per_frame(format, channels));
+ }
+ }
+
+ *pFramesRead = totalFramesProcessed;
+ return result;
+ }
+ }
+}
+
+MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop)
+{
+ return ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount, pFramesSeeked, loop);
+}
+
+MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex)
+{
+ ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
+ if (pCallbacks == NULL || pCallbacks->onSeek == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return pCallbacks->onSeek(pDataSource, frameIndex);
+}
+
+MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount)
+{
+ ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
+ if (pCallbacks == NULL || pCallbacks->onMap == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return pCallbacks->onMap(pDataSource, ppFramesOut, pFrameCount);
+}
+
+MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount)
+{
+ ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
+ if (pCallbacks == NULL || pCallbacks->onUnmap == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return pCallbacks->onUnmap(pDataSource, frameCount);
+}
+
+MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
+{
+ ma_result result;
+ ma_format format;
+ ma_uint32 channels;
+ ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
+
+ if (pCallbacks == NULL || pCallbacks->onGetDataFormat == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ result = pCallbacks->onGetDataFormat(pDataSource, &format, &channels);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ if (pFormat != NULL) {
+ *pFormat = format;
+ }
+ if (pChannels != NULL) {
+ *pChannels = channels;
+ }
+
+ return MA_SUCCESS;
+}
+
+
+
+MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ ma_audio_buffer_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sizeInFrames = sizeInFrames;
+ config.pData = pData;
+ ma_allocation_callbacks_init_copy(&config.allocationCallbacks, pAllocationCallbacks);
+
+ return config;
+}
+
+
+static ma_result ma_audio_buffer__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
+{
+ ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames((ma_audio_buffer*)pDataSource, pFramesOut, frameCount, MA_FALSE);
+
+ if (pFramesRead != NULL) {
+ *pFramesRead = framesRead;
+ }
+
+ if (framesRead < frameCount) {
+ return MA_AT_END;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_audio_buffer__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
+{
+ return ma_audio_buffer_seek_to_pcm_frame((ma_audio_buffer*)pDataSource, frameIndex);
+}
+
+static ma_result ma_audio_buffer__data_source_on_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount)
+{
+ return ma_audio_buffer_map((ma_audio_buffer*)pDataSource, ppFramesOut, pFrameCount);
+}
+
+static ma_result ma_audio_buffer__data_source_on_unmap(ma_data_source* pDataSource, ma_uint64 frameCount)
+{
+ return ma_audio_buffer_unmap((ma_audio_buffer*)pDataSource, frameCount);
+}
+
+static ma_result ma_audio_buffer__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
+{
+ ma_audio_buffer* pAudioBuffer = (ma_audio_buffer*)pDataSource;
+
+ *pFormat = pAudioBuffer->format;
+ *pChannels = pAudioBuffer->channels;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_audio_buffer_init_ex(const ma_audio_buffer_config* pConfig, ma_bool32 doCopy, ma_audio_buffer* pAudioBuffer)
+{
+ if (pAudioBuffer == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_MEMORY(pAudioBuffer, sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData)); /* Safety. Don't overwrite the extra data. */
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConfig->sizeInFrames == 0) {
+ return MA_INVALID_ARGS; /* Not allowing buffer sizes of 0 frames. */
+ }
+
+ pAudioBuffer->ds.onRead = ma_audio_buffer__data_source_on_read;
+ pAudioBuffer->ds.onSeek = ma_audio_buffer__data_source_on_seek;
+ pAudioBuffer->ds.onMap = ma_audio_buffer__data_source_on_map;
+ pAudioBuffer->ds.onUnmap = ma_audio_buffer__data_source_on_unmap;
+ pAudioBuffer->ds.onGetDataFormat = ma_audio_buffer__data_source_on_get_data_format;
+ pAudioBuffer->format = pConfig->format;
+ pAudioBuffer->channels = pConfig->channels;
+ pAudioBuffer->cursor = 0;
+ pAudioBuffer->sizeInFrames = pConfig->sizeInFrames;
+ pAudioBuffer->pData = NULL; /* Set properly later. */
+ ma_allocation_callbacks_init_copy(&pAudioBuffer->allocationCallbacks, &pConfig->allocationCallbacks);
+
+ if (doCopy) {
+ ma_uint64 allocationSizeInBytes;
+ void* pData;
+
+ allocationSizeInBytes = pAudioBuffer->sizeInFrames * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels);
+ if (allocationSizeInBytes > MA_SIZE_MAX) {
+ return MA_OUT_OF_MEMORY; /* Too big. */
+ }
+
+ pData = ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &pAudioBuffer->allocationCallbacks); /* Safe cast to size_t. */
+ if (pData == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ if (pConfig->pData != NULL) {
+ ma_copy_pcm_frames(pData, pConfig->pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels);
+ } else {
+ ma_silence_pcm_frames(pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels);
+ }
+
+ pAudioBuffer->pData = pData;
+ pAudioBuffer->ownsData = MA_TRUE;
+ } else {
+ pAudioBuffer->pData = pConfig->pData;
+ pAudioBuffer->ownsData = MA_FALSE;
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_audio_buffer_uninit_ex(ma_audio_buffer* pAudioBuffer, ma_bool32 doFree)
+{
+ if (pAudioBuffer == NULL) {
+ return;
+ }
+
+ if (pAudioBuffer->ownsData && pAudioBuffer->pData != &pAudioBuffer->_pExtraData[0]) {
+ ma__free_from_callbacks((void*)pAudioBuffer->pData, &pAudioBuffer->allocationCallbacks); /* Naugty const cast, but OK in this case since we've guarded it with the ownsData check. */
+ }
+
+ if (doFree) {
+ ma_allocation_callbacks allocationCallbacks = pAudioBuffer->allocationCallbacks;
+ ma__free_from_callbacks(pAudioBuffer, &allocationCallbacks);
+ }
+}
+
+MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer)
+{
+ return ma_audio_buffer_init_ex(pConfig, MA_FALSE, pAudioBuffer);
+}
+
+MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer)
+{
+ return ma_audio_buffer_init_ex(pConfig, MA_TRUE, pAudioBuffer);
+}
+
+MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer)
+{
+ ma_result result;
+ ma_audio_buffer* pAudioBuffer;
+ ma_audio_buffer_config innerConfig; /* We'll be making some changes to the config, so need to make a copy. */
+ ma_uint64 allocationSizeInBytes;
+
+ if (ppAudioBuffer == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *ppAudioBuffer = NULL; /* Safety. */
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ innerConfig = *pConfig;
+ ma_allocation_callbacks_init_copy(&innerConfig.allocationCallbacks, &pConfig->allocationCallbacks);
+
+ allocationSizeInBytes = sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData) + (pConfig->sizeInFrames * ma_get_bytes_per_frame(pConfig->format, pConfig->channels));
+ if (allocationSizeInBytes > MA_SIZE_MAX) {
+ return MA_OUT_OF_MEMORY; /* Too big. */
+ }
+
+ pAudioBuffer = (ma_audio_buffer*)ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &innerConfig.allocationCallbacks); /* Safe cast to size_t. */
+ if (pAudioBuffer == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ if (pConfig->pData != NULL) {
+ ma_copy_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels);
+ } else {
+ ma_silence_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->sizeInFrames, pConfig->format, pConfig->channels);
+ }
+
+ innerConfig.pData = &pAudioBuffer->_pExtraData[0];
+
+ result = ma_audio_buffer_init_ex(&innerConfig, MA_FALSE, pAudioBuffer);
+ if (result != MA_SUCCESS) {
+ ma__free_from_callbacks(pAudioBuffer, &innerConfig.allocationCallbacks);
+ return result;
+ }
+
+ *ppAudioBuffer = pAudioBuffer;
+
+ return MA_SUCCESS;
+}
+
+MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer)
+{
+ ma_audio_buffer_uninit_ex(pAudioBuffer, MA_FALSE);
+}
+
+MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer)
+{
+ ma_audio_buffer_uninit_ex(pAudioBuffer, MA_TRUE);
+}
+
+MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop)
+{
+ ma_uint64 totalFramesRead = 0;
+
+ if (pAudioBuffer == NULL) {
+ return 0;
+ }
+
+ if (frameCount == 0) {
+ return 0;
+ }
+
+ while (totalFramesRead < frameCount) {
+ ma_uint64 framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
+ ma_uint64 framesRemaining = frameCount - totalFramesRead;
+ ma_uint64 framesToRead;
+
+ framesToRead = framesRemaining;
+ if (framesToRead > framesAvailable) {
+ framesToRead = framesAvailable;
+ }
+
+ if (pFramesOut != NULL) {
+ ma_copy_pcm_frames(pFramesOut, ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels)), frameCount, pAudioBuffer->format, pAudioBuffer->channels);
+ }
+
+ totalFramesRead += framesToRead;
+
+ pAudioBuffer->cursor += framesToRead;
+ if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) {
+ if (loop) {
+ pAudioBuffer->cursor = 0;
+ } else {
+ break; /* We've reached the end and we're not looping. Done. */
+ }
+ }
+
+ MA_ASSERT(pAudioBuffer->cursor < pAudioBuffer->sizeInFrames);
+ }
+
+ return frameCount;
+}
+
+MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex)
+{
+ if (pAudioBuffer == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (frameIndex > pAudioBuffer->sizeInFrames) {
+ return MA_INVALID_ARGS;
+ }
+
+ pAudioBuffer->cursor = (size_t)frameIndex;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount)
+{
+ ma_uint64 framesAvailable;
+ ma_uint64 frameCount = 0;
+
+ if (ppFramesOut != NULL) {
+ *ppFramesOut = NULL; /* Safety. */
+ }
+
+ if (pFrameCount != NULL) {
+ frameCount = *pFrameCount;
+ *pFrameCount = 0; /* Safety. */
+ }
+
+ if (pAudioBuffer == NULL || ppFramesOut == NULL || pFrameCount == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
+ if (frameCount > framesAvailable) {
+ frameCount = framesAvailable;
+ }
+
+ *ppFramesOut = ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels));
+ *pFrameCount = frameCount;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount)
+{
+ ma_uint64 framesAvailable;
+
+ if (pAudioBuffer == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
+ if (frameCount > framesAvailable) {
+ return MA_INVALID_ARGS; /* The frame count was too big. This should never happen in an unmapping. Need to make sure the caller is aware of this. */
+ }
+
+ pAudioBuffer->cursor += frameCount;
+
+ if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) {
+ return MA_AT_END; /* Successful. Need to tell the caller that the end has been reached so that it can loop if desired. */
+ } else {
+ return MA_SUCCESS;
+ }
+}
+
+MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer)
+{
+ if (pAudioBuffer == NULL) {
+ return MA_FALSE;
+ }
+
+ return pAudioBuffer->cursor == pAudioBuffer->sizeInFrames;
+}
+
+
+
+/**************************************************************************************************************************************************************
+
+VFS
+
+**************************************************************************************************************************************************************/
+MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pFile = NULL;
+
+ if (pVFS == NULL || pFilePath == NULL || openMode == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onOpen == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onOpen(pVFS, pFilePath, openMode, pFile);
+}
+
+MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pFile = NULL;
+
+ if (pVFS == NULL || pFilePath == NULL || openMode == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onOpenW == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onOpenW(pVFS, pFilePath, openMode, pFile);
+}
+
+MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pVFS == NULL || file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onClose == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onClose(pVFS, file);
+}
+
+MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pBytesRead != NULL) {
+ *pBytesRead = 0;
+ }
+
+ if (pVFS == NULL || file == NULL || pDst == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onRead == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onRead(pVFS, file, pDst, sizeInBytes, pBytesRead);
+}
+
+MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pBytesWritten == NULL) {
+ *pBytesWritten = 0;
+ }
+
+ if (pVFS == NULL || file == NULL || pSrc == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onWrite == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onWrite(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
+}
+
+MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pVFS == NULL || file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onSeek == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onSeek(pVFS, file, offset, origin);
+}
+
+MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pCursor == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pCursor = 0;
+
+ if (pVFS == NULL || file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onTell == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onTell(pVFS, file, pCursor);
+}
+
+MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
+{
+ ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
+
+ if (pInfo == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pInfo);
+
+ if (pVFS == NULL || file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pCallbacks->onInfo == NULL) {
+ return MA_NOT_IMPLEMENTED;
+ }
+
+ return pCallbacks->onInfo(pVFS, file, pInfo);
+}
+
+
+static ma_result ma_vfs_open_and_read_file_ex(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks, ma_uint32 allocationType)
+{
+ ma_result result;
+ ma_vfs_file file;
+ ma_file_info info;
+ void* pData;
+ size_t bytesRead;
+
+ (void)allocationType;
+
+ if (ppData != NULL) {
+ *ppData = NULL;
+ }
+ if (pSize != NULL) {
+ *pSize = 0;
+ }
+
+ if (ppData == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_vfs_info(pVFS, file, &info);
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, file);
+ return result;
+ }
+
+ if (info.sizeInBytes > MA_SIZE_MAX) {
+ ma_vfs_close(pVFS, file);
+ return MA_TOO_BIG;
+ }
+
+ pData = ma__malloc_from_callbacks((size_t)info.sizeInBytes, pAllocationCallbacks); /* Safe cast. */
+ if (pData == NULL) {
+ ma_vfs_close(pVFS, file);
+ return result;
+ }
+
+ result = ma_vfs_read(pVFS, file, pData, (size_t)info.sizeInBytes, &bytesRead); /* Safe cast. */
+ ma_vfs_close(pVFS, file);
+
+ if (result != MA_SUCCESS) {
+ ma__free_from_callbacks(pData, pAllocationCallbacks);
+ return result;
+ }
+
+ if (pSize != NULL) {
+ *pSize = bytesRead;
+ }
+
+ MA_ASSERT(ppData != NULL);
+ *ppData = pData;
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ return ma_vfs_open_and_read_file_ex(pVFS, pFilePath, ppData, pSize, pAllocationCallbacks, 0 /*MA_ALLOCATION_TYPE_GENERAL*/);
+}
+
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+static void ma_default_vfs__get_open_settings_win32(ma_uint32 openMode, DWORD* pDesiredAccess, DWORD* pShareMode, DWORD* pCreationDisposition)
+{
+ *pDesiredAccess = 0;
+ if ((openMode & MA_OPEN_MODE_READ) != 0) {
+ *pDesiredAccess |= GENERIC_READ;
+ }
+ if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
+ *pDesiredAccess |= GENERIC_WRITE;
+ }
+
+ *pShareMode = 0;
+ if ((openMode & MA_OPEN_MODE_READ) != 0) {
+ *pShareMode |= FILE_SHARE_READ;
+ }
+
+ if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
+ *pCreationDisposition = CREATE_ALWAYS; /* Opening in write mode. Truncate. */
+ } else {
+ *pCreationDisposition = OPEN_EXISTING; /* Opening in read mode. File must exist. */
+ }
+}
+
+static ma_result ma_default_vfs_open__win32(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ HANDLE hFile;
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+
+ (void)pVFS;
+
+ ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition);
+
+ hFile = CreateFileA(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL);
+ if (hFile == INVALID_HANDLE_VALUE) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ *pFile = hFile;
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_open_w__win32(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ HANDLE hFile;
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+
+ (void)pVFS;
+
+ ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition);
+
+ hFile = CreateFileW(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL);
+ if (hFile == INVALID_HANDLE_VALUE) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ *pFile = hFile;
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_close__win32(ma_vfs* pVFS, ma_vfs_file file)
+{
+ (void)pVFS;
+
+ if (CloseHandle((HANDLE)file) == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+
+static ma_result ma_default_vfs_read__win32(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
+{
+ ma_result result = MA_SUCCESS;
+ size_t totalBytesRead;
+
+ (void)pVFS;
+
+ totalBytesRead = 0;
+ while (totalBytesRead < sizeInBytes) {
+ size_t bytesRemaining;
+ DWORD bytesToRead;
+ DWORD bytesRead;
+ BOOL readResult;
+
+ bytesRemaining = sizeInBytes - totalBytesRead;
+ if (bytesRemaining > 0xFFFFFFFF) {
+ bytesToRead = 0xFFFFFFFF;
+ } else {
+ bytesToRead = (DWORD)bytesRemaining;
+ }
+
+ readResult = ReadFile((HANDLE)file, ma_offset_ptr(pDst, totalBytesRead), bytesToRead, &bytesRead, NULL);
+ totalBytesRead += bytesRead;
+
+ if (bytesRead < bytesToRead || (readResult == 1 && bytesRead == 0)) {
+ break; /* EOF */
+ }
+
+ if (readResult == 0) {
+ result = ma_result_from_GetLastError(GetLastError());
+ break;
+ }
+ }
+
+ if (pBytesRead != NULL) {
+ *pBytesRead = totalBytesRead;
+ }
+
+ return result;
+}
+
+static ma_result ma_default_vfs_write__win32(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
+{
+ ma_result result = MA_SUCCESS;
+ size_t totalBytesWritten;
+
+ (void)pVFS;
+
+ totalBytesWritten = 0;
+ while (totalBytesWritten < sizeInBytes) {
+ size_t bytesRemaining;
+ DWORD bytesToWrite;
+ DWORD bytesWritten;
+ BOOL writeResult;
+
+ bytesRemaining = sizeInBytes - totalBytesWritten;
+ if (bytesRemaining > 0xFFFFFFFF) {
+ bytesToWrite = 0xFFFFFFFF;
+ } else {
+ bytesToWrite = (DWORD)bytesRemaining;
+ }
+
+ writeResult = WriteFile((HANDLE)file, ma_offset_ptr(pSrc, totalBytesWritten), bytesToWrite, &bytesWritten, NULL);
+ totalBytesWritten += bytesWritten;
+
+ if (writeResult == 0) {
+ result = ma_result_from_GetLastError(GetLastError());
+ break;
+ }
+ }
+
+ if (pBytesWritten == NULL) {
+ *pBytesWritten = totalBytesWritten;
+ }
+
+ return result;
+}
+
+#if !defined(WINVER) || WINVER <= 0x0502
+WINBASEAPI BOOL WINAPI SetFilePointerEx(HANDLE hFile, LARGE_INTEGER liDistanceToMove, LARGE_INTEGER* pNewFilePointer, DWORD dwMoveMethod);
+#endif
+
+static ma_result ma_default_vfs_seek__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
+{
+ LARGE_INTEGER liDistanceToMove;
+ DWORD dwMoveMethod;
+ BOOL result;
+
+ (void)pVFS;
+
+ liDistanceToMove.QuadPart = offset;
+
+ /* */ if (origin == ma_seek_origin_current) {
+ dwMoveMethod = FILE_CURRENT;
+ } else if (origin == ma_seek_origin_end) {
+ dwMoveMethod = FILE_END;
+ } else {
+ dwMoveMethod = FILE_BEGIN;
+ }
+
+ result = SetFilePointerEx((HANDLE)file, liDistanceToMove, NULL, dwMoveMethod);
+ if (result == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_tell__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
+{
+ LARGE_INTEGER liZero;
+ LARGE_INTEGER liTell;
+ BOOL result;
+
+ (void)pVFS;
+
+ liZero.QuadPart = 0;
+
+ result = SetFilePointerEx((HANDLE)file, liZero, &liTell, FILE_CURRENT);
+ if (result == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ if (pCursor != NULL) {
+ *pCursor = liTell.QuadPart;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_info__win32(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
+{
+ BY_HANDLE_FILE_INFORMATION fi;
+ BOOL result;
+
+ (void)pVFS;
+
+ result = GetFileInformationByHandle((HANDLE)file, &fi);
+ if (result == 0) {
+ return ma_result_from_GetLastError(GetLastError());
+ }
+
+ pInfo->sizeInBytes = ((ma_uint64)fi.nFileSizeHigh << 32) | ((ma_uint64)fi.nFileSizeLow);
+
+ return MA_SUCCESS;
+}
+#else
+static ma_result ma_default_vfs_open__stdio(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ ma_result result;
+ FILE* pFileStd;
+ const char* pOpenModeStr;
+
+ MA_ASSERT(pFilePath != NULL);
+ MA_ASSERT(openMode != 0);
+ MA_ASSERT(pFile != NULL);
+
+ (void)pVFS;
+
+ if ((openMode & MA_OPEN_MODE_READ) != 0) {
+ if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
+ pOpenModeStr = "r+";
+ } else {
+ pOpenModeStr = "rb";
+ }
+ } else {
+ pOpenModeStr = "wb";
+ }
+
+ result = ma_fopen(&pFileStd, pFilePath, pOpenModeStr);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ *pFile = pFileStd;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_open_w__stdio(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ ma_result result;
+ FILE* pFileStd;
+ const wchar_t* pOpenModeStr;
+
+ MA_ASSERT(pFilePath != NULL);
+ MA_ASSERT(openMode != 0);
+ MA_ASSERT(pFile != NULL);
+
+ (void)pVFS;
+
+ if ((openMode & MA_OPEN_MODE_READ) != 0) {
+ if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
+ pOpenModeStr = L"r+";
+ } else {
+ pOpenModeStr = L"rb";
+ }
+ } else {
+ pOpenModeStr = L"wb";
+ }
+
+ result = ma_wfopen(&pFileStd, pFilePath, pOpenModeStr, (pVFS != NULL) ? &((ma_default_vfs*)pVFS)->allocationCallbacks : NULL);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ *pFile = pFileStd;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_close__stdio(ma_vfs* pVFS, ma_vfs_file file)
+{
+ MA_ASSERT(file != NULL);
+
+ (void)pVFS;
+
+ fclose((FILE*)file);
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_read__stdio(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
+{
+ size_t result;
+
+ MA_ASSERT(file != NULL);
+ MA_ASSERT(pDst != NULL);
+
+ (void)pVFS;
+
+ result = fread(pDst, 1, sizeInBytes, (FILE*)file);
+
+ if (pBytesRead != NULL) {
+ *pBytesRead = result;
+ }
+
+ if (result != sizeInBytes) {
+ if (feof((FILE*)file)) {
+ return MA_END_OF_FILE;
+ } else {
+ return ma_result_from_errno(ferror((FILE*)file));
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_write__stdio(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
+{
+ size_t result;
+
+ MA_ASSERT(file != NULL);
+ MA_ASSERT(pSrc != NULL);
+
+ (void)pVFS;
+
+ result = fwrite(pSrc, 1, sizeInBytes, (FILE*)file);
+
+ if (pBytesWritten != NULL) {
+ *pBytesWritten = result;
+ }
+
+ if (result != sizeInBytes) {
+ return ma_result_from_errno(ferror((FILE*)file));
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_seek__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
+{
+ int result;
+
+ MA_ASSERT(file != NULL);
+
+ (void)pVFS;
+
+#if defined(_WIN32)
+ #if defined(_MSC_VER) && _MSC_VER > 1200
+ result = _fseeki64((FILE*)file, offset, origin);
+ #else
+ /* No _fseeki64() so restrict to 31 bits. */
+ if (origin > 0x7FFFFFFF) {
+ return MA_OUT_OF_RANGE;
+ }
+
+ result = fseek((FILE*)file, (int)offset, origin);
+ #endif
+#else
+ result = fseek((FILE*)file, (long int)offset, origin);
+#endif
+ if (result != 0) {
+ return MA_ERROR;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_default_vfs_tell__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
+{
+ ma_int64 result;
+
+ MA_ASSERT(file != NULL);
+ MA_ASSERT(pCursor != NULL);
+
+ (void)pVFS;
+
+#if defined(_WIN32)
+ #if defined(_MSC_VER) && _MSC_VER > 1200
+ result = _ftelli64((FILE*)file);
+ #else
+ result = ftell((FILE*)file);
+ #endif
+#else
+ result = ftell((FILE*)file);
+#endif
+
+ *pCursor = result;
+
+ return MA_SUCCESS;
+}
+
+#if !((defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE))
+int fileno(FILE *stream);
+#endif
+
+static ma_result ma_default_vfs_info__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
+{
+ int fd;
+ struct stat info;
+
+ MA_ASSERT(file != NULL);
+ MA_ASSERT(pInfo != NULL);
+
+ (void)pVFS;
+
+#if defined(_MSC_VER)
+ fd = _fileno((FILE*)file);
+#else
+ fd = fileno((FILE*)file);
+#endif
+
+ if (fstat(fd, &info) != 0) {
+ return ma_result_from_errno(errno);
+ }
+
+ pInfo->sizeInBytes = info.st_size;
+
+ return MA_SUCCESS;
+}
+#endif
+
+
+static ma_result ma_default_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ if (pFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pFile = NULL;
+
+ if (pFilePath == NULL || openMode == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_open__win32(pVFS, pFilePath, openMode, pFile);
+#else
+ return ma_default_vfs_open__stdio(pVFS, pFilePath, openMode, pFile);
+#endif
+}
+
+static ma_result ma_default_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
+{
+ if (pFile == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pFile = NULL;
+
+ if (pFilePath == NULL || openMode == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_open_w__win32(pVFS, pFilePath, openMode, pFile);
+#else
+ return ma_default_vfs_open_w__stdio(pVFS, pFilePath, openMode, pFile);
+#endif
+}
+
+static ma_result ma_default_vfs_close(ma_vfs* pVFS, ma_vfs_file file)
+{
+ if (file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_close__win32(pVFS, file);
+#else
+ return ma_default_vfs_close__stdio(pVFS, file);
+#endif
+}
+
+static ma_result ma_default_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
+{
+ if (file == NULL || pDst == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_read__win32(pVFS, file, pDst, sizeInBytes, pBytesRead);
+#else
+ return ma_default_vfs_read__stdio(pVFS, file, pDst, sizeInBytes, pBytesRead);
+#endif
+}
+
+static ma_result ma_default_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
+{
+ if (file == NULL || pSrc == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_write__win32(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
+#else
+ return ma_default_vfs_write__stdio(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
+#endif
+}
+
+static ma_result ma_default_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
+{
+ if (file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_seek__win32(pVFS, file, offset, origin);
+#else
+ return ma_default_vfs_seek__stdio(pVFS, file, offset, origin);
+#endif
+}
+
+static ma_result ma_default_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
+{
+ if (pCursor == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ *pCursor = 0;
+
+ if (file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_tell__win32(pVFS, file, pCursor);
+#else
+ return ma_default_vfs_tell__stdio(pVFS, file, pCursor);
+#endif
+}
+
+static ma_result ma_default_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
+{
+ if (pInfo == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pInfo);
+
+ if (file == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
+ return ma_default_vfs_info__win32(pVFS, file, pInfo);
+#else
+ return ma_default_vfs_info__stdio(pVFS, file, pInfo);
+#endif
+}
+
+
+MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pVFS == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pVFS->cb.onOpen = ma_default_vfs_open;
+ pVFS->cb.onOpenW = ma_default_vfs_open_w;
+ pVFS->cb.onClose = ma_default_vfs_close;
+ pVFS->cb.onRead = ma_default_vfs_read;
+ pVFS->cb.onWrite = ma_default_vfs_write;
+ pVFS->cb.onSeek = ma_default_vfs_seek;
+ pVFS->cb.onTell = ma_default_vfs_tell;
+ pVFS->cb.onInfo = ma_default_vfs_info;
+ ma_allocation_callbacks_init_copy(&pVFS->allocationCallbacks, pAllocationCallbacks);
+
+ return MA_SUCCESS;
+}
+
+
+/**************************************************************************************************************************************************************
+
+Decoding and Encoding Headers. These are auto-generated from a tool.
+
+**************************************************************************************************************************************************************/
+#if !defined(MA_NO_WAV) && !defined(MA_NO_DECODING) && !defined(MA_NO_ENCODING)
+/* dr_wav_h begin */
+#ifndef dr_wav_h
+#define dr_wav_h
+#ifdef __cplusplus
+extern "C" {
+#endif
+#define DRWAV_STRINGIFY(x) #x
+#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x)
+#define DRWAV_VERSION_MAJOR 0
+#define DRWAV_VERSION_MINOR 12
+#define DRWAV_VERSION_REVISION 6
+#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION)
+#include
+#ifdef _MSC_VER
+ #if defined(__clang__)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wlanguage-extension-token"
+ #pragma GCC diagnostic ignored "-Wlong-long"
+ #pragma GCC diagnostic ignored "-Wc++11-long-long"
+ #endif
+ typedef signed __int8 drwav_int8;
+ typedef unsigned __int8 drwav_uint8;
+ typedef signed __int16 drwav_int16;
+ typedef unsigned __int16 drwav_uint16;
+ typedef signed __int32 drwav_int32;
+ typedef unsigned __int32 drwav_uint32;
+ typedef signed __int64 drwav_int64;
+ typedef unsigned __int64 drwav_uint64;
+ #if defined(__clang__)
+ #pragma GCC diagnostic pop
+ #endif
+#else
+ #include
+ typedef int8_t drwav_int8;
+ typedef uint8_t drwav_uint8;
+ typedef int16_t drwav_int16;
+ typedef uint16_t drwav_uint16;
+ typedef int32_t drwav_int32;
+ typedef uint32_t drwav_uint32;
+ typedef int64_t drwav_int64;
+ typedef uint64_t drwav_uint64;
+#endif
+typedef drwav_uint8 drwav_bool8;
+typedef drwav_uint32 drwav_bool32;
+#define DRWAV_TRUE 1
+#define DRWAV_FALSE 0
+#if !defined(DRWAV_API)
+ #if defined(DRWAV_DLL)
+ #if defined(_WIN32)
+ #define DRWAV_DLL_IMPORT __declspec(dllimport)
+ #define DRWAV_DLL_EXPORT __declspec(dllexport)
+ #define DRWAV_DLL_PRIVATE static
+ #else
+ #if defined(__GNUC__) && __GNUC__ >= 4
+ #define DRWAV_DLL_IMPORT __attribute__((visibility("default")))
+ #define DRWAV_DLL_EXPORT __attribute__((visibility("default")))
+ #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden")))
+ #else
+ #define DRWAV_DLL_IMPORT
+ #define DRWAV_DLL_EXPORT
+ #define DRWAV_DLL_PRIVATE static
+ #endif
+ #endif
+ #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
+ #define DRWAV_API DRWAV_DLL_EXPORT
+ #else
+ #define DRWAV_API DRWAV_DLL_IMPORT
+ #endif
+ #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE
+ #else
+ #define DRWAV_API extern
+ #define DRWAV_PRIVATE static
+ #endif
+#endif
+typedef drwav_int32 drwav_result;
+#define DRWAV_SUCCESS 0
+#define DRWAV_ERROR -1
+#define DRWAV_INVALID_ARGS -2
+#define DRWAV_INVALID_OPERATION -3
+#define DRWAV_OUT_OF_MEMORY -4
+#define DRWAV_OUT_OF_RANGE -5
+#define DRWAV_ACCESS_DENIED -6
+#define DRWAV_DOES_NOT_EXIST -7
+#define DRWAV_ALREADY_EXISTS -8
+#define DRWAV_TOO_MANY_OPEN_FILES -9
+#define DRWAV_INVALID_FILE -10
+#define DRWAV_TOO_BIG -11
+#define DRWAV_PATH_TOO_LONG -12
+#define DRWAV_NAME_TOO_LONG -13
+#define DRWAV_NOT_DIRECTORY -14
+#define DRWAV_IS_DIRECTORY -15
+#define DRWAV_DIRECTORY_NOT_EMPTY -16
+#define DRWAV_END_OF_FILE -17
+#define DRWAV_NO_SPACE -18
+#define DRWAV_BUSY -19
+#define DRWAV_IO_ERROR -20
+#define DRWAV_INTERRUPT -21
+#define DRWAV_UNAVAILABLE -22
+#define DRWAV_ALREADY_IN_USE -23
+#define DRWAV_BAD_ADDRESS -24
+#define DRWAV_BAD_SEEK -25
+#define DRWAV_BAD_PIPE -26
+#define DRWAV_DEADLOCK -27
+#define DRWAV_TOO_MANY_LINKS -28
+#define DRWAV_NOT_IMPLEMENTED -29
+#define DRWAV_NO_MESSAGE -30
+#define DRWAV_BAD_MESSAGE -31
+#define DRWAV_NO_DATA_AVAILABLE -32
+#define DRWAV_INVALID_DATA -33
+#define DRWAV_TIMEOUT -34
+#define DRWAV_NO_NETWORK -35
+#define DRWAV_NOT_UNIQUE -36
+#define DRWAV_NOT_SOCKET -37
+#define DRWAV_NO_ADDRESS -38
+#define DRWAV_BAD_PROTOCOL -39
+#define DRWAV_PROTOCOL_UNAVAILABLE -40
+#define DRWAV_PROTOCOL_NOT_SUPPORTED -41
+#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43
+#define DRWAV_SOCKET_NOT_SUPPORTED -44
+#define DRWAV_CONNECTION_RESET -45
+#define DRWAV_ALREADY_CONNECTED -46
+#define DRWAV_NOT_CONNECTED -47
+#define DRWAV_CONNECTION_REFUSED -48
+#define DRWAV_NO_HOST -49
+#define DRWAV_IN_PROGRESS -50
+#define DRWAV_CANCELLED -51
+#define DRWAV_MEMORY_ALREADY_MAPPED -52
+#define DRWAV_AT_END -53
+#define DR_WAVE_FORMAT_PCM 0x1
+#define DR_WAVE_FORMAT_ADPCM 0x2
+#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3
+#define DR_WAVE_FORMAT_ALAW 0x6
+#define DR_WAVE_FORMAT_MULAW 0x7
+#define DR_WAVE_FORMAT_DVI_ADPCM 0x11
+#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE
+#ifndef DRWAV_MAX_SMPL_LOOPS
+#define DRWAV_MAX_SMPL_LOOPS 1
+#endif
+#define DRWAV_SEQUENTIAL 0x00000001
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision);
+DRWAV_API const char* drwav_version_string();
+typedef enum
+{
+ drwav_seek_origin_start,
+ drwav_seek_origin_current
+} drwav_seek_origin;
+typedef enum
+{
+ drwav_container_riff,
+ drwav_container_w64
+} drwav_container;
+typedef struct
+{
+ union
+ {
+ drwav_uint8 fourcc[4];
+ drwav_uint8 guid[16];
+ } id;
+ drwav_uint64 sizeInBytes;
+ unsigned int paddingSize;
+} drwav_chunk_header;
+typedef struct
+{
+ drwav_uint16 formatTag;
+ drwav_uint16 channels;
+ drwav_uint32 sampleRate;
+ drwav_uint32 avgBytesPerSec;
+ drwav_uint16 blockAlign;
+ drwav_uint16 bitsPerSample;
+ drwav_uint16 extendedSize;
+ drwav_uint16 validBitsPerSample;
+ drwav_uint32 channelMask;
+ drwav_uint8 subFormat[16];
+} drwav_fmt;
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT);
+typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
+typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
+typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
+typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT);
+typedef struct
+{
+ void* pUserData;
+ void* (* onMalloc)(size_t sz, void* pUserData);
+ void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+ void (* onFree)(void* p, void* pUserData);
+} drwav_allocation_callbacks;
+typedef struct
+{
+ const drwav_uint8* data;
+ size_t dataSize;
+ size_t currentReadPos;
+} drwav__memory_stream;
+typedef struct
+{
+ void** ppData;
+ size_t* pDataSize;
+ size_t dataSize;
+ size_t dataCapacity;
+ size_t currentWritePos;
+} drwav__memory_stream_write;
+typedef struct
+{
+ drwav_container container;
+ drwav_uint32 format;
+ drwav_uint32 channels;
+ drwav_uint32 sampleRate;
+ drwav_uint32 bitsPerSample;
+} drwav_data_format;
+typedef struct
+{
+ drwav_uint32 cuePointId;
+ drwav_uint32 type;
+ drwav_uint32 start;
+ drwav_uint32 end;
+ drwav_uint32 fraction;
+ drwav_uint32 playCount;
+} drwav_smpl_loop;
+ typedef struct
+{
+ drwav_uint32 manufacturer;
+ drwav_uint32 product;
+ drwav_uint32 samplePeriod;
+ drwav_uint32 midiUnityNotes;
+ drwav_uint32 midiPitchFraction;
+ drwav_uint32 smpteFormat;
+ drwav_uint32 smpteOffset;
+ drwav_uint32 numSampleLoops;
+ drwav_uint32 samplerData;
+ drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS];
+} drwav_smpl;
+typedef struct
+{
+ drwav_read_proc onRead;
+ drwav_write_proc onWrite;
+ drwav_seek_proc onSeek;
+ void* pUserData;
+ drwav_allocation_callbacks allocationCallbacks;
+ drwav_container container;
+ drwav_fmt fmt;
+ drwav_uint32 sampleRate;
+ drwav_uint16 channels;
+ drwav_uint16 bitsPerSample;
+ drwav_uint16 translatedFormatTag;
+ drwav_uint64 totalPCMFrameCount;
+ drwav_uint64 dataChunkDataSize;
+ drwav_uint64 dataChunkDataPos;
+ drwav_uint64 bytesRemaining;
+ drwav_uint64 dataChunkDataSizeTargetWrite;
+ drwav_bool32 isSequentialWrite;
+ drwav_smpl smpl;
+ drwav__memory_stream memoryStream;
+ drwav__memory_stream_write memoryStreamWrite;
+ struct
+ {
+ drwav_uint64 iCurrentPCMFrame;
+ } compressed;
+ struct
+ {
+ drwav_uint32 bytesRemainingInBlock;
+ drwav_uint16 predictor[2];
+ drwav_int32 delta[2];
+ drwav_int32 cachedFrames[4];
+ drwav_uint32 cachedFrameCount;
+ drwav_int32 prevFrames[2][2];
+ } msadpcm;
+ struct
+ {
+ drwav_uint32 bytesRemainingInBlock;
+ drwav_int32 predictor[2];
+ drwav_int32 stepIndex[2];
+ drwav_int32 cachedFrames[16];
+ drwav_uint32 cachedFrameCount;
+ } ima;
+} drwav;
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+DRWAV_API drwav_result drwav_uninit(drwav* pWav);
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex);
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+#ifndef DR_WAV_NO_CONVERSION_API
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+#endif
+#ifndef DR_WAV_NO_STDIO
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_WAV_NO_CONVERSION_API
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_WAV_NO_STDIO
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data);
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data);
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data);
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data);
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data);
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data);
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]);
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b);
+#ifdef __cplusplus
+}
+#endif
+#endif
+/* dr_wav_h end */
+#endif /* MA_NO_WAV */
+
+#if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING)
+/* dr_flac_h begin */
+#ifndef dr_flac_h
+#define dr_flac_h
+#ifdef __cplusplus
+extern "C" {
+#endif
+#define DRFLAC_STRINGIFY(x) #x
+#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x)
+#define DRFLAC_VERSION_MAJOR 0
+#define DRFLAC_VERSION_MINOR 12
+#define DRFLAC_VERSION_REVISION 14
+#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION)
+#include
+#ifdef _MSC_VER
+ #if defined(__clang__)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wlanguage-extension-token"
+ #pragma GCC diagnostic ignored "-Wlong-long"
+ #pragma GCC diagnostic ignored "-Wc++11-long-long"
+ #endif
+ typedef signed __int8 drflac_int8;
+ typedef unsigned __int8 drflac_uint8;
+ typedef signed __int16 drflac_int16;
+ typedef unsigned __int16 drflac_uint16;
+ typedef signed __int32 drflac_int32;
+ typedef unsigned __int32 drflac_uint32;
+ typedef signed __int64 drflac_int64;
+ typedef unsigned __int64 drflac_uint64;
+ #if defined(__clang__)
+ #pragma GCC diagnostic pop
+ #endif
+#else
+ #include
+ typedef int8_t drflac_int8;
+ typedef uint8_t drflac_uint8;
+ typedef int16_t drflac_int16;
+ typedef uint16_t drflac_uint16;
+ typedef int32_t drflac_int32;
+ typedef uint32_t drflac_uint32;
+ typedef int64_t drflac_int64;
+ typedef uint64_t drflac_uint64;
+#endif
+typedef drflac_uint8 drflac_bool8;
+typedef drflac_uint32 drflac_bool32;
+#define DRFLAC_TRUE 1
+#define DRFLAC_FALSE 0
+#if !defined(DRFLAC_API)
+ #if defined(DRFLAC_DLL)
+ #if defined(_WIN32)
+ #define DRFLAC_DLL_IMPORT __declspec(dllimport)
+ #define DRFLAC_DLL_EXPORT __declspec(dllexport)
+ #define DRFLAC_DLL_PRIVATE static
+ #else
+ #if defined(__GNUC__) && __GNUC__ >= 4
+ #define DRFLAC_DLL_IMPORT __attribute__((visibility("default")))
+ #define DRFLAC_DLL_EXPORT __attribute__((visibility("default")))
+ #define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden")))
+ #else
+ #define DRFLAC_DLL_IMPORT
+ #define DRFLAC_DLL_EXPORT
+ #define DRFLAC_DLL_PRIVATE static
+ #endif
+ #endif
+ #if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION)
+ #define DRFLAC_API DRFLAC_DLL_EXPORT
+ #else
+ #define DRFLAC_API DRFLAC_DLL_IMPORT
+ #endif
+ #define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE
+ #else
+ #define DRFLAC_API extern
+ #define DRFLAC_PRIVATE static
+ #endif
+#endif
+#if defined(_MSC_VER) && _MSC_VER >= 1700
+ #define DRFLAC_DEPRECATED __declspec(deprecated)
+#elif (defined(__GNUC__) && __GNUC__ >= 4)
+ #define DRFLAC_DEPRECATED __attribute__((deprecated))
+#elif defined(__has_feature)
+ #if __has_feature(attribute_deprecated)
+ #define DRFLAC_DEPRECATED __attribute__((deprecated))
+ #else
+ #define DRFLAC_DEPRECATED
+ #endif
+#else
+ #define DRFLAC_DEPRECATED
+#endif
+DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision);
+DRFLAC_API const char* drflac_version_string();
+#ifndef DR_FLAC_BUFFER_SIZE
+#define DR_FLAC_BUFFER_SIZE 4096
+#endif
+#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
+#define DRFLAC_64BIT
+#endif
+#ifdef DRFLAC_64BIT
+typedef drflac_uint64 drflac_cache_t;
+#else
+typedef drflac_uint32 drflac_cache_t;
+#endif
+#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0
+#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1
+#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2
+#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3
+#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4
+#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5
+#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6
+#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127
+#define DRFLAC_PICTURE_TYPE_OTHER 0
+#define DRFLAC_PICTURE_TYPE_FILE_ICON 1
+#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2
+#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3
+#define DRFLAC_PICTURE_TYPE_COVER_BACK 4
+#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5
+#define DRFLAC_PICTURE_TYPE_MEDIA 6
+#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7
+#define DRFLAC_PICTURE_TYPE_ARTIST 8
+#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9
+#define DRFLAC_PICTURE_TYPE_BAND 10
+#define DRFLAC_PICTURE_TYPE_COMPOSER 11
+#define DRFLAC_PICTURE_TYPE_LYRICIST 12
+#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13
+#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14
+#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15
+#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16
+#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17
+#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18
+#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19
+#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20
+typedef enum
+{
+ drflac_container_native,
+ drflac_container_ogg,
+ drflac_container_unknown
+} drflac_container;
+typedef enum
+{
+ drflac_seek_origin_start,
+ drflac_seek_origin_current
+} drflac_seek_origin;
+#pragma pack(2)
+typedef struct
+{
+ drflac_uint64 firstPCMFrame;
+ drflac_uint64 flacFrameOffset;
+ drflac_uint16 pcmFrameCount;
+} drflac_seekpoint;
+#pragma pack()
+typedef struct
+{
+ drflac_uint16 minBlockSizeInPCMFrames;
+ drflac_uint16 maxBlockSizeInPCMFrames;
+ drflac_uint32 minFrameSizeInPCMFrames;
+ drflac_uint32 maxFrameSizeInPCMFrames;
+ drflac_uint32 sampleRate;
+ drflac_uint8 channels;
+ drflac_uint8 bitsPerSample;
+ drflac_uint64 totalPCMFrameCount;
+ drflac_uint8 md5[16];
+} drflac_streaminfo;
+typedef struct
+{
+ drflac_uint32 type;
+ const void* pRawData;
+ drflac_uint32 rawDataSize;
+ union
+ {
+ drflac_streaminfo streaminfo;
+ struct
+ {
+ int unused;
+ } padding;
+ struct
+ {
+ drflac_uint32 id;
+ const void* pData;
+ drflac_uint32 dataSize;
+ } application;
+ struct
+ {
+ drflac_uint32 seekpointCount;
+ const drflac_seekpoint* pSeekpoints;
+ } seektable;
+ struct
+ {
+ drflac_uint32 vendorLength;
+ const char* vendor;
+ drflac_uint32 commentCount;
+ const void* pComments;
+ } vorbis_comment;
+ struct
+ {
+ char catalog[128];
+ drflac_uint64 leadInSampleCount;
+ drflac_bool32 isCD;
+ drflac_uint8 trackCount;
+ const void* pTrackData;
+ } cuesheet;
+ struct
+ {
+ drflac_uint32 type;
+ drflac_uint32 mimeLength;
+ const char* mime;
+ drflac_uint32 descriptionLength;
+ const char* description;
+ drflac_uint32 width;
+ drflac_uint32 height;
+ drflac_uint32 colorDepth;
+ drflac_uint32 indexColorCount;
+ drflac_uint32 pictureDataSize;
+ const drflac_uint8* pPictureData;
+ } picture;
+ } data;
+} drflac_metadata;
+typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
+typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin);
+typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata);
+typedef struct
+{
+ void* pUserData;
+ void* (* onMalloc)(size_t sz, void* pUserData);
+ void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+ void (* onFree)(void* p, void* pUserData);
+} drflac_allocation_callbacks;
+typedef struct
+{
+ const drflac_uint8* data;
+ size_t dataSize;
+ size_t currentReadPos;
+} drflac__memory_stream;
+typedef struct
+{
+ drflac_read_proc onRead;
+ drflac_seek_proc onSeek;
+ void* pUserData;
+ size_t unalignedByteCount;
+ drflac_cache_t unalignedCache;
+ drflac_uint32 nextL2Line;
+ drflac_uint32 consumedBits;
+ drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)];
+ drflac_cache_t cache;
+ drflac_uint16 crc16;
+ drflac_cache_t crc16Cache;
+ drflac_uint32 crc16CacheIgnoredBytes;
+} drflac_bs;
+typedef struct
+{
+ drflac_uint8 subframeType;
+ drflac_uint8 wastedBitsPerSample;
+ drflac_uint8 lpcOrder;
+ drflac_int32* pSamplesS32;
+} drflac_subframe;
+typedef struct
+{
+ drflac_uint64 pcmFrameNumber;
+ drflac_uint32 flacFrameNumber;
+ drflac_uint32 sampleRate;
+ drflac_uint16 blockSizeInPCMFrames;
+ drflac_uint8 channelAssignment;
+ drflac_uint8 bitsPerSample;
+ drflac_uint8 crc8;
+} drflac_frame_header;
+typedef struct
+{
+ drflac_frame_header header;
+ drflac_uint32 pcmFramesRemaining;
+ drflac_subframe subframes[8];
+} drflac_frame;
+typedef struct
+{
+ drflac_meta_proc onMeta;
+ void* pUserDataMD;
+ drflac_allocation_callbacks allocationCallbacks;
+ drflac_uint32 sampleRate;
+ drflac_uint8 channels;
+ drflac_uint8 bitsPerSample;
+ drflac_uint16 maxBlockSizeInPCMFrames;
+ drflac_uint64 totalPCMFrameCount;
+ drflac_container container;
+ drflac_uint32 seekpointCount;
+ drflac_frame currentFLACFrame;
+ drflac_uint64 currentPCMFrame;
+ drflac_uint64 firstFLACFramePosInBytes;
+ drflac__memory_stream memoryStream;
+ drflac_int32* pDecodedSamples;
+ drflac_seekpoint* pSeekpoints;
+ void* _oggbs;
+ drflac_bool32 _noSeekTableSeek : 1;
+ drflac_bool32 _noBinarySearchSeek : 1;
+ drflac_bool32 _noBruteForceSeek : 1;
+ drflac_bs bs;
+ drflac_uint8 pExtraData[1];
+} drflac;
+DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API void drflac_close(drflac* pFlac);
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut);
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut);
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut);
+DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex);
+#ifndef DR_FLAC_NO_STDIO
+DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_FLAC_NO_STDIO
+DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
+DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks);
+typedef struct
+{
+ drflac_uint32 countRemaining;
+ const char* pRunningData;
+} drflac_vorbis_comment_iterator;
+DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments);
+DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut);
+typedef struct
+{
+ drflac_uint32 countRemaining;
+ const char* pRunningData;
+} drflac_cuesheet_track_iterator;
+#pragma pack(4)
+typedef struct
+{
+ drflac_uint64 offset;
+ drflac_uint8 index;
+ drflac_uint8 reserved[3];
+} drflac_cuesheet_track_index;
+#pragma pack()
+typedef struct
+{
+ drflac_uint64 offset;
+ drflac_uint8 trackNumber;
+ char ISRC[12];
+ drflac_bool8 isAudio;
+ drflac_bool8 preEmphasis;
+ drflac_uint8 indexCount;
+ const drflac_cuesheet_track_index* pIndexPoints;
+} drflac_cuesheet_track;
+DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData);
+DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack);
+#ifdef __cplusplus
+}
+#endif
+#endif
+/* dr_flac_h end */
+#endif /* MA_NO_FLAC */
+
+#if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING)
+/* dr_mp3_h begin */
+#ifndef dr_mp3_h
+#define dr_mp3_h
+#ifdef __cplusplus
+extern "C" {
+#endif
+#define DRMP3_STRINGIFY(x) #x
+#define DRMP3_XSTRINGIFY(x) DRMP3_STRINGIFY(x)
+#define DRMP3_VERSION_MAJOR 0
+#define DRMP3_VERSION_MINOR 6
+#define DRMP3_VERSION_REVISION 12
+#define DRMP3_VERSION_STRING DRMP3_XSTRINGIFY(DRMP3_VERSION_MAJOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_MINOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_REVISION)
+#include
+#ifdef _MSC_VER
+ #if defined(__clang__)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wlanguage-extension-token"
+ #pragma GCC diagnostic ignored "-Wlong-long"
+ #pragma GCC diagnostic ignored "-Wc++11-long-long"
+ #endif
+ typedef signed __int8 drmp3_int8;
+ typedef unsigned __int8 drmp3_uint8;
+ typedef signed __int16 drmp3_int16;
+ typedef unsigned __int16 drmp3_uint16;
+ typedef signed __int32 drmp3_int32;
+ typedef unsigned __int32 drmp3_uint32;
+ typedef signed __int64 drmp3_int64;
+ typedef unsigned __int64 drmp3_uint64;
+ #if defined(__clang__)
+ #pragma GCC diagnostic pop
+ #endif
+#else
+ #include
+ typedef int8_t drmp3_int8;
+ typedef uint8_t drmp3_uint8;
+ typedef int16_t drmp3_int16;
+ typedef uint16_t drmp3_uint16;
+ typedef int32_t drmp3_int32;
+ typedef uint32_t drmp3_uint32;
+ typedef int64_t drmp3_int64;
+ typedef uint64_t drmp3_uint64;
+#endif
+typedef drmp3_uint8 drmp3_bool8;
+typedef drmp3_uint32 drmp3_bool32;
+#define DRMP3_TRUE 1
+#define DRMP3_FALSE 0
+#if !defined(DRMP3_API)
+ #if defined(DRMP3_DLL)
+ #if defined(_WIN32)
+ #define DRMP3_DLL_IMPORT __declspec(dllimport)
+ #define DRMP3_DLL_EXPORT __declspec(dllexport)
+ #define DRMP3_DLL_PRIVATE static
+ #else
+ #if defined(__GNUC__) && __GNUC__ >= 4
+ #define DRMP3_DLL_IMPORT __attribute__((visibility("default")))
+ #define DRMP3_DLL_EXPORT __attribute__((visibility("default")))
+ #define DRMP3_DLL_PRIVATE __attribute__((visibility("hidden")))
+ #else
+ #define DRMP3_DLL_IMPORT
+ #define DRMP3_DLL_EXPORT
+ #define DRMP3_DLL_PRIVATE static
+ #endif
+ #endif
+ #if defined(DR_MP3_IMPLEMENTATION) || defined(DRMP3_IMPLEMENTATION)
+ #define DRMP3_API DRMP3_DLL_EXPORT
+ #else
+ #define DRMP3_API DRMP3_DLL_IMPORT
+ #endif
+ #define DRMP3_PRIVATE DRMP3_DLL_PRIVATE
+ #else
+ #define DRMP3_API extern
+ #define DRMP3_PRIVATE static
+ #endif
+#endif
+typedef drmp3_int32 drmp3_result;
+#define DRMP3_SUCCESS 0
+#define DRMP3_ERROR -1
+#define DRMP3_INVALID_ARGS -2
+#define DRMP3_INVALID_OPERATION -3
+#define DRMP3_OUT_OF_MEMORY -4
+#define DRMP3_OUT_OF_RANGE -5
+#define DRMP3_ACCESS_DENIED -6
+#define DRMP3_DOES_NOT_EXIST -7
+#define DRMP3_ALREADY_EXISTS -8
+#define DRMP3_TOO_MANY_OPEN_FILES -9
+#define DRMP3_INVALID_FILE -10
+#define DRMP3_TOO_BIG -11
+#define DRMP3_PATH_TOO_LONG -12
+#define DRMP3_NAME_TOO_LONG -13
+#define DRMP3_NOT_DIRECTORY -14
+#define DRMP3_IS_DIRECTORY -15
+#define DRMP3_DIRECTORY_NOT_EMPTY -16
+#define DRMP3_END_OF_FILE -17
+#define DRMP3_NO_SPACE -18
+#define DRMP3_BUSY -19
+#define DRMP3_IO_ERROR -20
+#define DRMP3_INTERRUPT -21
+#define DRMP3_UNAVAILABLE -22
+#define DRMP3_ALREADY_IN_USE -23
+#define DRMP3_BAD_ADDRESS -24
+#define DRMP3_BAD_SEEK -25
+#define DRMP3_BAD_PIPE -26
+#define DRMP3_DEADLOCK -27
+#define DRMP3_TOO_MANY_LINKS -28
+#define DRMP3_NOT_IMPLEMENTED -29
+#define DRMP3_NO_MESSAGE -30
+#define DRMP3_BAD_MESSAGE -31
+#define DRMP3_NO_DATA_AVAILABLE -32
+#define DRMP3_INVALID_DATA -33
+#define DRMP3_TIMEOUT -34
+#define DRMP3_NO_NETWORK -35
+#define DRMP3_NOT_UNIQUE -36
+#define DRMP3_NOT_SOCKET -37
+#define DRMP3_NO_ADDRESS -38
+#define DRMP3_BAD_PROTOCOL -39
+#define DRMP3_PROTOCOL_UNAVAILABLE -40
+#define DRMP3_PROTOCOL_NOT_SUPPORTED -41
+#define DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED -43
+#define DRMP3_SOCKET_NOT_SUPPORTED -44
+#define DRMP3_CONNECTION_RESET -45
+#define DRMP3_ALREADY_CONNECTED -46
+#define DRMP3_NOT_CONNECTED -47
+#define DRMP3_CONNECTION_REFUSED -48
+#define DRMP3_NO_HOST -49
+#define DRMP3_IN_PROGRESS -50
+#define DRMP3_CANCELLED -51
+#define DRMP3_MEMORY_ALREADY_MAPPED -52
+#define DRMP3_AT_END -53
+#define DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME 1152
+#define DRMP3_MAX_SAMPLES_PER_FRAME (DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME*2)
+#ifdef _MSC_VER
+ #define DRMP3_INLINE __forceinline
+#elif defined(__GNUC__)
+ #if defined(__STRICT_ANSI__)
+ #define DRMP3_INLINE __inline__ __attribute__((always_inline))
+ #else
+ #define DRMP3_INLINE inline __attribute__((always_inline))
+ #endif
+#else
+ #define DRMP3_INLINE
+#endif
+DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision);
+DRMP3_API const char* drmp3_version_string();
+typedef struct
+{
+ int frame_bytes, channels, hz, layer, bitrate_kbps;
+} drmp3dec_frame_info;
+typedef struct
+{
+ float mdct_overlap[2][9*32], qmf_state[15*2*32];
+ int reserv, free_format_bytes;
+ drmp3_uint8 header[4], reserv_buf[511];
+} drmp3dec;
+DRMP3_API void drmp3dec_init(drmp3dec *dec);
+DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info);
+DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples);
+#ifndef DRMP3_DEFAULT_CHANNELS
+#define DRMP3_DEFAULT_CHANNELS 2
+#endif
+#ifndef DRMP3_DEFAULT_SAMPLE_RATE
+#define DRMP3_DEFAULT_SAMPLE_RATE 44100
+#endif
+typedef enum
+{
+ drmp3_seek_origin_start,
+ drmp3_seek_origin_current
+} drmp3_seek_origin;
+typedef struct
+{
+ drmp3_uint64 seekPosInBytes;
+ drmp3_uint64 pcmFrameIndex;
+ drmp3_uint16 mp3FramesToDiscard;
+ drmp3_uint16 pcmFramesToDiscard;
+} drmp3_seek_point;
+typedef size_t (* drmp3_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
+typedef drmp3_bool32 (* drmp3_seek_proc)(void* pUserData, int offset, drmp3_seek_origin origin);
+typedef struct
+{
+ void* pUserData;
+ void* (* onMalloc)(size_t sz, void* pUserData);
+ void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+ void (* onFree)(void* p, void* pUserData);
+} drmp3_allocation_callbacks;
+typedef struct
+{
+ drmp3_uint32 channels;
+ drmp3_uint32 sampleRate;
+} drmp3_config;
+typedef struct
+{
+ drmp3dec decoder;
+ drmp3dec_frame_info frameInfo;
+ drmp3_uint32 channels;
+ drmp3_uint32 sampleRate;
+ drmp3_read_proc onRead;
+ drmp3_seek_proc onSeek;
+ void* pUserData;
+ drmp3_allocation_callbacks allocationCallbacks;
+ drmp3_uint32 mp3FrameChannels;
+ drmp3_uint32 mp3FrameSampleRate;
+ drmp3_uint32 pcmFramesConsumedInMP3Frame;
+ drmp3_uint32 pcmFramesRemainingInMP3Frame;
+ drmp3_uint8 pcmFrames[sizeof(float)*DRMP3_MAX_SAMPLES_PER_FRAME];
+ drmp3_uint64 currentPCMFrame;
+ drmp3_uint64 streamCursor;
+ drmp3_seek_point* pSeekPoints;
+ drmp3_uint32 seekPointCount;
+ size_t dataSize;
+ size_t dataCapacity;
+ size_t dataConsumed;
+ drmp3_uint8* pData;
+ drmp3_bool32 atEnd : 1;
+ struct
+ {
+ const drmp3_uint8* pData;
+ size_t dataSize;
+ size_t currentReadPos;
+ } memory;
+} drmp3;
+DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_MP3_NO_STDIO
+DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRMP3_API void drmp3_uninit(drmp3* pMP3);
+DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut);
+DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut);
+DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex);
+DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3);
+DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3);
+DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount);
+DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints);
+DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints);
+DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_MP3_NO_STDIO
+DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
+#endif
+DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks);
+DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks);
+#ifdef __cplusplus
+}
+#endif
+#endif
+/* dr_mp3_h end */
+#endif /* MA_NO_MP3 */
+
+
/**************************************************************************************************************************************************************
Decoding
@@ -36141,22 +43072,23 @@ static ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_
}
-ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate)
+MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate)
{
ma_decoder_config config;
MA_ZERO_OBJECT(&config);
config.format = outputFormat;
config.channels = outputChannels;
config.sampleRate = outputSampleRate;
- ma_get_standard_channel_map(ma_standard_channel_map_default, config.channels, config.channelMap);
config.resampling.algorithm = ma_resample_algorithm_linear;
- config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
+ config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.resampling.speex.quality = 3;
+ /* Note that we are intentionally leaving the channel map empty here which will cause the default channel map to be used. */
+
return config;
}
-ma_decoder_config ma_decoder_config_init_copy(const ma_decoder_config* pConfig)
+MA_API ma_decoder_config ma_decoder_config_init_copy(const ma_decoder_config* pConfig)
{
ma_decoder_config config;
if (pConfig != NULL) {
@@ -36211,7 +43143,7 @@ static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_
converterConfig.ditherMode = pConfig->ditherMode;
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE; /* Never allow dynamic sample rate conversion. Setting this to true will disable passthrough optimizations. */
converterConfig.resampling.algorithm = pConfig->resampling.algorithm;
- converterConfig.resampling.linear.lpfCount = pConfig->resampling.linear.lpfCount;
+ converterConfig.resampling.linear.lpfOrder = pConfig->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pConfig->resampling.speex.quality;
return ma_data_converter_init(&converterConfig, &pDecoder->converter);
@@ -36474,6 +43406,121 @@ static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig
}
#endif /* dr_flac_h */
+/* MP3 */
+#ifdef dr_mp3_h
+#define MA_HAS_MP3
+
+static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ ma_decoder* pDecoder = (ma_decoder*)pUserData;
+ MA_ASSERT(pDecoder != NULL);
+
+ return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
+}
+
+static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin)
+{
+ ma_decoder* pDecoder = (ma_decoder*)pUserData;
+ MA_ASSERT(pDecoder != NULL);
+
+ return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
+}
+
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
+{
+ drmp3* pMP3;
+
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ pMP3 = (drmp3*)pDecoder->pInternalDecoder;
+ MA_ASSERT(pMP3 != NULL);
+
+#if defined(DR_MP3_FLOAT_OUTPUT)
+ MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
+ return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut);
+#else
+ MA_ASSERT(pDecoder->internalFormat == ma_format_s16);
+ return drmp3_read_pcm_frames_s16(pMP3, frameCount, (drmp3_int16*)pFramesOut);
+#endif
+}
+
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex)
+{
+ drmp3* pMP3;
+ drmp3_bool32 result;
+
+ pMP3 = (drmp3*)pDecoder->pInternalDecoder;
+ MA_ASSERT(pMP3 != NULL);
+
+ result = drmp3_seek_to_pcm_frame(pMP3, frameIndex);
+ if (result) {
+ return MA_SUCCESS;
+ } else {
+ return MA_ERROR;
+ }
+}
+
+static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder)
+{
+ drmp3_uninit((drmp3*)pDecoder->pInternalDecoder);
+ ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
+ return MA_SUCCESS;
+}
+
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder)
+{
+ return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder);
+}
+
+static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ drmp3* pMP3;
+ drmp3_allocation_callbacks allocationCallbacks;
+
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
+
+ pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks);
+ if (pMP3 == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
+ allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
+ allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
+ allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
+
+ /*
+ Try opening the decoder first. We always use whatever dr_mp3 reports for channel count and sample rate. The format is determined by
+ the presence of DR_MP3_FLOAT_OUTPUT.
+ */
+ if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &allocationCallbacks)) {
+ ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks);
+ return MA_ERROR;
+ }
+
+ /* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3;
+ pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3;
+ pDecoder->pInternalDecoder = pMP3;
+
+ /* Internal format. */
+#if defined(DR_MP3_FLOAT_OUTPUT)
+ pDecoder->internalFormat = ma_format_f32;
+#else
+ pDecoder->internalFormat = ma_format_s16;
+#endif
+ pDecoder->internalChannels = pMP3->channels;
+ pDecoder->internalSampleRate = pMP3->sampleRate;
+ ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap);
+
+ return MA_SUCCESS;
+}
+#endif /* dr_mp3_h */
+
/* Vorbis */
#ifdef STB_VORBIS_INCLUDE_STB_VORBIS_H
#define MA_HAS_VORBIS
@@ -36505,19 +43552,24 @@ static ma_uint64 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, m
totalFramesRead = 0;
while (frameCount > 0) {
/* Read from the in-memory buffer first. */
- while (pVorbis->framesRemaining > 0 && frameCount > 0) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < pDecoder->internalChannels; ++iChannel) {
- pFramesOutF[0] = pVorbis->ppPacketData[iChannel][pVorbis->framesConsumed];
- pFramesOutF += 1;
- }
+ ma_uint32 framesToReadFromCache = (ma_uint32)ma_min(pVorbis->framesRemaining, frameCount); /* Safe cast because pVorbis->framesRemaining is 32-bit. */
- pVorbis->framesConsumed += 1;
- pVorbis->framesRemaining -= 1;
- frameCount -= 1;
- totalFramesRead += 1;
+ if (pFramesOut != NULL) {
+ ma_uint64 iFrame;
+ for (iFrame = 0; iFrame < framesToReadFromCache; iFrame += 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pDecoder->internalChannels; ++iChannel) {
+ pFramesOutF[iChannel] = pVorbis->ppPacketData[iChannel][pVorbis->framesConsumed+iFrame];
+ }
+ pFramesOutF += pDecoder->internalChannels;
+ }
}
+ pVorbis->framesConsumed += framesToReadFromCache;
+ pVorbis->framesRemaining -= framesToReadFromCache;
+ frameCount -= framesToReadFromCache;
+ totalFramesRead += framesToReadFromCache;
+
if (frameCount == 0) {
break;
}
@@ -36590,6 +43642,8 @@ static ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis,
This is terribly inefficient because stb_vorbis does not have a good seeking solution with it's push API. Currently this just performs
a full decode right from the start of the stream. Later on I'll need to write a layer that goes through all of the Ogg pages until we
find the one containing the sample we need. Then we know exactly where to seek for stb_vorbis.
+
+ TODO: Use seeking logic documented for stb_vorbis_flush_pushdata().
*/
if (!ma_decoder_seek_bytes(pDecoder, 0, ma_seek_origin_start)) {
return MA_ERROR;
@@ -36767,123 +43821,6 @@ static ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConf
}
#endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */
-/* MP3 */
-#ifdef dr_mp3_h
-#define MA_HAS_MP3
-
-static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead)
-{
- ma_decoder* pDecoder = (ma_decoder*)pUserData;
- MA_ASSERT(pDecoder != NULL);
-
- return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
-}
-
-static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin)
-{
- ma_decoder* pDecoder = (ma_decoder*)pUserData;
- MA_ASSERT(pDecoder != NULL);
-
- return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
-}
-
-static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
-{
- drmp3* pMP3;
-
- MA_ASSERT(pDecoder != NULL);
- MA_ASSERT(pFramesOut != NULL);
- MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
-
- pMP3 = (drmp3*)pDecoder->pInternalDecoder;
- MA_ASSERT(pMP3 != NULL);
-
- return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut);
-}
-
-static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex)
-{
- drmp3* pMP3;
- drmp3_bool32 result;
-
- pMP3 = (drmp3*)pDecoder->pInternalDecoder;
- MA_ASSERT(pMP3 != NULL);
-
- result = drmp3_seek_to_pcm_frame(pMP3, frameIndex);
- if (result) {
- return MA_SUCCESS;
- } else {
- return MA_ERROR;
- }
-}
-
-static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder)
-{
- drmp3_uninit((drmp3*)pDecoder->pInternalDecoder);
- ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
- return MA_SUCCESS;
-}
-
-static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder)
-{
- return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder);
-}
-
-static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
-{
- drmp3* pMP3;
- drmp3_config mp3Config;
- drmp3_allocation_callbacks allocationCallbacks;
-
- MA_ASSERT(pConfig != NULL);
- MA_ASSERT(pDecoder != NULL);
-
- pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks);
- if (pMP3 == NULL) {
- return MA_OUT_OF_MEMORY;
- }
-
- allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
- allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
- allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
- allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
-
- /*
- Try opening the decoder first. MP3 can have variable sample rates (it's per frame/packet). We therefore need
- to use some smarts to determine the most appropriate internal sample rate. These are the rules we're going
- to use:
-
- Sample Rates
- 1) If an output sample rate is specified in pConfig we just use that. Otherwise;
- 2) Fall back to 44100.
-
- The internal channel count is always stereo, and the internal format is always f32.
- */
- MA_ZERO_OBJECT(&mp3Config);
- mp3Config.outputChannels = 2;
- mp3Config.outputSampleRate = (pConfig->sampleRate != 0) ? pConfig->sampleRate : 44100;
- if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &mp3Config, &allocationCallbacks)) {
- ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks);
- return MA_ERROR;
- }
-
- /* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */
- pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3;
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3;
- pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3;
- pDecoder->pInternalDecoder = pMP3;
-
- /* Internal format. */
- pDecoder->internalFormat = ma_format_f32;
- pDecoder->internalChannels = pMP3->channels;
- pDecoder->internalSampleRate = pMP3->sampleRate;
- ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap);
-
- return MA_SUCCESS;
-}
-#endif /* dr_mp3_h */
-
/* Raw */
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
@@ -36891,9 +43828,7 @@ static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecode
ma_uint64 totalFramesRead;
void* pRunningFramesOut;
-
- MA_ASSERT(pDecoder != NULL);
- MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pDecoder != NULL);
/* For raw decoding we just read directly from the decoder's callbacks. */
bpf = ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
@@ -36904,14 +43839,41 @@ static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecode
while (totalFramesRead < frameCount) {
ma_uint64 framesReadThisIteration;
ma_uint64 framesToReadThisIteration = (frameCount - totalFramesRead);
- if (framesToReadThisIteration > MA_SIZE_MAX) {
- framesToReadThisIteration = MA_SIZE_MAX;
+ if (framesToReadThisIteration > 0x7FFFFFFF/bpf) {
+ framesToReadThisIteration = 0x7FFFFFFF/bpf;
}
- framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */
+ if (pFramesOut != NULL) {
+ framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf);
+ } else {
+ /* We'll first try seeking. If this fails it means the end was reached and we'll to do a read-and-discard slow path to get the exact amount. */
+ if (ma_decoder_seek_bytes(pDecoder, (int)framesToReadThisIteration, ma_seek_origin_current)) {
+ framesReadThisIteration = framesToReadThisIteration;
+ } else {
+ /* Slow path. Need to fall back to a read-and-discard. This is required so we can get the exact number of remaining. */
+ ma_uint8 buffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 bufferCap = sizeof(buffer) / bpf;
- totalFramesRead += framesReadThisIteration;
- pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf);
+ framesReadThisIteration = 0;
+ while (framesReadThisIteration < framesToReadThisIteration) {
+ ma_uint64 framesReadNow;
+ ma_uint64 framesToReadNow = framesToReadThisIteration - framesReadThisIteration;
+ if (framesToReadNow > bufferCap) {
+ framesToReadNow = bufferCap;
+ }
+
+ framesReadNow = ma_decoder_read_bytes(pDecoder, buffer, (size_t)(framesToReadNow * bpf)) / bpf; /* Safe cast. */
+ framesReadThisIteration += framesReadNow;
+
+ if (framesReadNow < framesToReadNow) {
+ break; /* The end has been reached. */
+ }
+ }
+ }
+ }
+
+ totalFramesRead += framesReadThisIteration;
if (framesReadThisIteration < framesToReadThisIteration) {
break; /* Done. */
@@ -37010,6 +43972,36 @@ static ma_result ma_decoder__init_allocation_callbacks(const ma_decoder_config*
}
}
+static ma_result ma_decoder__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
+{
+ ma_uint64 framesRead = ma_decoder_read_pcm_frames((ma_decoder*)pDataSource, pFramesOut, frameCount);
+
+ if (pFramesRead != NULL) {
+ *pFramesRead = framesRead;
+ }
+
+ if (framesRead < frameCount) {
+ return MA_AT_END;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_decoder__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
+{
+ return ma_decoder_seek_to_pcm_frame((ma_decoder*)pDataSource, frameIndex);
+}
+
+static ma_result ma_decoder__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
+{
+ ma_decoder* pDecoder = (ma_decoder*)pDataSource;
+
+ *pFormat = pDecoder->outputFormat;
+ *pChannels = pDecoder->outputChannels;
+
+ return MA_SUCCESS;
+}
+
static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
@@ -37026,8 +44018,12 @@ static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_see
return MA_INVALID_ARGS;
}
- pDecoder->onRead = onRead;
- pDecoder->onSeek = onSeek;
+ pDecoder->ds.onRead = ma_decoder__data_source_on_read;
+ pDecoder->ds.onSeek = ma_decoder__data_source_on_seek;
+ pDecoder->ds.onGetDataFormat = ma_decoder__data_source_on_get_data_format;
+
+ pDecoder->onRead = onRead;
+ pDecoder->onSeek = onSeek;
pDecoder->pUserData = pUserData;
result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
@@ -37040,113 +44036,143 @@ static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_see
static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result;
+ ma_result result = MA_SUCCESS;
- result = ma_decoder__init_data_converter(pDecoder, pConfig);
+ /* Basic validation in case the internal decoder supports different limits to miniaudio. */
+ if (pDecoder->internalChannels < MA_MIN_CHANNELS || pDecoder->internalChannels > MA_MAX_CHANNELS) {
+ result = MA_INVALID_DATA;
+ }
+
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__init_data_converter(pDecoder, pConfig);
+ }
+
+ /* If we failed post initialization we need to uninitialize the decoder before returning to prevent a memory leak. */
if (result != MA_SUCCESS) {
+ ma_decoder_uninit(pDecoder);
return result;
}
return result;
}
-ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig);
-
- result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_WAV
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig);
+
+ result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_wav__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)onRead;
+ (void)onSeek;
+ (void)pUserData;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig);
-
- result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_FLAC
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig);
+
+ result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_flac__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
-}
-
-ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
-{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig);
-
- result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
-#ifdef MA_HAS_VORBIS
- result = ma_decoder_init_vorbis__internal(&config, pDecoder);
#else
- result = MA_NO_BACKEND;
+ (void)onRead;
+ (void)onSeek;
+ (void)pUserData;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
#endif
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder__postinit(&config, pDecoder);
}
-ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig);
-
- result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_MP3
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig);
+
+ result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_mp3__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)onRead;
+ (void)onSeek;
+ (void)pUserData;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_VORBIS
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig);
+
+ result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)onRead;
+ (void)onSeek;
+ (void)pUserData;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
@@ -37198,17 +44224,17 @@ static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decod
}
}
#endif
-#ifdef MA_HAS_VORBIS
+#ifdef MA_HAS_MP3
if (result != MA_SUCCESS) {
- result = ma_decoder_init_vorbis__internal(pConfig, pDecoder);
+ result = ma_decoder_init_mp3__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
-#ifdef MA_HAS_MP3
+#ifdef MA_HAS_VORBIS
if (result != MA_SUCCESS) {
- result = ma_decoder_init_mp3__internal(pConfig, pDecoder);
+ result = ma_decoder_init_vorbis__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
@@ -37222,7 +44248,7 @@ static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decod
return ma_decoder__postinit(pConfig, pDecoder);
}
-ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
@@ -37242,16 +44268,16 @@ static size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut,
{
size_t bytesRemaining;
- MA_ASSERT(pDecoder->memory.dataSize >= pDecoder->memory.currentReadPos);
+ MA_ASSERT(pDecoder->backend.memory.dataSize >= pDecoder->backend.memory.currentReadPos);
- bytesRemaining = pDecoder->memory.dataSize - pDecoder->memory.currentReadPos;
+ bytesRemaining = pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
- MA_COPY_MEMORY(pBufferOut, pDecoder->memory.pData + pDecoder->memory.currentReadPos, bytesToRead);
- pDecoder->memory.currentReadPos += bytesToRead;
+ MA_COPY_MEMORY(pBufferOut, pDecoder->backend.memory.pData + pDecoder->backend.memory.currentReadPos, bytesToRead);
+ pDecoder->backend.memory.currentReadPos += bytesToRead;
}
return bytesToRead;
@@ -37261,22 +44287,22 @@ static ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset
{
if (origin == ma_seek_origin_current) {
if (byteOffset > 0) {
- if (pDecoder->memory.currentReadPos + byteOffset > pDecoder->memory.dataSize) {
- byteOffset = (int)(pDecoder->memory.dataSize - pDecoder->memory.currentReadPos); /* Trying to seek too far forward. */
+ if (pDecoder->backend.memory.currentReadPos + byteOffset > pDecoder->backend.memory.dataSize) {
+ byteOffset = (int)(pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos); /* Trying to seek too far forward. */
}
} else {
- if (pDecoder->memory.currentReadPos < (size_t)-byteOffset) {
- byteOffset = -(int)pDecoder->memory.currentReadPos; /* Trying to seek too far backwards. */
+ if (pDecoder->backend.memory.currentReadPos < (size_t)-byteOffset) {
+ byteOffset = -(int)pDecoder->backend.memory.currentReadPos; /* Trying to seek too far backwards. */
}
}
/* This will never underflow thanks to the clamps above. */
- pDecoder->memory.currentReadPos += byteOffset;
+ pDecoder->backend.memory.currentReadPos += byteOffset;
} else {
- if ((ma_uint32)byteOffset <= pDecoder->memory.dataSize) {
- pDecoder->memory.currentReadPos = byteOffset;
+ if ((ma_uint32)byteOffset <= pDecoder->backend.memory.dataSize) {
+ pDecoder->backend.memory.currentReadPos = byteOffset;
} else {
- pDecoder->memory.currentReadPos = pDecoder->memory.dataSize; /* Trying to seek too far forward. */
+ pDecoder->backend.memory.currentReadPos = pDecoder->backend.memory.dataSize; /* Trying to seek too far forward. */
}
}
@@ -37294,15 +44320,15 @@ static ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize,
return MA_INVALID_ARGS;
}
- pDecoder->memory.pData = (const ma_uint8*)pData;
- pDecoder->memory.dataSize = dataSize;
- pDecoder->memory.currentReadPos = 0;
+ pDecoder->backend.memory.pData = (const ma_uint8*)pData;
+ pDecoder->backend.memory.dataSize = dataSize;
+ pDecoder->backend.memory.currentReadPos = 0;
(void)pConfig;
return MA_SUCCESS;
}
-ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
@@ -37317,103 +44343,119 @@ ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_de
return ma_decoder_init__internal(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, NULL, &config, pDecoder);
}
-ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
-
- result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_WAV
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
+
+ result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_wav__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)pData;
+ (void)dataSize;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
-
- result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_FLAC
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
+
+ result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_flac__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
-}
-
-ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
-{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
-
- result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
-#ifdef MA_HAS_VORBIS
- result = ma_decoder_init_vorbis__internal(&config, pDecoder);
#else
- result = MA_NO_BACKEND;
+ (void)pData;
+ (void)dataSize;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
#endif
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder__postinit(&config, pDecoder);
}
-ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_decoder_config config;
- ma_result result;
-
- config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
-
- result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
#ifdef MA_HAS_MP3
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
+
+ result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
result = ma_decoder_init_mp3__internal(&config, pDecoder);
-#else
- result = MA_NO_BACKEND;
-#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)pData;
+ (void)dataSize;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_VORBIS
+ ma_decoder_config config;
+ ma_result result;
+
+ config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
+
+ result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
+#else
+ (void)pData;
+ (void)dataSize;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
@@ -37433,7 +44475,6 @@ ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const m
return ma_decoder__postinit(&config, pDecoder);
}
-#ifndef MA_NO_STDIO
static const char* ma_path_file_name(const char* path)
{
const char* fileName;
@@ -37602,312 +44643,513 @@ static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* e
}
-static size_t ma_decoder__on_read_stdio(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
+
+static size_t ma_decoder__on_read_vfs(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
- return fread(pBufferOut, 1, bytesToRead, (FILE*)pDecoder->pUserData);
+ size_t bytesRead;
+
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pBufferOut != NULL);
+
+ if (pDecoder->backend.vfs.pVFS == NULL) {
+ ma_default_vfs_read(NULL, pDecoder->backend.vfs.file, pBufferOut, bytesToRead, &bytesRead);
+ } else {
+ ma_vfs_read(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, pBufferOut, bytesToRead, &bytesRead);
+ }
+
+ return bytesRead;
}
-static ma_bool32 ma_decoder__on_seek_stdio(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
-{
- return fseek((FILE*)pDecoder->pUserData, byteOffset, (origin == ma_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
-}
-
-static ma_result ma_decoder__preinit_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_bool32 ma_decoder__on_seek_vfs(ma_decoder* pDecoder, int offset, ma_seek_origin origin)
{
ma_result result;
- FILE* pFile;
- if (pDecoder == NULL) {
- return MA_INVALID_ARGS;
+ MA_ASSERT(pDecoder != NULL);
+
+ if (pDecoder->backend.vfs.pVFS == NULL) {
+ result = ma_default_vfs_seek(NULL, pDecoder->backend.vfs.file, offset, origin);
+ } else {
+ result = ma_vfs_seek(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, offset, origin);
+ }
+
+ if (result != MA_SUCCESS) {
+ return MA_FALSE;
}
- MA_ZERO_OBJECT(pDecoder);
+ return MA_TRUE;
+}
+
+static ma_result ma_decoder__preinit_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ ma_result result;
+ ma_vfs_file file;
+
+ result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
if (pFilePath == NULL || pFilePath[0] == '\0') {
return MA_INVALID_ARGS;
}
- result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
+ if (pVFS == NULL) {
+ result = ma_default_vfs_open(NULL, pFilePath, MA_OPEN_MODE_READ, &file);
+ } else {
+ result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
+ }
+
if (result != MA_SUCCESS) {
return result;
}
-#if defined(_MSC_VER) && _MSC_VER >= 1400
- if (fopen_s(&pFile, pFilePath, "rb") != 0) {
- return MA_ERROR;
- }
-#else
- pFile = fopen(pFilePath, "rb");
- if (pFile == NULL) {
- return MA_ERROR;
- }
-#endif
-
- /* We need to manually set the user data so the calls to ma_decoder__on_seek_stdio() succeed. */
- pDecoder->pUserData = pFile;
+ pDecoder->backend.vfs.pVFS = pVFS;
+ pDecoder->backend.vfs.file = file;
return MA_SUCCESS;
}
-/*
-_wfopen() isn't always available in all compilation environments.
-
- * Windows only.
- * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
- * MinGW-64 (both 32- and 64-bit) seems to support it.
- * MinGW wraps it in !defined(__STRICT_ANSI__).
-
-This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
-fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
-*/
-#if defined(_WIN32)
- #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
- #define MA_HAS_WFOPEN
- #endif
-#endif
-
-static ma_result ma_decoder__preinit_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
- FILE* pFile;
+ ma_decoder_config config;
- if (pDecoder == NULL) {
- return MA_INVALID_ARGS;
- }
-
- MA_ZERO_OBJECT(pDecoder);
-
- if (pFilePath == NULL || pFilePath[0] == '\0') {
- return MA_INVALID_ARGS;
- }
-
- result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
-#if defined(MA_HAS_WFOPEN)
- /* Use _wfopen() on Windows. */
- #if defined(_MSC_VER) && _MSC_VER >= 1400
- if (_wfopen_s(&pFile, pFilePath, L"rb") != 0) {
- return MA_ERROR;
+ result = MA_NO_BACKEND;
+
+#ifdef MA_HAS_WAV
+ if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "wav")) {
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
- #else
- pFile = _wfopen(pFilePath, L"rb");
- if (pFile == NULL) {
- return MA_ERROR;
- }
- #endif
-#else
- /*
- Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
- think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
- maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
- */
- {
- mbstate_t mbs;
- size_t lenMB;
- const wchar_t* pFilePathTemp = pFilePath;
- char* pFilePathMB = NULL;
-
- /* Get the length first. */
- MA_ZERO_OBJECT(&mbs);
- lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
- if (lenMB == (size_t)-1) {
- return MA_ERROR;
- }
-
- pFilePathMB = (char*)ma__malloc_from_callbacks(lenMB + 1, &pDecoder->allocationCallbacks);
- if (pFilePathMB == NULL) {
- return MA_OUT_OF_MEMORY;
- }
-
- pFilePathTemp = pFilePath;
- MA_ZERO_OBJECT(&mbs);
- wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
-
- pFile = fopen(pFilePathMB, "rb");
-
- ma__free_from_callbacks(pFilePathMB, &pDecoder->allocationCallbacks);
}
-
- if (pFile == NULL) {
- return MA_ERROR;
+#endif
+#ifdef MA_HAS_FLAC
+ if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "flac")) {
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
+ }
+ }
+#endif
+#ifdef MA_HAS_MP3
+ if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "mp3")) {
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
+ }
}
#endif
- /* We need to manually set the user data so the calls to ma_decoder__on_seek_stdio() succeed. */
- pDecoder->pUserData = pFile;
+ /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */
+ if (result != MA_SUCCESS) {
+ result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder);
+ } else {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_WAV
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
(void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_FLAC
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_MP3
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+#ifdef MA_HAS_VORBIS
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
+}
+
+
+
+static ma_result ma_decoder__preinit_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ ma_result result;
+ ma_vfs_file file;
+
+ result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ if (pFilePath == NULL || pFilePath[0] == '\0') {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pVFS == NULL) {
+ result = ma_default_vfs_open_w(NULL, pFilePath, MA_OPEN_MODE_READ, &file);
+ } else {
+ result = ma_vfs_open_w(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
+ }
+
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ pDecoder->backend.vfs.pVFS = pVFS;
+ pDecoder->backend.vfs.file = file;
+
return MA_SUCCESS;
}
-ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); /* This sets pDecoder->pUserData to a FILE*. */
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
- /* WAV */
- if (ma_path_extension_equal(pFilePath, "wav")) {
- result = ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
+ result = MA_NO_BACKEND;
+
+#ifdef MA_HAS_WAV
+ if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"wav")) {
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
-
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
}
-
- /* FLAC */
- if (ma_path_extension_equal(pFilePath, "flac")) {
- result = ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
+#endif
+#ifdef MA_HAS_FLAC
+ if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"flac")) {
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
-
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
}
-
- /* MP3 */
- if (ma_path_extension_equal(pFilePath, "mp3")) {
- result = ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
+#endif
+#ifdef MA_HAS_MP3
+ if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"mp3")) {
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
+ }
+#endif
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
+ /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */
+ if (result != MA_SUCCESS) {
+ result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder);
+ } else {
+ result = ma_decoder__postinit(&config, pDecoder);
}
- /* Trial and error. */
- return ma_decoder_init(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ return result;
+ }
+
+ return MA_SUCCESS;
}
-ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder);
+#ifdef MA_HAS_WAV
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
- return ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder);
+#ifdef MA_HAS_FLAC
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
- return ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder);
+#ifdef MA_HAS_MP3
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
- return ma_decoder_init_vorbis(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
+
+ if (result != MA_SUCCESS) {
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
+ }
+
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder);
+#ifdef MA_HAS_VORBIS
+ ma_result result;
+ ma_decoder_config config;
+
+ config = ma_decoder_config_init_copy(pConfig);
+ result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
- return ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
-}
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
+ if (result == MA_SUCCESS) {
+ result = ma_decoder__postinit(&config, pDecoder);
+ }
-
-ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
-{
- ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); /* This sets pDecoder->pUserData to a FILE*. */
if (result != MA_SUCCESS) {
- return result;
+ ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
- /* WAV */
- if (ma_path_extension_equal_w(pFilePath, L"wav")) {
- result = ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
- }
-
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
- }
-
- /* FLAC */
- if (ma_path_extension_equal_w(pFilePath, L"flac")) {
- result = ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
- }
-
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
- }
-
- /* MP3 */
- if (ma_path_extension_equal_w(pFilePath, L"mp3")) {
- result = ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
- if (result == MA_SUCCESS) {
- return MA_SUCCESS;
- }
-
- ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start);
- }
-
- /* Trial and error. */
- return ma_decoder_init(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ return result;
+#else
+ (void)pVFS;
+ (void)pFilePath;
+ (void)pConfig;
+ (void)pDecoder;
+ return MA_NO_BACKEND;
+#endif
}
-ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+
+
+MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ return ma_decoder_init_vfs(NULL, pFilePath, pConfig, pDecoder);
}
-ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ return ma_decoder_init_vfs_wav(NULL, pFilePath, pConfig, pDecoder);
}
-ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder_init_vorbis(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ return ma_decoder_init_vfs_flac(NULL, pFilePath, pConfig, pDecoder);
}
-ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder);
- if (result != MA_SUCCESS) {
- return result;
- }
-
- return ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
+ return ma_decoder_init_vfs_mp3(NULL, pFilePath, pConfig, pDecoder);
}
-#endif /* MA_NO_STDIO */
-ma_result ma_decoder_uninit(ma_decoder* pDecoder)
+MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_vorbis(NULL, pFilePath, pConfig, pDecoder);
+}
+
+
+
+MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_w(NULL, pFilePath, pConfig, pDecoder);
+}
+
+MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_wav_w(NULL, pFilePath, pConfig, pDecoder);
+}
+
+MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_flac_w(NULL, pFilePath, pConfig, pDecoder);
+}
+
+MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_mp3_w(NULL, pFilePath, pConfig, pDecoder);
+}
+
+MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ return ma_decoder_init_vfs_vorbis_w(NULL, pFilePath, pConfig, pDecoder);
+}
+
+MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder)
{
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
@@ -37917,19 +45159,20 @@ ma_result ma_decoder_uninit(ma_decoder* pDecoder)
pDecoder->onUninit(pDecoder);
}
-#ifndef MA_NO_STDIO
- /* If we have a file handle, close it. */
- if (pDecoder->onRead == ma_decoder__on_read_stdio) {
- fclose((FILE*)pDecoder->pUserData);
+ if (pDecoder->onRead == ma_decoder__on_read_vfs) {
+ if (pDecoder->backend.vfs.pVFS == NULL) {
+ ma_default_vfs_close(NULL, pDecoder->backend.vfs.file);
+ } else {
+ ma_vfs_close(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file);
+ }
}
-#endif
ma_data_converter_uninit(&pDecoder->converter);
return MA_SUCCESS;
}
-ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
+MA_API ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
{
if (pDecoder == NULL) {
return 0;
@@ -37947,7 +45190,7 @@ ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
return 0;
}
-ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
+MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
ma_result result;
ma_uint64 totalFramesReadOut;
@@ -37967,7 +45210,15 @@ ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_
return pDecoder->onReadPCMFrames(pDecoder, pFramesOut, frameCount);
}
- /* Getting here means we need to do data conversion. */
+ /*
+ Getting here means we need to do data conversion. If we're seeking forward and are _not_ doing resampling we can run this in a fast path. If we're doing resampling we
+ need to run through each sample because we need to ensure it's internal cache is updated.
+ */
+ if (pFramesOut == NULL && pDecoder->converter.hasResampler == MA_FALSE) {
+ return pDecoder->onReadPCMFrames(pDecoder, NULL, frameCount); /* All decoder backends must support passing in NULL for the output buffer. */
+ }
+
+ /* Slow path. Need to run everything through the data converter. */
totalFramesReadOut = 0;
totalFramesReadIn = 0;
pRunningFramesOut = pFramesOut;
@@ -38008,7 +45259,10 @@ ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_
}
totalFramesReadOut += framesReadThisIterationOut;
- pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels));
+
+ if (pRunningFramesOut != NULL) {
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels));
+ }
if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) {
break; /* We're done. */
@@ -38018,14 +45272,21 @@ ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_
return totalFramesReadOut;
}
-ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex)
+MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
if (pDecoder == NULL) {
- return 0;
+ return MA_INVALID_ARGS;
}
if (pDecoder->onSeekToPCMFrame) {
- return pDecoder->onSeekToPCMFrame(pDecoder, frameIndex);
+ ma_uint64 internalFrameIndex;
+ if (pDecoder->internalSampleRate == pDecoder->outputSampleRate) {
+ internalFrameIndex = frameIndex;
+ } else {
+ internalFrameIndex = ma_calculate_frame_count_after_resampling(pDecoder->internalSampleRate, pDecoder->outputSampleRate, frameIndex);
+ }
+
+ return pDecoder->onSeekToPCMFrame(pDecoder, internalFrameIndex);
}
/* Should never get here, but if we do it means onSeekToPCMFrame was not set by the backend. */
@@ -38063,7 +45324,7 @@ static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_dec
if ((newDataCapInFrames * bpf) > MA_SIZE_MAX) {
ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
- return MA_TOO_LARGE;
+ return MA_TOO_BIG;
}
@@ -38110,12 +45371,11 @@ static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_dec
return MA_SUCCESS;
}
-#ifndef MA_NO_STDIO
-ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
+MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
+ ma_result result;
ma_decoder_config config;
ma_decoder decoder;
- ma_result result;
if (pFrameCountOut != NULL) {
*pFrameCountOut = 0;
@@ -38124,22 +45384,24 @@ ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_u
*ppPCMFramesOut = NULL;
}
- if (pFilePath == NULL) {
- return MA_INVALID_ARGS;
- }
-
config = ma_decoder_config_init_copy(pConfig);
-
- result = ma_decoder_init_file(pFilePath, &config, &decoder);
+
+ result = ma_decoder_init_vfs(pVFS, pFilePath, &config, &decoder);
if (result != MA_SUCCESS) {
return result;
}
- return ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut);
-}
-#endif
+ result = ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut);
-ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
+ return result;
+}
+
+MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
+{
+ return ma_decode_from_vfs(NULL, pFilePath, pConfig, pFrameCountOut, ppPCMFramesOut);
+}
+
+MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
ma_decoder_config config;
ma_decoder decoder;
@@ -38165,10 +45427,269 @@ ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config
return ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut);
}
-
#endif /* MA_NO_DECODING */
+#ifndef MA_NO_ENCODING
+
+#if defined(MA_HAS_WAV)
+static size_t ma_encoder__internal_on_write_wav(void* pUserData, const void* pData, size_t bytesToWrite)
+{
+ ma_encoder* pEncoder = (ma_encoder*)pUserData;
+ MA_ASSERT(pEncoder != NULL);
+
+ return pEncoder->onWrite(pEncoder, pData, bytesToWrite);
+}
+
+static drwav_bool32 ma_encoder__internal_on_seek_wav(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ ma_encoder* pEncoder = (ma_encoder*)pUserData;
+ MA_ASSERT(pEncoder != NULL);
+
+ return pEncoder->onSeek(pEncoder, offset, (origin == drwav_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
+}
+
+static ma_result ma_encoder__on_init_wav(ma_encoder* pEncoder)
+{
+ drwav_data_format wavFormat;
+ drwav_allocation_callbacks allocationCallbacks;
+ drwav* pWav;
+
+ MA_ASSERT(pEncoder != NULL);
+
+ pWav = (drwav*)ma__malloc_from_callbacks(sizeof(*pWav), &pEncoder->config.allocationCallbacks);
+ if (pWav == NULL) {
+ return MA_OUT_OF_MEMORY;
+ }
+
+ wavFormat.container = drwav_container_riff;
+ wavFormat.channels = pEncoder->config.channels;
+ wavFormat.sampleRate = pEncoder->config.sampleRate;
+ wavFormat.bitsPerSample = ma_get_bytes_per_sample(pEncoder->config.format) * 8;
+ if (pEncoder->config.format == ma_format_f32) {
+ wavFormat.format = DR_WAVE_FORMAT_IEEE_FLOAT;
+ } else {
+ wavFormat.format = DR_WAVE_FORMAT_PCM;
+ }
+
+ allocationCallbacks.pUserData = pEncoder->config.allocationCallbacks.pUserData;
+ allocationCallbacks.onMalloc = pEncoder->config.allocationCallbacks.onMalloc;
+ allocationCallbacks.onRealloc = pEncoder->config.allocationCallbacks.onRealloc;
+ allocationCallbacks.onFree = pEncoder->config.allocationCallbacks.onFree;
+
+ if (!drwav_init_write(pWav, &wavFormat, ma_encoder__internal_on_write_wav, ma_encoder__internal_on_seek_wav, pEncoder, &allocationCallbacks)) {
+ return MA_ERROR;
+ }
+
+ pEncoder->pInternalEncoder = pWav;
+
+ return MA_SUCCESS;
+}
+
+static void ma_encoder__on_uninit_wav(ma_encoder* pEncoder)
+{
+ drwav* pWav;
+
+ MA_ASSERT(pEncoder != NULL);
+
+ pWav = (drwav*)pEncoder->pInternalEncoder;
+ MA_ASSERT(pWav != NULL);
+
+ drwav_uninit(pWav);
+ ma__free_from_callbacks(pWav, &pEncoder->config.allocationCallbacks);
+}
+
+static ma_uint64 ma_encoder__on_write_pcm_frames_wav(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount)
+{
+ drwav* pWav;
+
+ MA_ASSERT(pEncoder != NULL);
+
+ pWav = (drwav*)pEncoder->pInternalEncoder;
+ MA_ASSERT(pWav != NULL);
+
+ return drwav_write_pcm_frames(pWav, frameCount, pFramesIn);
+}
+#endif
+
+MA_API ma_encoder_config ma_encoder_config_init(ma_resource_format resourceFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate)
+{
+ ma_encoder_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.resourceFormat = resourceFormat;
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+
+ return config;
+}
+
+MA_API ma_result ma_encoder_preinit(const ma_encoder_config* pConfig, ma_encoder* pEncoder)
+{
+ ma_result result;
+
+ if (pEncoder == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pEncoder);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConfig->format == ma_format_unknown || pConfig->channels == 0 || pConfig->sampleRate == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ pEncoder->config = *pConfig;
+
+ result = ma_allocation_callbacks_init_copy(&pEncoder->config.allocationCallbacks, &pConfig->allocationCallbacks);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_encoder_init__internal(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, ma_encoder* pEncoder)
+{
+ ma_result result = MA_SUCCESS;
+
+ /* This assumes ma_encoder_preinit() has been called prior. */
+ MA_ASSERT(pEncoder != NULL);
+
+ if (onWrite == NULL || onSeek == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pEncoder->onWrite = onWrite;
+ pEncoder->onSeek = onSeek;
+ pEncoder->pUserData = pUserData;
+
+ switch (pEncoder->config.resourceFormat)
+ {
+ case ma_resource_format_wav:
+ {
+ #if defined(MA_HAS_WAV)
+ pEncoder->onInit = ma_encoder__on_init_wav;
+ pEncoder->onUninit = ma_encoder__on_uninit_wav;
+ pEncoder->onWritePCMFrames = ma_encoder__on_write_pcm_frames_wav;
+ #else
+ result = MA_NO_BACKEND;
+ #endif
+ } break;
+
+ default:
+ {
+ result = MA_INVALID_ARGS;
+ } break;
+ }
+
+ /* Getting here means we should have our backend callbacks set up. */
+ if (result == MA_SUCCESS) {
+ result = pEncoder->onInit(pEncoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+MA_API size_t ma_encoder__on_write_stdio(ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite)
+{
+ return fwrite(pBufferIn, 1, bytesToWrite, (FILE*)pEncoder->pFile);
+}
+
+MA_API ma_bool32 ma_encoder__on_seek_stdio(ma_encoder* pEncoder, int byteOffset, ma_seek_origin origin)
+{
+ return fseek((FILE*)pEncoder->pFile, byteOffset, (origin == ma_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+
+MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
+{
+ ma_result result;
+ FILE* pFile;
+
+ result = ma_encoder_preinit(pConfig, pEncoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ /* Now open the file. If this fails we don't need to uninitialize the encoder. */
+ result = ma_fopen(&pFile, pFilePath, "wb");
+ if (pFile == NULL) {
+ return result;
+ }
+
+ pEncoder->pFile = pFile;
+
+ return ma_encoder_init__internal(ma_encoder__on_write_stdio, ma_encoder__on_seek_stdio, NULL, pEncoder);
+}
+
+MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
+{
+ ma_result result;
+ FILE* pFile;
+
+ result = ma_encoder_preinit(pConfig, pEncoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ /* Now open the file. If this fails we don't need to uninitialize the encoder. */
+ result = ma_wfopen(&pFile, pFilePath, L"wb", &pEncoder->config.allocationCallbacks);
+ if (pFile != NULL) {
+ return result;
+ }
+
+ pEncoder->pFile = pFile;
+
+ return ma_encoder_init__internal(ma_encoder__on_write_stdio, ma_encoder__on_seek_stdio, NULL, pEncoder);
+}
+
+MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
+{
+ ma_result result;
+
+ result = ma_encoder_preinit(pConfig, pEncoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_encoder_init__internal(onWrite, onSeek, pUserData, pEncoder);
+}
+
+
+MA_API void ma_encoder_uninit(ma_encoder* pEncoder)
+{
+ if (pEncoder == NULL) {
+ return;
+ }
+
+ if (pEncoder->onUninit) {
+ pEncoder->onUninit(pEncoder);
+ }
+
+ /* If we have a file handle, close it. */
+ if (pEncoder->onWrite == ma_encoder__on_write_stdio) {
+ fclose((FILE*)pEncoder->pFile);
+ }
+}
+
+
+MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pEncoder == NULL || pFramesIn == NULL) {
+ return 0;
+ }
+
+ return pEncoder->onWritePCMFrames(pEncoder, pFramesIn, frameCount);
+}
+#endif /* MA_NO_ENCODING */
+
/**************************************************************************************************************************************************************
@@ -38176,50 +45697,96 @@ ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config
Generation
**************************************************************************************************************************************************************/
-ma_result ma_waveform_init(ma_waveform_type type, double amplitude, double frequency, ma_uint32 sampleRate, ma_waveform* pWaveform)
+#ifndef MA_NO_GENERATION
+MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency)
+{
+ ma_waveform_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.type = type;
+ config.amplitude = amplitude;
+ config.frequency = frequency;
+
+ return config;
+}
+
+static ma_result ma_waveform__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
+{
+ ma_uint64 framesRead = ma_waveform_read_pcm_frames((ma_waveform*)pDataSource, pFramesOut, frameCount);
+
+ if (pFramesRead != NULL) {
+ *pFramesRead = framesRead;
+ }
+
+ if (framesRead < frameCount) {
+ return MA_AT_END;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_waveform__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
+{
+ return ma_waveform_seek_to_pcm_frame((ma_waveform*)pDataSource, frameIndex);
+}
+
+static ma_result ma_waveform__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
+{
+ ma_waveform* pWaveform = (ma_waveform*)pDataSource;
+
+ *pFormat = pWaveform->config.format;
+ *pChannels = pWaveform->config.channels;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pWaveform);
-
- pWaveform->type = type;
- pWaveform->amplitude = amplitude;
- pWaveform->frequency = frequency;
- pWaveform->deltaTime = 1.0 / sampleRate;
- pWaveform->time = 0;
+ pWaveform->ds.onRead = ma_waveform__data_source_on_read;
+ pWaveform->ds.onSeek = ma_waveform__data_source_on_seek;
+ pWaveform->ds.onGetDataFormat = ma_waveform__data_source_on_get_data_format;
+ pWaveform->config = *pConfig;
+ pWaveform->advance = 1.0 / pWaveform->config.sampleRate;
+ pWaveform->time = 0;
return MA_SUCCESS;
}
-ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude)
+MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
- pWaveform->amplitude = amplitude;
+ pWaveform->config.amplitude = amplitude;
return MA_SUCCESS;
}
-ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency)
+MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
- pWaveform->frequency = frequency;
+ pWaveform->config.frequency = frequency;
return MA_SUCCESS;
}
-ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate)
+MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
- pWaveform->deltaTime = 1.0 / sampleRate;
+ pWaveform->advance = 1.0 / sampleRate;
return MA_SUCCESS;
}
@@ -38228,10 +45795,15 @@ static float ma_waveform_sine_f32(double time, double frequency, double amplitud
return (float)(ma_sin(MA_TAU_D * time * frequency) * amplitude);
}
+static ma_int16 ma_waveform_sine_s16(double time, double frequency, double amplitude)
+{
+ return ma_pcm_sample_f32_to_s16(ma_waveform_sine_f32(time, frequency, amplitude));
+}
+
static float ma_waveform_square_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
- double f = t - (ma_uint64)t;
+ double f = t - (ma_int64)t;
double r;
if (f < 0.5) {
@@ -38243,10 +45815,15 @@ static float ma_waveform_square_f32(double time, double frequency, double amplit
return (float)r;
}
+static ma_int16 ma_waveform_square_s16(double time, double frequency, double amplitude)
+{
+ return ma_pcm_sample_f32_to_s16(ma_waveform_square_f32(time, frequency, amplitude));
+}
+
static float ma_waveform_triangle_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
- double f = t - (ma_uint64)t;
+ double f = t - (ma_int64)t;
double r;
r = 2 * ma_abs(2 * (f - 0.5)) - 1;
@@ -38254,10 +45831,15 @@ static float ma_waveform_triangle_f32(double time, double frequency, double ampl
return (float)(r * amplitude);
}
+static ma_int16 ma_waveform_triangle_s16(double time, double frequency, double amplitude)
+{
+ return ma_pcm_sample_f32_to_s16(ma_waveform_triangle_f32(time, frequency, amplitude));
+}
+
static float ma_waveform_sawtooth_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
- double f = t - (ma_uint64)t;
+ double f = t - (ma_int64)t;
double r;
r = 2 * (f - 0.5);
@@ -38265,142 +45847,15875 @@ static float ma_waveform_sawtooth_f32(double time, double frequency, double ampl
return (float)(r * amplitude);
}
-static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+static ma_int16 ma_waveform_sawtooth_s16(double time, double frequency, double amplitude)
+{
+ return ma_pcm_sample_f32_to_s16(ma_waveform_sawtooth_f32(time, frequency, amplitude));
+}
+
+static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
- ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
- ma_uint32 bps = ma_get_bytes_per_sample(format);
+ ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
+ ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
- pWaveform->time += pWaveform->deltaTime;
+ if (pWaveform->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else if (pWaveform->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_waveform_sine_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
}
}
}
-static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
- ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
- ma_uint32 bps = ma_get_bytes_per_sample(format);
+ ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
+ ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- float s = ma_waveform_square_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
- pWaveform->time += pWaveform->deltaTime;
+ if (pWaveform->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else if (pWaveform->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_waveform_square_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
}
}
}
-static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
- ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
- ma_uint32 bps = ma_get_bytes_per_sample(format);
+ ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
+ ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
- pWaveform->time += pWaveform->deltaTime;
+ if (pWaveform->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else if (pWaveform->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_waveform_triangle_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
}
}
}
-static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
- ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
- ma_uint32 bps = ma_get_bytes_per_sample(format);
+ ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
+ ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
- pWaveform->time += pWaveform->deltaTime;
+ if (pWaveform->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else if (pWaveform->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_waveform_sawtooth_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
+ pWaveform->time += pWaveform->advance;
+
+ for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
}
}
}
-ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
if (pWaveform == NULL) {
return 0;
}
if (pFramesOut != NULL) {
- switch (pWaveform->type)
+ switch (pWaveform->config.type)
{
case ma_waveform_type_sine:
{
- ma_waveform_read_pcm_frames__sine(pWaveform, pFramesOut, frameCount, format, channels);
+ ma_waveform_read_pcm_frames__sine(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_square:
{
- ma_waveform_read_pcm_frames__square(pWaveform, pFramesOut, frameCount, format, channels);
+ ma_waveform_read_pcm_frames__square(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_triangle:
{
- ma_waveform_read_pcm_frames__triangle(pWaveform, pFramesOut, frameCount, format, channels);
+ ma_waveform_read_pcm_frames__triangle(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_sawtooth:
{
- ma_waveform_read_pcm_frames__sawtooth(pWaveform, pFramesOut, frameCount, format, channels);
+ ma_waveform_read_pcm_frames__sawtooth(pWaveform, pFramesOut, frameCount);
} break;
default: return 0;
}
} else {
- pWaveform->time += pWaveform->deltaTime * (ma_int64)frameCount; /* Cast to int64 required for VC6. Won't affect anything in practice. */
+ pWaveform->time += pWaveform->advance * (ma_int64)frameCount; /* Cast to int64 required for VC6. Won't affect anything in practice. */
}
return frameCount;
}
+MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex)
+{
+ if (pWaveform == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pWaveform->time = pWaveform->advance * (ma_int64)frameIndex; /* Casting for VC6. Won't be an issue in practice. */
+
+ return MA_SUCCESS;
+}
+
+
+MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude)
+{
+ ma_noise_config config;
+ MA_ZERO_OBJECT(&config);
+
+ config.format = format;
+ config.channels = channels;
+ config.type = type;
+ config.seed = seed;
+ config.amplitude = amplitude;
+
+ if (config.seed == 0) {
+ config.seed = MA_DEFAULT_LCG_SEED;
+ }
+
+ return config;
+}
+
+
+static ma_result ma_noise__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
+{
+ ma_uint64 framesRead = ma_noise_read_pcm_frames((ma_noise*)pDataSource, pFramesOut, frameCount);
+
+ if (pFramesRead != NULL) {
+ *pFramesRead = framesRead;
+ }
+
+ if (framesRead < frameCount) {
+ return MA_AT_END;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_noise__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
+{
+ /* No-op. Just pretend to be successful. */
+ (void)pDataSource;
+ (void)frameIndex;
+ return MA_SUCCESS;
+}
+
+static ma_result ma_noise__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
+{
+ ma_noise* pNoise = (ma_noise*)pDataSource;
+
+ *pFormat = pNoise->config.format;
+ *pChannels = pNoise->config.channels;
+
+ return MA_SUCCESS;
+}
+
+MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise)
+{
+ if (pNoise == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pNoise);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pNoise->ds.onRead = ma_noise__data_source_on_read;
+ pNoise->ds.onSeek = ma_noise__data_source_on_seek; /* <-- No-op for noise. */
+ pNoise->ds.onGetDataFormat = ma_noise__data_source_on_get_data_format;
+ pNoise->config = *pConfig;
+ ma_lcg_seed(&pNoise->lcg, pConfig->seed);
+
+ if (pNoise->config.type == ma_noise_type_pink) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) {
+ pNoise->state.pink.accumulation[iChannel] = 0;
+ pNoise->state.pink.counter[iChannel] = 1;
+ }
+ }
+
+ if (pNoise->config.type == ma_noise_type_brownian) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) {
+ pNoise->state.brownian.accumulation[iChannel] = 0;
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE float ma_noise_f32_white(ma_noise* pNoise)
+{
+ return (float)(ma_lcg_rand_f64(&pNoise->lcg) * pNoise->config.amplitude);
+}
+
+static MA_INLINE ma_int16 ma_noise_s16_white(ma_noise* pNoise)
+{
+ return ma_pcm_sample_f32_to_s16(ma_noise_f32_white(pNoise));
+}
+
+static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
+{
+ ma_uint64 iFrame;
+ ma_uint32 iChannel;
+
+ if (pNoise->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_white(pNoise);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_white(pNoise);
+ }
+ }
+ }
+ } else if (pNoise->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_noise_s16_white(pNoise);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_white(pNoise);
+ }
+ }
+ }
+ } else {
+ ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
+ ma_uint32 bpf = bps * pNoise->config.channels;
+
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_white(pNoise);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ float s = ma_noise_f32_white(pNoise);
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ }
+ }
+
+ return frameCount;
+}
+
+
+static MA_INLINE unsigned int ma_tzcnt32(unsigned int x)
+{
+ unsigned int n;
+
+ /* Special case for odd numbers since they should happen about half the time. */
+ if (x & 0x1) {
+ return 0;
+ }
+
+ if (x == 0) {
+ return sizeof(x) << 3;
+ }
+
+ n = 1;
+ if ((x & 0x0000FFFF) == 0) { x >>= 16; n += 16; }
+ if ((x & 0x000000FF) == 0) { x >>= 8; n += 8; }
+ if ((x & 0x0000000F) == 0) { x >>= 4; n += 4; }
+ if ((x & 0x00000003) == 0) { x >>= 2; n += 2; }
+ n -= x & 0x00000001;
+
+ return n;
+}
+
+/*
+Pink noise generation based on Tonic (public domain) with modifications. https://github.com/TonicAudio/Tonic/blob/master/src/Tonic/Noise.h
+
+This is basically _the_ reference for pink noise from what I've found: http://www.firstpr.com.au/dsp/pink-noise/
+*/
+static MA_INLINE float ma_noise_f32_pink(ma_noise* pNoise, ma_uint32 iChannel)
+{
+ double result;
+ double binPrev;
+ double binNext;
+ unsigned int ibin;
+
+ ibin = ma_tzcnt32(pNoise->state.pink.counter[iChannel]) & (ma_countof(pNoise->state.pink.bin[0]) - 1);
+
+ binPrev = pNoise->state.pink.bin[iChannel][ibin];
+ binNext = ma_lcg_rand_f64(&pNoise->lcg);
+ pNoise->state.pink.bin[iChannel][ibin] = binNext;
+
+ pNoise->state.pink.accumulation[iChannel] += (binNext - binPrev);
+ pNoise->state.pink.counter[iChannel] += 1;
+
+ result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.pink.accumulation[iChannel]);
+ result /= 10;
+
+ return (float)(result * pNoise->config.amplitude);
+}
+
+static MA_INLINE ma_int16 ma_noise_s16_pink(ma_noise* pNoise, ma_uint32 iChannel)
+{
+ return ma_pcm_sample_f32_to_s16(ma_noise_f32_pink(pNoise, iChannel));
+}
+
+static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
+{
+ ma_uint64 iFrame;
+ ma_uint32 iChannel;
+
+ if (pNoise->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_pink(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_pink(pNoise, iChannel);
+ }
+ }
+ }
+ } else if (pNoise->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_noise_s16_pink(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_pink(pNoise, iChannel);
+ }
+ }
+ }
+ } else {
+ ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
+ ma_uint32 bpf = bps * pNoise->config.channels;
+
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_pink(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ float s = ma_noise_f32_pink(pNoise, iChannel);
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ }
+ }
+
+ return frameCount;
+}
+
+
+static MA_INLINE float ma_noise_f32_brownian(ma_noise* pNoise, ma_uint32 iChannel)
+{
+ double result;
+
+ result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.brownian.accumulation[iChannel]);
+ result /= 1.005; /* Don't escape the -1..1 range on average. */
+
+ pNoise->state.brownian.accumulation[iChannel] = result;
+ result /= 20;
+
+ return (float)(result * pNoise->config.amplitude);
+}
+
+static MA_INLINE ma_int16 ma_noise_s16_brownian(ma_noise* pNoise, ma_uint32 iChannel)
+{
+ return ma_pcm_sample_f32_to_s16(ma_noise_f32_brownian(pNoise, iChannel));
+}
+
+static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
+{
+ ma_uint64 iFrame;
+ ma_uint32 iChannel;
+
+ if (pNoise->config.format == ma_format_f32) {
+ float* pFramesOutF32 = (float*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_brownian(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_brownian(pNoise, iChannel);
+ }
+ }
+ }
+ } else if (pNoise->config.format == ma_format_s16) {
+ ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ ma_int16 s = ma_noise_s16_brownian(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_brownian(pNoise, iChannel);
+ }
+ }
+ }
+ } else {
+ ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
+ ma_uint32 bpf = bps * pNoise->config.channels;
+
+ if (pNoise->config.duplicateChannels) {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_noise_f32_brownian(pNoise, 0);
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
+ float s = ma_noise_f32_brownian(pNoise, iChannel);
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+ }
+ }
+
+ return frameCount;
+}
+
+MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
+{
+ if (pNoise == NULL) {
+ return 0;
+ }
+
+ /* The output buffer is allowed to be NULL. Since we aren't tracking cursors or anything we can just do nothing and pretend to be successful. */
+ if (pFramesOut == NULL) {
+ return frameCount;
+ }
+
+ if (pNoise->config.type == ma_noise_type_white) {
+ return ma_noise_read_pcm_frames__white(pNoise, pFramesOut, frameCount);
+ }
+
+ if (pNoise->config.type == ma_noise_type_pink) {
+ return ma_noise_read_pcm_frames__pink(pNoise, pFramesOut, frameCount);
+ }
+
+ if (pNoise->config.type == ma_noise_type_brownian) {
+ return ma_noise_read_pcm_frames__brownian(pNoise, pFramesOut, frameCount);
+ }
+
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
+}
+#endif /* MA_NO_GENERATION */
+
+
+
+/**************************************************************************************************************************************************************
+***************************************************************************************************************************************************************
+
+Auto Generated
+==============
+All code below is auto-generated from a tool. This mostly consists of decoding backend implementations such as dr_wav, dr_flac, etc. If you find a bug in the
+code below please report the bug to the respective repository for the relevant project (probably dr_libs).
+
+***************************************************************************************************************************************************************
+**************************************************************************************************************************************************************/
+#if !defined(MA_NO_WAV) && !defined(MA_NO_DECODING) && !defined(MA_NO_ENCODING)
+#if !defined(DR_WAV_IMPLEMENTATION) && !defined(DRWAV_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
+/* dr_wav_c begin */
+#ifndef dr_wav_c
+#define dr_wav_c
+#include
+#include
+#include
+#ifndef DR_WAV_NO_STDIO
+#include
+#include
+#endif
+#ifndef DRWAV_ASSERT
+#include
+#define DRWAV_ASSERT(expression) assert(expression)
+#endif
+#ifndef DRWAV_MALLOC
+#define DRWAV_MALLOC(sz) malloc((sz))
+#endif
+#ifndef DRWAV_REALLOC
+#define DRWAV_REALLOC(p, sz) realloc((p), (sz))
+#endif
+#ifndef DRWAV_FREE
+#define DRWAV_FREE(p) free((p))
+#endif
+#ifndef DRWAV_COPY_MEMORY
+#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
+#endif
+#ifndef DRWAV_ZERO_MEMORY
+#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
+#endif
+#ifndef DRWAV_ZERO_OBJECT
+#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p))
+#endif
+#define drwav_countof(x) (sizeof(x) / sizeof(x[0]))
+#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
+#define drwav_min(a, b) (((a) < (b)) ? (a) : (b))
+#define drwav_max(a, b) (((a) > (b)) ? (a) : (b))
+#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x))))
+#define DRWAV_MAX_SIMD_VECTOR_SIZE 64
+#if defined(__x86_64__) || defined(_M_X64)
+ #define DRWAV_X64
+#elif defined(__i386) || defined(_M_IX86)
+ #define DRWAV_X86
+#elif defined(__arm__) || defined(_M_ARM)
+ #define DRWAV_ARM
+#endif
+#ifdef _MSC_VER
+ #define DRWAV_INLINE __forceinline
+#elif defined(__GNUC__)
+ #if defined(__STRICT_ANSI__)
+ #define DRWAV_INLINE __inline__ __attribute__((always_inline))
+ #else
+ #define DRWAV_INLINE inline __attribute__((always_inline))
+ #endif
+#else
+ #define DRWAV_INLINE
+#endif
+#if defined(SIZE_MAX)
+ #define DRWAV_SIZE_MAX SIZE_MAX
+#else
+ #if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
+ #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
+ #else
+ #define DRWAV_SIZE_MAX 0xFFFFFFFF
+ #endif
+#endif
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+#elif defined(__clang__)
+ #if defined(__has_builtin)
+ #if __has_builtin(__builtin_bswap16)
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap32)
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap64)
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #endif
+#elif defined(__GNUC__)
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #endif
+#endif
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision)
+{
+ if (pMajor) {
+ *pMajor = DRWAV_VERSION_MAJOR;
+ }
+ if (pMinor) {
+ *pMinor = DRWAV_VERSION_MINOR;
+ }
+ if (pRevision) {
+ *pRevision = DRWAV_VERSION_REVISION;
+ }
+}
+DRWAV_API const char* drwav_version_string()
+{
+ return DRWAV_VERSION_STRING;
+}
+#ifndef DRWAV_MAX_SAMPLE_RATE
+#define DRWAV_MAX_SAMPLE_RATE 384000
+#endif
+#ifndef DRWAV_MAX_CHANNELS
+#define DRWAV_MAX_CHANNELS 256
+#endif
+#ifndef DRWAV_MAX_BITS_PER_SAMPLE
+#define DRWAV_MAX_BITS_PER_SAMPLE 64
+#endif
+static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00};
+static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
+static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+ int i;
+ for (i = 0; i < 16; i += 1) {
+ if (a[i] != b[i]) {
+ return DRWAV_FALSE;
+ }
+ }
+ return DRWAV_TRUE;
+}
+static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b)
+{
+ return
+ a[0] == b[0] &&
+ a[1] == b[1] &&
+ a[2] == b[2] &&
+ a[3] == b[3];
+}
+static DRWAV_INLINE int drwav__is_little_endian(void)
+{
+#if defined(DRWAV_X86) || defined(DRWAV_X64)
+ return DRWAV_TRUE;
+#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
+ return DRWAV_TRUE;
+#else
+ int n = 1;
+ return (*(char*)&n) == 1;
+#endif
+}
+static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data)
+{
+ return (data[0] << 0) | (data[1] << 8);
+}
+static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data)
+{
+ return (short)drwav__bytes_to_u16(data);
+}
+static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data)
+{
+ return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
+}
+static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data)
+{
+ return (drwav_int32)drwav__bytes_to_u32(data);
+}
+static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data)
+{
+ return
+ ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
+ ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
+}
+static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data)
+{
+ return (drwav_int64)drwav__bytes_to_u64(data);
+}
+static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid)
+{
+ int i;
+ for (i = 0; i < 16; ++i) {
+ guid[i] = data[i];
+ }
+}
+static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ushort(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap16(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF00) >> 8) |
+ ((n & 0x00FF) << 8);
+#endif
+}
+static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ulong(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT)
+ drwav_uint32 r;
+ __asm__ __volatile__ (
+ #if defined(DRWAV_64BIT)
+ "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n)
+ #else
+ "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
+ #endif
+ );
+ return r;
+ #else
+ return __builtin_bswap32(n);
+ #endif
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF000000) >> 24) |
+ ((n & 0x00FF0000) >> 8) |
+ ((n & 0x0000FF00) << 8) |
+ ((n & 0x000000FF) << 24);
+#endif
+}
+static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_uint64(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap64(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & (drwav_uint64)0xFF00000000000000) >> 56) |
+ ((n & (drwav_uint64)0x00FF000000000000) >> 40) |
+ ((n & (drwav_uint64)0x0000FF0000000000) >> 24) |
+ ((n & (drwav_uint64)0x000000FF00000000) >> 8) |
+ ((n & (drwav_uint64)0x00000000FF000000) << 8) |
+ ((n & (drwav_uint64)0x0000000000FF0000) << 24) |
+ ((n & (drwav_uint64)0x000000000000FF00) << 40) |
+ ((n & (drwav_uint64)0x00000000000000FF) << 56);
+#endif
+}
+static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n)
+{
+ return (drwav_int16)drwav__bswap16((drwav_uint16)n);
+}
+static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]);
+ }
+}
+static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p)
+{
+ drwav_uint8 t;
+ t = p[0];
+ p[0] = p[2];
+ p[2] = t;
+}
+static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ drwav_uint8* pSample = pSamples + (iSample*3);
+ drwav__bswap_s24(pSample);
+ }
+}
+static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n)
+{
+ return (drwav_int32)drwav__bswap32((drwav_uint32)n);
+}
+static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]);
+ }
+}
+static DRWAV_INLINE float drwav__bswap_f32(float n)
+{
+ union {
+ drwav_uint32 i;
+ float f;
+ } x;
+ x.f = n;
+ x.i = drwav__bswap32(x.i);
+ return x.f;
+}
+static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]);
+ }
+}
+static DRWAV_INLINE double drwav__bswap_f64(double n)
+{
+ union {
+ drwav_uint64 i;
+ double f;
+ } x;
+ x.f = n;
+ x.i = drwav__bswap64(x.i);
+ return x.f;
+}
+static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]);
+ }
+}
+static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+ switch (bytesPerSample)
+ {
+ case 2:
+ {
+ drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+ } break;
+ case 3:
+ {
+ drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount);
+ } break;
+ case 4:
+ {
+ drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount);
+ } break;
+ default:
+ {
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+ switch (bytesPerSample)
+ {
+ #if 0
+ case 2:
+ {
+ drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount);
+ } break;
+ #endif
+ case 4:
+ {
+ drwav__bswap_samples_f32((float*)pSamples, sampleCount);
+ } break;
+ case 8:
+ {
+ drwav__bswap_samples_f64((double*)pSamples, sampleCount);
+ } break;
+ default:
+ {
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format)
+{
+ switch (format)
+ {
+ case DR_WAVE_FORMAT_PCM:
+ {
+ drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample);
+ } break;
+ case DR_WAVE_FORMAT_IEEE_FLOAT:
+ {
+ drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample);
+ } break;
+ case DR_WAVE_FORMAT_ALAW:
+ case DR_WAVE_FORMAT_MULAW:
+ {
+ drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+ } break;
+ case DR_WAVE_FORMAT_ADPCM:
+ case DR_WAVE_FORMAT_DVI_ADPCM:
+ default:
+ {
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+static void* drwav__malloc_default(size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRWAV_MALLOC(sz);
+}
+static void* drwav__realloc_default(void* p, size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRWAV_REALLOC(p, sz);
+}
+static void drwav__free_default(void* p, void* pUserData)
+{
+ (void)pUserData;
+ DRWAV_FREE(p);
+}
+static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onMalloc != NULL) {
+ return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+ }
+ return NULL;
+}
+static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+ void* p2;
+ p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+ if (p2 == NULL) {
+ return NULL;
+ }
+ if (p != NULL) {
+ DRWAV_COPY_MEMORY(p2, p, szOld);
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+ return p2;
+ }
+ return NULL;
+}
+static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (p == NULL || pAllocationCallbacks == NULL) {
+ return;
+ }
+ if (pAllocationCallbacks->onFree != NULL) {
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+}
+static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ return *pAllocationCallbacks;
+ } else {
+ drwav_allocation_callbacks allocationCallbacks;
+ allocationCallbacks.pUserData = NULL;
+ allocationCallbacks.onMalloc = drwav__malloc_default;
+ allocationCallbacks.onRealloc = drwav__realloc_default;
+ allocationCallbacks.onFree = drwav__free_default;
+ return allocationCallbacks;
+ }
+}
+static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
+{
+ return
+ formatTag == DR_WAVE_FORMAT_ADPCM ||
+ formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
+}
+static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize)
+{
+ return (unsigned int)(chunkSize % 2);
+}
+static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize)
+{
+ return (unsigned int)(chunkSize % 8);
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut)
+{
+ if (container == drwav_container_riff) {
+ drwav_uint8 sizeInBytes[4];
+ if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
+ return DRWAV_AT_END;
+ }
+ if (onRead(pUserData, sizeInBytes, 4) != 4) {
+ return DRWAV_INVALID_FILE;
+ }
+ pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes);
+ pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes);
+ *pRunningBytesReadOut += 8;
+ } else {
+ drwav_uint8 sizeInBytes[8];
+ if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
+ return DRWAV_AT_END;
+ }
+ if (onRead(pUserData, sizeInBytes, 8) != 8) {
+ return DRWAV_INVALID_FILE;
+ }
+ pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24;
+ pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes);
+ *pRunningBytesReadOut += 24;
+ }
+ return DRWAV_SUCCESS;
+}
+static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+ drwav_uint64 bytesRemainingToSeek = offset;
+ while (bytesRemainingToSeek > 0) {
+ if (bytesRemainingToSeek > 0x7FFFFFFF) {
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingToSeek -= 0x7FFFFFFF;
+ } else {
+ if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingToSeek = 0;
+ }
+ }
+ return DRWAV_TRUE;
+}
+static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+ if (offset <= 0x7FFFFFFF) {
+ return onSeek(pUserData, (int)offset, drwav_seek_origin_start);
+ }
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) {
+ return DRWAV_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+ for (;;) {
+ if (offset <= 0x7FFFFFFF) {
+ return onSeek(pUserData, (int)offset, drwav_seek_origin_current);
+ }
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+ }
+}
+static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut)
+{
+ drwav_chunk_header header;
+ drwav_uint8 fmt[16];
+ if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ while ((container == drwav_container_riff && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
+ if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize;
+ if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ }
+ if (container == drwav_container_riff) {
+ if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) {
+ return DRWAV_FALSE;
+ }
+ } else {
+ if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) {
+ return DRWAV_FALSE;
+ }
+ }
+ if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += sizeof(fmt);
+ fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0);
+ fmtOut->channels = drwav__bytes_to_u16(fmt + 2);
+ fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4);
+ fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8);
+ fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12);
+ fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14);
+ fmtOut->extendedSize = 0;
+ fmtOut->validBitsPerSample = 0;
+ fmtOut->channelMask = 0;
+ memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat));
+ if (header.sizeInBytes > 16) {
+ drwav_uint8 fmt_cbSize[2];
+ int bytesReadSoFar = 0;
+ if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += sizeof(fmt_cbSize);
+ bytesReadSoFar = 18;
+ fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize);
+ if (fmtOut->extendedSize > 0) {
+ if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ if (fmtOut->extendedSize != 22) {
+ return DRWAV_FALSE;
+ }
+ }
+ if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ drwav_uint8 fmtext[22];
+ if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) {
+ return DRWAV_FALSE;
+ }
+ fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0);
+ fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2);
+ drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat);
+ } else {
+ if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ }
+ *pRunningBytesReadOut += fmtOut->extendedSize;
+ bytesReadSoFar += fmtOut->extendedSize;
+ }
+ if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar);
+ }
+ if (header.paddingSize > 0) {
+ if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += header.paddingSize;
+ }
+ return DRWAV_TRUE;
+}
+static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
+{
+ size_t bytesRead;
+ DRWAV_ASSERT(onRead != NULL);
+ DRWAV_ASSERT(pCursor != NULL);
+ bytesRead = onRead(pUserData, pBufferOut, bytesToRead);
+ *pCursor += bytesRead;
+ return bytesRead;
+}
+#if 0
+static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor)
+{
+ DRWAV_ASSERT(onSeek != NULL);
+ DRWAV_ASSERT(pCursor != NULL);
+ if (!onSeek(pUserData, offset, origin)) {
+ return DRWAV_FALSE;
+ }
+ if (origin == drwav_seek_origin_start) {
+ *pCursor = offset;
+ } else {
+ *pCursor += offset;
+ }
+ return DRWAV_TRUE;
+}
+#endif
+static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav)
+{
+ if ((pWav->bitsPerSample & 0x7) == 0) {
+ return (pWav->bitsPerSample * pWav->fmt.channels) >> 3;
+ } else {
+ return pWav->fmt.blockAlign;
+ }
+}
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT)
+{
+ if (pFMT == NULL) {
+ return 0;
+ }
+ if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) {
+ return pFMT->formatTag;
+ } else {
+ return drwav__bytes_to_u16(pFMT->subFormat);
+ }
+}
+static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pWav == NULL || onRead == NULL || onSeek == NULL) {
+ return DRWAV_FALSE;
+ }
+ DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+ pWav->onRead = onRead;
+ pWav->onSeek = onSeek;
+ pWav->pUserData = pReadSeekUserData;
+ pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+ if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+ return DRWAV_FALSE;
+ }
+ return DRWAV_TRUE;
+}
+static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags)
+{
+ drwav_uint64 cursor;
+ drwav_bool32 sequential;
+ drwav_uint8 riff[4];
+ drwav_fmt fmt;
+ unsigned short translatedFormatTag;
+ drwav_uint64 sampleCountFromFactChunk;
+ drwav_bool32 foundDataChunk;
+ drwav_uint64 dataChunkSize;
+ drwav_uint64 chunkSize;
+ cursor = 0;
+ sequential = (flags & DRWAV_SEQUENTIAL) != 0;
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__fourcc_equal(riff, "RIFF")) {
+ pWav->container = drwav_container_riff;
+ } else if (drwav__fourcc_equal(riff, "riff")) {
+ int i;
+ drwav_uint8 riff2[12];
+ pWav->container = drwav_container_w64;
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) {
+ return DRWAV_FALSE;
+ }
+ for (i = 0; i < 12; ++i) {
+ if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
+ return DRWAV_FALSE;
+ }
+ }
+ } else {
+ return DRWAV_FALSE;
+ }
+ if (pWav->container == drwav_container_riff) {
+ drwav_uint8 chunkSizeBytes[4];
+ drwav_uint8 wave[4];
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__bytes_to_u32(chunkSizeBytes) < 36) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+ return DRWAV_FALSE;
+ }
+ if (!drwav__fourcc_equal(wave, "WAVE")) {
+ return DRWAV_FALSE;
+ }
+ } else {
+ drwav_uint8 chunkSizeBytes[8];
+ drwav_uint8 wave[16];
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__bytes_to_u64(chunkSizeBytes) < 80) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+ return DRWAV_FALSE;
+ }
+ if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) {
+ return DRWAV_FALSE;
+ }
+ }
+ if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) {
+ return DRWAV_FALSE;
+ }
+ if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) ||
+ (fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) ||
+ (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) ||
+ fmt.blockAlign == 0) {
+ return DRWAV_FALSE;
+ }
+ translatedFormatTag = fmt.formatTag;
+ if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0);
+ }
+ sampleCountFromFactChunk = 0;
+ foundDataChunk = DRWAV_FALSE;
+ dataChunkSize = 0;
+ for (;;)
+ {
+ drwav_chunk_header header;
+ drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
+ if (result != DRWAV_SUCCESS) {
+ if (!foundDataChunk) {
+ return DRWAV_FALSE;
+ } else {
+ break;
+ }
+ }
+ if (!sequential && onChunk != NULL) {
+ drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt);
+ if (callbackBytesRead > 0) {
+ if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ }
+ }
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ chunkSize = header.sizeInBytes;
+ if (pWav->container == drwav_container_riff) {
+ if (drwav__fourcc_equal(header.id.fourcc, "data")) {
+ foundDataChunk = DRWAV_TRUE;
+ dataChunkSize = chunkSize;
+ }
+ } else {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) {
+ foundDataChunk = DRWAV_TRUE;
+ dataChunkSize = chunkSize;
+ }
+ }
+ if (foundDataChunk && sequential) {
+ break;
+ }
+ if (pWav->container == drwav_container_riff) {
+ if (drwav__fourcc_equal(header.id.fourcc, "fact")) {
+ drwav_uint32 sampleCount;
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) {
+ return DRWAV_FALSE;
+ }
+ chunkSize -= 4;
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ sampleCountFromFactChunk = sampleCount;
+ } else {
+ sampleCountFromFactChunk = 0;
+ }
+ }
+ } else {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) {
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) {
+ return DRWAV_FALSE;
+ }
+ chunkSize -= 8;
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ }
+ }
+ if (pWav->container == drwav_container_riff) {
+ if (drwav__fourcc_equal(header.id.fourcc, "smpl")) {
+ drwav_uint8 smplHeaderData[36];
+ if (chunkSize >= sizeof(smplHeaderData)) {
+ drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor);
+ chunkSize -= bytesJustRead;
+ if (bytesJustRead == sizeof(smplHeaderData)) {
+ drwav_uint32 iLoop;
+ pWav->smpl.manufacturer = drwav__bytes_to_u32(smplHeaderData+0);
+ pWav->smpl.product = drwav__bytes_to_u32(smplHeaderData+4);
+ pWav->smpl.samplePeriod = drwav__bytes_to_u32(smplHeaderData+8);
+ pWav->smpl.midiUnityNotes = drwav__bytes_to_u32(smplHeaderData+12);
+ pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16);
+ pWav->smpl.smpteFormat = drwav__bytes_to_u32(smplHeaderData+20);
+ pWav->smpl.smpteOffset = drwav__bytes_to_u32(smplHeaderData+24);
+ pWav->smpl.numSampleLoops = drwav__bytes_to_u32(smplHeaderData+28);
+ pWav->smpl.samplerData = drwav__bytes_to_u32(smplHeaderData+32);
+ for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) {
+ drwav_uint8 smplLoopData[24];
+ bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor);
+ chunkSize -= bytesJustRead;
+ if (bytesJustRead == sizeof(smplLoopData)) {
+ pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0);
+ pWav->smpl.loops[iLoop].type = drwav__bytes_to_u32(smplLoopData+4);
+ pWav->smpl.loops[iLoop].start = drwav__bytes_to_u32(smplLoopData+8);
+ pWav->smpl.loops[iLoop].end = drwav__bytes_to_u32(smplLoopData+12);
+ pWav->smpl.loops[iLoop].fraction = drwav__bytes_to_u32(smplLoopData+16);
+ pWav->smpl.loops[iLoop].playCount = drwav__bytes_to_u32(smplLoopData+20);
+ } else {
+ break;
+ }
+ }
+ }
+ } else {
+ }
+ }
+ } else {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) {
+ }
+ }
+ chunkSize += header.paddingSize;
+ if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) {
+ break;
+ }
+ cursor += chunkSize;
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ }
+ if (!foundDataChunk) {
+ return DRWAV_FALSE;
+ }
+ if (!sequential) {
+ if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ cursor = pWav->dataChunkDataPos;
+ }
+ pWav->fmt = fmt;
+ pWav->sampleRate = fmt.sampleRate;
+ pWav->channels = fmt.channels;
+ pWav->bitsPerSample = fmt.bitsPerSample;
+ pWav->bytesRemaining = dataChunkSize;
+ pWav->translatedFormatTag = translatedFormatTag;
+ pWav->dataChunkDataSize = dataChunkSize;
+ if (sampleCountFromFactChunk != 0) {
+ pWav->totalPCMFrameCount = sampleCountFromFactChunk;
+ } else {
+ pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav);
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ drwav_uint64 totalBlockHeaderSizeInBytes;
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+ blockCount += 1;
+ }
+ totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels);
+ pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ drwav_uint64 totalBlockHeaderSizeInBytes;
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+ blockCount += 1;
+ }
+ totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels);
+ pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+ pWav->totalPCMFrameCount += blockCount;
+ }
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ if (pWav->channels > 2) {
+ return DRWAV_FALSE;
+ }
+ }
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels;
+ }
+#endif
+ return DRWAV_TRUE;
+}
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+ drwav_uint32 dataSubchunkPaddingSize = drwav__chunk_padding_size_riff(dataChunkSize);
+ if (dataChunkSize <= (0xFFFFFFFFUL - 36 - dataSubchunkPaddingSize)) {
+ return 36 + (drwav_uint32)(dataChunkSize + dataSubchunkPaddingSize);
+ } else {
+ return 0xFFFFFFFF;
+ }
+}
+static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+ if (dataChunkSize <= 0xFFFFFFFFUL) {
+ return (drwav_uint32)dataChunkSize;
+ } else {
+ return 0xFFFFFFFFUL;
+ }
+}
+static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+ drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize);
+ return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize;
+}
+static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+ return 24 + dataChunkSize;
+}
+static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pWav == NULL || onWrite == NULL) {
+ return DRWAV_FALSE;
+ }
+ if (!isSequential && onSeek == NULL) {
+ return DRWAV_FALSE;
+ }
+ if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
+ return DRWAV_FALSE;
+ }
+ if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return DRWAV_FALSE;
+ }
+ DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+ pWav->onWrite = onWrite;
+ pWav->onSeek = onSeek;
+ pWav->pUserData = pUserData;
+ pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+ if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+ return DRWAV_FALSE;
+ }
+ pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
+ pWav->fmt.channels = (drwav_uint16)pFormat->channels;
+ pWav->fmt.sampleRate = pFormat->sampleRate;
+ pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
+ pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
+ pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+ pWav->fmt.extendedSize = 0;
+ pWav->isSequentialWrite = isSequential;
+ return DRWAV_TRUE;
+}
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+ size_t runningPos = 0;
+ drwav_uint64 initialDataChunkSize = 0;
+ drwav_uint64 chunkSizeFMT;
+ if (pWav->isSequentialWrite) {
+ initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
+ if (pFormat->container == drwav_container_riff) {
+ if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) {
+ return DRWAV_FALSE;
+ }
+ }
+ }
+ pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
+ if (pFormat->container == drwav_container_riff) {
+ drwav_uint32 chunkSizeRIFF = 36 + (drwav_uint32)initialDataChunkSize;
+ runningPos += pWav->onWrite(pWav->pUserData, "RIFF", 4);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeRIFF, 4);
+ runningPos += pWav->onWrite(pWav->pUserData, "WAVE", 4);
+ } else {
+ drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize;
+ runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_RIFF, 16);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeRIFF, 8);
+ runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_WAVE, 16);
+ }
+ if (pFormat->container == drwav_container_riff) {
+ chunkSizeFMT = 16;
+ runningPos += pWav->onWrite(pWav->pUserData, "fmt ", 4);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeFMT, 4);
+ } else {
+ chunkSizeFMT = 40;
+ runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_FMT, 16);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeFMT, 8);
+ }
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.formatTag, 2);
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.channels, 2);
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.sampleRate, 4);
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.avgBytesPerSec, 4);
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.blockAlign, 2);
+ runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.bitsPerSample, 2);
+ pWav->dataChunkDataPos = runningPos;
+ if (pFormat->container == drwav_container_riff) {
+ drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
+ runningPos += pWav->onWrite(pWav->pUserData, "data", 4);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeDATA, 4);
+ } else {
+ drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize;
+ runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_DATA, 16);
+ runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeDATA, 8);
+ }
+ if (pFormat->container == drwav_container_riff) {
+ if (runningPos != 20 + chunkSizeFMT + 8) {
+ return DRWAV_FALSE;
+ }
+ } else {
+ if (runningPos != 40 + chunkSizeFMT + 24) {
+ return DRWAV_FALSE;
+ }
+ }
+ pWav->container = pFormat->container;
+ pWav->channels = (drwav_uint16)pFormat->channels;
+ pWav->sampleRate = pFormat->sampleRate;
+ pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+ pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
+ return DRWAV_TRUE;
+}
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_write__internal(pWav, pFormat, 0);
+}
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+}
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks);
+}
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+ drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0);
+ drwav_uint64 riffChunkSizeBytes;
+ drwav_uint64 fileSizeBytes;
+ if (pFormat->container == drwav_container_riff) {
+ riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes);
+ fileSizeBytes = (8 + riffChunkSizeBytes);
+ } else {
+ riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes);
+ fileSizeBytes = riffChunkSizeBytes;
+ }
+ return fileSizeBytes;
+}
+#ifndef DR_WAV_NO_STDIO
+#include
+static drwav_result drwav_result_from_errno(int e)
+{
+ switch (e)
+ {
+ case 0: return DRWAV_SUCCESS;
+ #ifdef EPERM
+ case EPERM: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef ENOENT
+ case ENOENT: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef ESRCH
+ case ESRCH: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef EINTR
+ case EINTR: return DRWAV_INTERRUPT;
+ #endif
+ #ifdef EIO
+ case EIO: return DRWAV_IO_ERROR;
+ #endif
+ #ifdef ENXIO
+ case ENXIO: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef E2BIG
+ case E2BIG: return DRWAV_INVALID_ARGS;
+ #endif
+ #ifdef ENOEXEC
+ case ENOEXEC: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef EBADF
+ case EBADF: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ECHILD
+ case ECHILD: return DRWAV_ERROR;
+ #endif
+ #ifdef EAGAIN
+ case EAGAIN: return DRWAV_UNAVAILABLE;
+ #endif
+ #ifdef ENOMEM
+ case ENOMEM: return DRWAV_OUT_OF_MEMORY;
+ #endif
+ #ifdef EACCES
+ case EACCES: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef EFAULT
+ case EFAULT: return DRWAV_BAD_ADDRESS;
+ #endif
+ #ifdef ENOTBLK
+ case ENOTBLK: return DRWAV_ERROR;
+ #endif
+ #ifdef EBUSY
+ case EBUSY: return DRWAV_BUSY;
+ #endif
+ #ifdef EEXIST
+ case EEXIST: return DRWAV_ALREADY_EXISTS;
+ #endif
+ #ifdef EXDEV
+ case EXDEV: return DRWAV_ERROR;
+ #endif
+ #ifdef ENODEV
+ case ENODEV: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef ENOTDIR
+ case ENOTDIR: return DRWAV_NOT_DIRECTORY;
+ #endif
+ #ifdef EISDIR
+ case EISDIR: return DRWAV_IS_DIRECTORY;
+ #endif
+ #ifdef EINVAL
+ case EINVAL: return DRWAV_INVALID_ARGS;
+ #endif
+ #ifdef ENFILE
+ case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef EMFILE
+ case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef ENOTTY
+ case ENOTTY: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef ETXTBSY
+ case ETXTBSY: return DRWAV_BUSY;
+ #endif
+ #ifdef EFBIG
+ case EFBIG: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef ENOSPC
+ case ENOSPC: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef ESPIPE
+ case ESPIPE: return DRWAV_BAD_SEEK;
+ #endif
+ #ifdef EROFS
+ case EROFS: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef EMLINK
+ case EMLINK: return DRWAV_TOO_MANY_LINKS;
+ #endif
+ #ifdef EPIPE
+ case EPIPE: return DRWAV_BAD_PIPE;
+ #endif
+ #ifdef EDOM
+ case EDOM: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef ERANGE
+ case ERANGE: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef EDEADLK
+ case EDEADLK: return DRWAV_DEADLOCK;
+ #endif
+ #ifdef ENAMETOOLONG
+ case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG;
+ #endif
+ #ifdef ENOLCK
+ case ENOLCK: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOSYS
+ case ENOSYS: return DRWAV_NOT_IMPLEMENTED;
+ #endif
+ #ifdef ENOTEMPTY
+ case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY;
+ #endif
+ #ifdef ELOOP
+ case ELOOP: return DRWAV_TOO_MANY_LINKS;
+ #endif
+ #ifdef ENOMSG
+ case ENOMSG: return DRWAV_NO_MESSAGE;
+ #endif
+ #ifdef EIDRM
+ case EIDRM: return DRWAV_ERROR;
+ #endif
+ #ifdef ECHRNG
+ case ECHRNG: return DRWAV_ERROR;
+ #endif
+ #ifdef EL2NSYNC
+ case EL2NSYNC: return DRWAV_ERROR;
+ #endif
+ #ifdef EL3HLT
+ case EL3HLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EL3RST
+ case EL3RST: return DRWAV_ERROR;
+ #endif
+ #ifdef ELNRNG
+ case ELNRNG: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef EUNATCH
+ case EUNATCH: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOCSI
+ case ENOCSI: return DRWAV_ERROR;
+ #endif
+ #ifdef EL2HLT
+ case EL2HLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADE
+ case EBADE: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADR
+ case EBADR: return DRWAV_ERROR;
+ #endif
+ #ifdef EXFULL
+ case EXFULL: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOANO
+ case ENOANO: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADRQC
+ case EBADRQC: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADSLT
+ case EBADSLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBFONT
+ case EBFONT: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ENOSTR
+ case ENOSTR: return DRWAV_ERROR;
+ #endif
+ #ifdef ENODATA
+ case ENODATA: return DRWAV_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ETIME
+ case ETIME: return DRWAV_TIMEOUT;
+ #endif
+ #ifdef ENOSR
+ case ENOSR: return DRWAV_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ENONET
+ case ENONET: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENOPKG
+ case ENOPKG: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMOTE
+ case EREMOTE: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOLINK
+ case ENOLINK: return DRWAV_ERROR;
+ #endif
+ #ifdef EADV
+ case EADV: return DRWAV_ERROR;
+ #endif
+ #ifdef ESRMNT
+ case ESRMNT: return DRWAV_ERROR;
+ #endif
+ #ifdef ECOMM
+ case ECOMM: return DRWAV_ERROR;
+ #endif
+ #ifdef EPROTO
+ case EPROTO: return DRWAV_ERROR;
+ #endif
+ #ifdef EMULTIHOP
+ case EMULTIHOP: return DRWAV_ERROR;
+ #endif
+ #ifdef EDOTDOT
+ case EDOTDOT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADMSG
+ case EBADMSG: return DRWAV_BAD_MESSAGE;
+ #endif
+ #ifdef EOVERFLOW
+ case EOVERFLOW: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef ENOTUNIQ
+ case ENOTUNIQ: return DRWAV_NOT_UNIQUE;
+ #endif
+ #ifdef EBADFD
+ case EBADFD: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMCHG
+ case EREMCHG: return DRWAV_ERROR;
+ #endif
+ #ifdef ELIBACC
+ case ELIBACC: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef ELIBBAD
+ case ELIBBAD: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ELIBSCN
+ case ELIBSCN: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ELIBMAX
+ case ELIBMAX: return DRWAV_ERROR;
+ #endif
+ #ifdef ELIBEXEC
+ case ELIBEXEC: return DRWAV_ERROR;
+ #endif
+ #ifdef EILSEQ
+ case EILSEQ: return DRWAV_INVALID_DATA;
+ #endif
+ #ifdef ERESTART
+ case ERESTART: return DRWAV_ERROR;
+ #endif
+ #ifdef ESTRPIPE
+ case ESTRPIPE: return DRWAV_ERROR;
+ #endif
+ #ifdef EUSERS
+ case EUSERS: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTSOCK
+ case ENOTSOCK: return DRWAV_NOT_SOCKET;
+ #endif
+ #ifdef EDESTADDRREQ
+ case EDESTADDRREQ: return DRWAV_NO_ADDRESS;
+ #endif
+ #ifdef EMSGSIZE
+ case EMSGSIZE: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef EPROTOTYPE
+ case EPROTOTYPE: return DRWAV_BAD_PROTOCOL;
+ #endif
+ #ifdef ENOPROTOOPT
+ case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE;
+ #endif
+ #ifdef EPROTONOSUPPORT
+ case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED;
+ #endif
+ #ifdef ESOCKTNOSUPPORT
+ case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED;
+ #endif
+ #ifdef EOPNOTSUPP
+ case EOPNOTSUPP: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef EPFNOSUPPORT
+ case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EAFNOSUPPORT
+ case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EADDRINUSE
+ case EADDRINUSE: return DRWAV_ALREADY_IN_USE;
+ #endif
+ #ifdef EADDRNOTAVAIL
+ case EADDRNOTAVAIL: return DRWAV_ERROR;
+ #endif
+ #ifdef ENETDOWN
+ case ENETDOWN: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENETUNREACH
+ case ENETUNREACH: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENETRESET
+ case ENETRESET: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ECONNABORTED
+ case ECONNABORTED: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ECONNRESET
+ case ECONNRESET: return DRWAV_CONNECTION_RESET;
+ #endif
+ #ifdef ENOBUFS
+ case ENOBUFS: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef EISCONN
+ case EISCONN: return DRWAV_ALREADY_CONNECTED;
+ #endif
+ #ifdef ENOTCONN
+ case ENOTCONN: return DRWAV_NOT_CONNECTED;
+ #endif
+ #ifdef ESHUTDOWN
+ case ESHUTDOWN: return DRWAV_ERROR;
+ #endif
+ #ifdef ETOOMANYREFS
+ case ETOOMANYREFS: return DRWAV_ERROR;
+ #endif
+ #ifdef ETIMEDOUT
+ case ETIMEDOUT: return DRWAV_TIMEOUT;
+ #endif
+ #ifdef ECONNREFUSED
+ case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED;
+ #endif
+ #ifdef EHOSTDOWN
+ case EHOSTDOWN: return DRWAV_NO_HOST;
+ #endif
+ #ifdef EHOSTUNREACH
+ case EHOSTUNREACH: return DRWAV_NO_HOST;
+ #endif
+ #ifdef EALREADY
+ case EALREADY: return DRWAV_IN_PROGRESS;
+ #endif
+ #ifdef EINPROGRESS
+ case EINPROGRESS: return DRWAV_IN_PROGRESS;
+ #endif
+ #ifdef ESTALE
+ case ESTALE: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef EUCLEAN
+ case EUCLEAN: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTNAM
+ case ENOTNAM: return DRWAV_ERROR;
+ #endif
+ #ifdef ENAVAIL
+ case ENAVAIL: return DRWAV_ERROR;
+ #endif
+ #ifdef EISNAM
+ case EISNAM: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMOTEIO
+ case EREMOTEIO: return DRWAV_IO_ERROR;
+ #endif
+ #ifdef EDQUOT
+ case EDQUOT: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef ENOMEDIUM
+ case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef EMEDIUMTYPE
+ case EMEDIUMTYPE: return DRWAV_ERROR;
+ #endif
+ #ifdef ECANCELED
+ case ECANCELED: return DRWAV_CANCELLED;
+ #endif
+ #ifdef ENOKEY
+ case ENOKEY: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYEXPIRED
+ case EKEYEXPIRED: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYREVOKED
+ case EKEYREVOKED: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYREJECTED
+ case EKEYREJECTED: return DRWAV_ERROR;
+ #endif
+ #ifdef EOWNERDEAD
+ case EOWNERDEAD: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTRECOVERABLE
+ case ENOTRECOVERABLE: return DRWAV_ERROR;
+ #endif
+ #ifdef ERFKILL
+ case ERFKILL: return DRWAV_ERROR;
+ #endif
+ #ifdef EHWPOISON
+ case EHWPOISON: return DRWAV_ERROR;
+ #endif
+ default: return DRWAV_ERROR;
+ }
+}
+static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+ errno_t err;
+#endif
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+#if _MSC_VER && _MSC_VER >= 1400
+ err = fopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drwav_result_from_errno(err);
+ }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+ *ppFile = fopen(pFilePath, pOpenMode);
+#else
+ #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+ *ppFile = fopen64(pFilePath, pOpenMode);
+ #else
+ *ppFile = fopen(pFilePath, pOpenMode);
+ #endif
+#endif
+ if (*ppFile == NULL) {
+ drwav_result result = drwav_result_from_errno(errno);
+ if (result == DRWAV_SUCCESS) {
+ result = DRWAV_ERROR;
+ }
+ return result;
+ }
+#endif
+ return DRWAV_SUCCESS;
+}
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
+ #define DRWAV_HAS_WFOPEN
+ #endif
+#endif
+static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+#if defined(DRWAV_HAS_WFOPEN)
+ {
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
+ errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drwav_result_from_errno(err);
+ }
+ #else
+ *ppFile = _wfopen(pFilePath, pOpenMode);
+ if (*ppFile == NULL) {
+ return drwav_result_from_errno(errno);
+ }
+ #endif
+ (void)pAllocationCallbacks;
+ }
+#else
+ {
+ mbstate_t mbs;
+ size_t lenMB;
+ const wchar_t* pFilePathTemp = pFilePath;
+ char* pFilePathMB = NULL;
+ char pOpenModeMB[32] = {0};
+ DRWAV_ZERO_OBJECT(&mbs);
+ lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+ if (lenMB == (size_t)-1) {
+ return drwav_result_from_errno(errno);
+ }
+ pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
+ if (pFilePathMB == NULL) {
+ return DRWAV_OUT_OF_MEMORY;
+ }
+ pFilePathTemp = pFilePath;
+ DRWAV_ZERO_OBJECT(&mbs);
+ wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+ {
+ size_t i = 0;
+ for (;;) {
+ if (pOpenMode[i] == 0) {
+ pOpenModeMB[i] = '\0';
+ break;
+ }
+ pOpenModeMB[i] = (char)pOpenMode[i];
+ i += 1;
+ }
+ }
+ *ppFile = fopen(pFilePathMB, pOpenModeMB);
+ drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
+ }
+ if (*ppFile == NULL) {
+ return DRWAV_ERROR;
+ }
+#endif
+ return DRWAV_SUCCESS;
+}
+static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
+}
+static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
+{
+ return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
+}
+static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav_bool32 result;
+ result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+ result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+ return DRWAV_TRUE;
+}
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav_bool32 result;
+ result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+ result = drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+ return DRWAV_TRUE;
+}
+static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+#endif
+static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ drwav* pWav = (drwav*)pUserData;
+ size_t bytesRemaining;
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos);
+ bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos;
+ if (bytesToRead > bytesRemaining) {
+ bytesToRead = bytesRemaining;
+ }
+ if (bytesToRead > 0) {
+ DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead);
+ pWav->memoryStream.currentReadPos += bytesToRead;
+ }
+ return bytesToRead;
+}
+static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ drwav* pWav = (drwav*)pUserData;
+ DRWAV_ASSERT(pWav != NULL);
+ if (origin == drwav_seek_origin_current) {
+ if (offset > 0) {
+ if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) {
+ return DRWAV_FALSE;
+ }
+ } else {
+ if (pWav->memoryStream.currentReadPos < (size_t)-offset) {
+ return DRWAV_FALSE;
+ }
+ }
+ pWav->memoryStream.currentReadPos += offset;
+ } else {
+ if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) {
+ pWav->memoryStream.currentReadPos = offset;
+ } else {
+ return DRWAV_FALSE;
+ }
+ }
+ return DRWAV_TRUE;
+}
+static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
+{
+ drwav* pWav = (drwav*)pUserData;
+ size_t bytesRemaining;
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos);
+ bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos;
+ if (bytesRemaining < bytesToWrite) {
+ void* pNewData;
+ size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2;
+ if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) {
+ newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite;
+ }
+ pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks);
+ if (pNewData == NULL) {
+ return 0;
+ }
+ *pWav->memoryStreamWrite.ppData = pNewData;
+ pWav->memoryStreamWrite.dataCapacity = newDataCapacity;
+ }
+ DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite);
+ pWav->memoryStreamWrite.currentWritePos += bytesToWrite;
+ if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) {
+ pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos;
+ }
+ *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize;
+ return bytesToWrite;
+}
+static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ drwav* pWav = (drwav*)pUserData;
+ DRWAV_ASSERT(pWav != NULL);
+ if (origin == drwav_seek_origin_current) {
+ if (offset > 0) {
+ if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) {
+ offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos);
+ }
+ } else {
+ if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) {
+ offset = -(int)pWav->memoryStreamWrite.currentWritePos;
+ }
+ }
+ pWav->memoryStreamWrite.currentWritePos += offset;
+ } else {
+ if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) {
+ pWav->memoryStreamWrite.currentWritePos = offset;
+ } else {
+ pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize;
+ }
+ }
+ return DRWAV_TRUE;
+}
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (data == NULL || dataSize == 0) {
+ return DRWAV_FALSE;
+ }
+ if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+ pWav->memoryStream.data = (const drwav_uint8*)data;
+ pWav->memoryStream.dataSize = dataSize;
+ pWav->memoryStream.currentReadPos = 0;
+ return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppData == NULL || pDataSize == NULL) {
+ return DRWAV_FALSE;
+ }
+ *ppData = NULL;
+ *pDataSize = 0;
+ if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+ pWav->memoryStreamWrite.ppData = ppData;
+ pWav->memoryStreamWrite.pDataSize = pDataSize;
+ pWav->memoryStreamWrite.dataSize = 0;
+ pWav->memoryStreamWrite.dataCapacity = 0;
+ pWav->memoryStreamWrite.currentWritePos = 0;
+ return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+}
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+ return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+DRWAV_API drwav_result drwav_uninit(drwav* pWav)
+{
+ drwav_result result = DRWAV_SUCCESS;
+ if (pWav == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+ if (pWav->onWrite != NULL) {
+ drwav_uint32 paddingSize = 0;
+ if (pWav->container == drwav_container_riff) {
+ paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize);
+ } else {
+ paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize);
+ }
+ if (paddingSize > 0) {
+ drwav_uint64 paddingData = 0;
+ pWav->onWrite(pWav->pUserData, &paddingData, paddingSize);
+ }
+ if (pWav->onSeek && !pWav->isSequentialWrite) {
+ if (pWav->container == drwav_container_riff) {
+ if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
+ drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize);
+ pWav->onWrite(pWav->pUserData, &riffChunkSize, 4);
+ }
+ if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) {
+ drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize);
+ pWav->onWrite(pWav->pUserData, &dataChunkSize, 4);
+ }
+ } else {
+ if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
+ drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize);
+ pWav->onWrite(pWav->pUserData, &riffChunkSize, 8);
+ }
+ if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) {
+ drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize);
+ pWav->onWrite(pWav->pUserData, &dataChunkSize, 8);
+ }
+ }
+ }
+ if (pWav->isSequentialWrite) {
+ if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) {
+ result = DRWAV_INVALID_FILE;
+ }
+ }
+ }
+#ifndef DR_WAV_NO_STDIO
+ if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
+ fclose((FILE*)pWav->pUserData);
+ }
+#endif
+ return result;
+}
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
+{
+ size_t bytesRead;
+ if (pWav == NULL || bytesToRead == 0) {
+ return 0;
+ }
+ if (bytesToRead > pWav->bytesRemaining) {
+ bytesToRead = (size_t)pWav->bytesRemaining;
+ }
+ if (pBufferOut != NULL) {
+ bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
+ } else {
+ bytesRead = 0;
+ while (bytesRead < bytesToRead) {
+ size_t bytesToSeek = (bytesToRead - bytesRead);
+ if (bytesToSeek > 0x7FFFFFFF) {
+ bytesToSeek = 0x7FFFFFFF;
+ }
+ if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) {
+ break;
+ }
+ bytesRead += bytesToSeek;
+ }
+ while (bytesRead < bytesToRead) {
+ drwav_uint8 buffer[4096];
+ size_t bytesSeeked;
+ size_t bytesToSeek = (bytesToRead - bytesRead);
+ if (bytesToSeek > sizeof(buffer)) {
+ bytesToSeek = sizeof(buffer);
+ }
+ bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek);
+ bytesRead += bytesSeeked;
+ if (bytesSeeked < bytesToSeek) {
+ break;
+ }
+ }
+ }
+ pWav->bytesRemaining -= bytesRead;
+ return bytesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ drwav_uint32 bytesPerFrame;
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ return 0;
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ if (framesToRead * bytesPerFrame > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / bytesPerFrame;
+ }
+ return drwav_read_raw(pWav, (size_t)(framesToRead * bytesPerFrame), pBufferOut) / bytesPerFrame;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL) {
+ drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag);
+ }
+ return framesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ if (drwav__is_little_endian()) {
+ return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+ } else {
+ return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
+ }
+}
+DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav)
+{
+ if (pWav->onWrite != NULL) {
+ return DRWAV_FALSE;
+ }
+ if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
+ return DRWAV_FALSE;
+ }
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ pWav->compressed.iCurrentPCMFrame = 0;
+ }
+ pWav->bytesRemaining = pWav->dataChunkDataSize;
+ return DRWAV_TRUE;
+}
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex)
+{
+ if (pWav == NULL || pWav->onSeek == NULL) {
+ return DRWAV_FALSE;
+ }
+ if (pWav->onWrite != NULL) {
+ return DRWAV_FALSE;
+ }
+ if (pWav->totalPCMFrameCount == 0) {
+ return DRWAV_TRUE;
+ }
+ if (targetFrameIndex >= pWav->totalPCMFrameCount) {
+ targetFrameIndex = pWav->totalPCMFrameCount - 1;
+ }
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) {
+ if (!drwav_seek_to_first_pcm_frame(pWav)) {
+ return DRWAV_FALSE;
+ }
+ }
+ if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) {
+ drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame;
+ drwav_int16 devnull[2048];
+ while (offsetInFrames > 0) {
+ drwav_uint64 framesRead = 0;
+ drwav_uint64 framesToRead = offsetInFrames;
+ if (framesToRead > drwav_countof(devnull)/pWav->channels) {
+ framesToRead = drwav_countof(devnull)/pWav->channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull);
+ } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull);
+ } else {
+ DRWAV_ASSERT(DRWAV_FALSE);
+ }
+ if (framesRead != framesToRead) {
+ return DRWAV_FALSE;
+ }
+ offsetInFrames -= framesRead;
+ }
+ }
+ } else {
+ drwav_uint64 totalSizeInBytes;
+ drwav_uint64 currentBytePos;
+ drwav_uint64 targetBytePos;
+ drwav_uint64 offset;
+ totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav);
+ DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining);
+ currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
+ targetBytePos = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav);
+ if (currentBytePos < targetBytePos) {
+ offset = (targetBytePos - currentBytePos);
+ } else {
+ if (!drwav_seek_to_first_pcm_frame(pWav)) {
+ return DRWAV_FALSE;
+ }
+ offset = targetBytePos;
+ }
+ while (offset > 0) {
+ int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
+ if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ pWav->bytesRemaining -= offset32;
+ offset -= offset32;
+ }
+ }
+ return DRWAV_TRUE;
+}
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
+{
+ size_t bytesWritten;
+ if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+ bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
+ pWav->dataChunkDataSize += bytesWritten;
+ return bytesWritten;
+}
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ drwav_uint64 bytesToWrite;
+ drwav_uint64 bytesWritten;
+ const drwav_uint8* pRunningData;
+ if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+ bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+ if (bytesToWrite > DRWAV_SIZE_MAX) {
+ return 0;
+ }
+ bytesWritten = 0;
+ pRunningData = (const drwav_uint8*)pData;
+ while (bytesToWrite > 0) {
+ size_t bytesJustWritten;
+ drwav_uint64 bytesToWriteThisIteration;
+ bytesToWriteThisIteration = bytesToWrite;
+ DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);
+ bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
+ if (bytesJustWritten == 0) {
+ break;
+ }
+ bytesToWrite -= bytesJustWritten;
+ bytesWritten += bytesJustWritten;
+ pRunningData += bytesJustWritten;
+ }
+ return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ drwav_uint64 bytesToWrite;
+ drwav_uint64 bytesWritten;
+ drwav_uint32 bytesPerSample;
+ const drwav_uint8* pRunningData;
+ if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+ bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+ if (bytesToWrite > DRWAV_SIZE_MAX) {
+ return 0;
+ }
+ bytesWritten = 0;
+ pRunningData = (const drwav_uint8*)pData;
+ bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels;
+ while (bytesToWrite > 0) {
+ drwav_uint8 temp[4096];
+ drwav_uint32 sampleCount;
+ size_t bytesJustWritten;
+ drwav_uint64 bytesToWriteThisIteration;
+ bytesToWriteThisIteration = bytesToWrite;
+ DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);
+ sampleCount = sizeof(temp)/bytesPerSample;
+ if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) {
+ bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample;
+ }
+ DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration);
+ drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag);
+ bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp);
+ if (bytesJustWritten == 0) {
+ break;
+ }
+ bytesToWrite -= bytesJustWritten;
+ bytesWritten += bytesJustWritten;
+ pRunningData += bytesJustWritten;
+ }
+ return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ if (drwav__is_little_endian()) {
+ return drwav_write_pcm_frames_le(pWav, framesToWrite, pData);
+ } else {
+ return drwav_write_pcm_frames_be(pWav, framesToWrite, pData);
+ }
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(framesToRead > 0);
+ while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
+ if (pWav->channels == 1) {
+ drwav_uint8 header[7];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+ pWav->msadpcm.predictor[0] = header[0];
+ pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1);
+ pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3);
+ pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5);
+ pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0];
+ pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.cachedFrameCount = 2;
+ } else {
+ drwav_uint8 header[14];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+ pWav->msadpcm.predictor[0] = header[0];
+ pWav->msadpcm.predictor[1] = header[1];
+ pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2);
+ pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4);
+ pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6);
+ pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8);
+ pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10);
+ pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12);
+ pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0];
+ pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0];
+ pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1];
+ pWav->msadpcm.cachedFrameCount = 2;
+ }
+ }
+ while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pBufferOut != NULL) {
+ drwav_uint32 iSample = 0;
+ for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+ pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample];
+ }
+ pBufferOut += pWav->channels;
+ }
+ framesToRead -= 1;
+ totalFramesRead += 1;
+ pWav->compressed.iCurrentPCMFrame += 1;
+ pWav->msadpcm.cachedFrameCount -= 1;
+ }
+ if (framesToRead == 0) {
+ return totalFramesRead;
+ }
+ if (pWav->msadpcm.cachedFrameCount == 0) {
+ if (pWav->msadpcm.bytesRemainingInBlock == 0) {
+ continue;
+ } else {
+ static drwav_int32 adaptationTable[] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 768, 614, 512, 409, 307, 230, 230, 230
+ };
+ static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 };
+ static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 };
+ drwav_uint8 nibbles;
+ drwav_int32 nibble0;
+ drwav_int32 nibble1;
+ if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock -= 1;
+ nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
+ nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
+ if (pWav->channels == 1) {
+ drwav_int32 newSample0;
+ drwav_int32 newSample1;
+ newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample0 += nibble0 * pWav->msadpcm.delta[0];
+ newSample0 = drwav_clamp(newSample0, -32768, 32767);
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample0;
+ newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample1 += nibble1 * pWav->msadpcm.delta[0];
+ newSample1 = drwav_clamp(newSample1, -32768, 32767);
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample1;
+ pWav->msadpcm.cachedFrames[2] = newSample0;
+ pWav->msadpcm.cachedFrames[3] = newSample1;
+ pWav->msadpcm.cachedFrameCount = 2;
+ } else {
+ drwav_int32 newSample0;
+ drwav_int32 newSample1;
+ newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample0 += nibble0 * pWav->msadpcm.delta[0];
+ newSample0 = drwav_clamp(newSample0, -32768, 32767);
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample0;
+ newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
+ newSample1 += nibble1 * pWav->msadpcm.delta[1];
+ newSample1 = drwav_clamp(newSample1, -32768, 32767);
+ pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
+ if (pWav->msadpcm.delta[1] < 16) {
+ pWav->msadpcm.delta[1] = 16;
+ }
+ pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1];
+ pWav->msadpcm.prevFrames[1][1] = newSample1;
+ pWav->msadpcm.cachedFrames[2] = newSample0;
+ pWav->msadpcm.cachedFrames[3] = newSample1;
+ pWav->msadpcm.cachedFrameCount = 1;
+ }
+ }
+ }
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_uint32 iChannel;
+ static drwav_int32 indexTable[16] = {
+ -1, -1, -1, -1, 2, 4, 6, 8,
+ -1, -1, -1, -1, 2, 4, 6, 8
+ };
+ static drwav_int32 stepTable[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+ 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+ 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+ 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+ 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+ 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+ 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+ 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
+ };
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(framesToRead > 0);
+ while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
+ if (pWav->channels == 1) {
+ drwav_uint8 header[4];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+ if (header[2] >= drwav_countof(stepTable)) {
+ pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+ pWav->ima.bytesRemainingInBlock = 0;
+ return totalFramesRead;
+ }
+ pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+ pWav->ima.stepIndex[0] = header[2];
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0];
+ pWav->ima.cachedFrameCount = 1;
+ } else {
+ drwav_uint8 header[8];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+ if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) {
+ pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+ pWav->ima.bytesRemainingInBlock = 0;
+ return totalFramesRead;
+ }
+ pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+ pWav->ima.stepIndex[0] = header[2];
+ pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4);
+ pWav->ima.stepIndex[1] = header[6];
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0];
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1];
+ pWav->ima.cachedFrameCount = 1;
+ }
+ }
+ while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pBufferOut != NULL) {
+ drwav_uint32 iSample;
+ for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+ pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample];
+ }
+ pBufferOut += pWav->channels;
+ }
+ framesToRead -= 1;
+ totalFramesRead += 1;
+ pWav->compressed.iCurrentPCMFrame += 1;
+ pWav->ima.cachedFrameCount -= 1;
+ }
+ if (framesToRead == 0) {
+ return totalFramesRead;
+ }
+ if (pWav->ima.cachedFrameCount == 0) {
+ if (pWav->ima.bytesRemainingInBlock == 0) {
+ continue;
+ } else {
+ pWav->ima.cachedFrameCount = 8;
+ for (iChannel = 0; iChannel < pWav->channels; ++iChannel) {
+ drwav_uint32 iByte;
+ drwav_uint8 nibbles[4];
+ if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
+ pWav->ima.cachedFrameCount = 0;
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock -= 4;
+ for (iByte = 0; iByte < 4; ++iByte) {
+ drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
+ drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
+ drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]];
+ drwav_int32 predictor = pWav->ima.predictor[iChannel];
+ drwav_int32 diff = step >> 3;
+ if (nibble0 & 1) diff += step >> 2;
+ if (nibble0 & 2) diff += step >> 1;
+ if (nibble0 & 4) diff += step;
+ if (nibble0 & 8) diff = -diff;
+ predictor = drwav_clamp(predictor + diff, -32768, 32767);
+ pWav->ima.predictor[iChannel] = predictor;
+ pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
+ pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
+ step = stepTable[pWav->ima.stepIndex[iChannel]];
+ predictor = pWav->ima.predictor[iChannel];
+ diff = step >> 3;
+ if (nibble1 & 1) diff += step >> 2;
+ if (nibble1 & 2) diff += step >> 1;
+ if (nibble1 & 4) diff += step;
+ if (nibble1 & 8) diff = -diff;
+ predictor = drwav_clamp(predictor + diff, -32768, 32767);
+ pWav->ima.predictor[iChannel] = predictor;
+ pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
+ pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
+ }
+ }
+ }
+ }
+ }
+ return totalFramesRead;
+}
+#ifndef DR_WAV_NO_CONVERSION_API
+static unsigned short g_drwavAlawTable[256] = {
+ 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580,
+ 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0,
+ 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600,
+ 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00,
+ 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58,
+ 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58,
+ 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960,
+ 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0,
+ 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80,
+ 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40,
+ 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00,
+ 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500,
+ 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8,
+ 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8,
+ 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0,
+ 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
+};
+static unsigned short g_drwavMulawTable[256] = {
+ 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84,
+ 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84,
+ 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004,
+ 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844,
+ 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64,
+ 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74,
+ 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C,
+ 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000,
+ 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C,
+ 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C,
+ 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC,
+ 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC,
+ 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C,
+ 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C,
+ 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084,
+ 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
+};
+static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
+{
+ return (short)g_drwavAlawTable[sampleIn];
+}
+static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
+{
+ return (short)g_drwavMulawTable[sampleIn];
+}
+static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+ if (bytesPerSample == 1) {
+ drwav_u8_to_s16(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 2) {
+ for (i = 0; i < totalSampleCount; ++i) {
+ *pOut++ = ((const drwav_int16*)pIn)[i];
+ }
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_s16(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+ for (i = 0; i < totalSampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+ pIn += j;
+ *pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
+ }
+}
+static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount);
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount);
+ return;
+ } else {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint32 bytesPerFrame;
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut);
+ }
+ return 0;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = pIn[i];
+ r = x << 8;
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8;
+ r = x >> 8;
+ pOut[i] = (short)r;
+ }
+}
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = pIn[i];
+ r = x >> 16;
+ pOut[i] = (short)r;
+ }
+}
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ float x = pIn[i];
+ float c;
+ c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+ c = c + 1;
+ r = (int)(c * 32767.5f);
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ double x = pIn[i];
+ double c;
+ c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+ c = c + 1;
+ r = (int)(c * 32767.5);
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ pOut[i] = drwav__alaw_to_s16(pIn[i]);
+ }
+}
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ pOut[i] = drwav__mulaw_to_s16(pIn[i]);
+ }
+}
+static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+ if (bytesPerSample == 1) {
+ drwav_u8_to_f32(pOut, pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample == 2) {
+ drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_f32(pOut, pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+ pIn += j;
+ *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
+ }
+}
+static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ unsigned int i;
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((const float*)pIn)[i];
+ }
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount);
+ return;
+ } else {
+ DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+ return;
+ }
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut);
+ }
+ return 0;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (pIn[i] / 256.0f) * 2 - 1;
+ }
+#else
+ for (i = 0; i < sampleCount; ++i) {
+ float x = pIn[i];
+ x = x * 0.00784313725490196078f;
+ x = x - 1;
+ *pOut++ = x;
+ }
+#endif
+}
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = pIn[i] * 0.000030517578125f;
+ }
+}
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ double x = (double)(((drwav_int32)(((drwav_uint32)(pIn[i*3+0]) << 8) | ((drwav_uint32)(pIn[i*3+1]) << 16) | ((drwav_uint32)(pIn[i*3+2])) << 24)) >> 8);
+ *pOut++ = (float)(x * 0.00000011920928955078125);
+ }
+}
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (float)(pIn[i] / 2147483648.0);
+ }
+}
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (float)pIn[i];
+ }
+}
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
+ }
+}
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
+ }
+}
+static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+ if (bytesPerSample == 1) {
+ drwav_u8_to_s32(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 2) {
+ drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_s32(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ for (i = 0; i < totalSampleCount; ++i) {
+ *pOut++ = ((const drwav_int32*)pIn)[i];
+ }
+ return;
+ }
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+ for (i = 0; i < totalSampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+ pIn += j;
+ *pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
+ }
+}
+static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount);
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount);
+ return;
+ } else {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+ totalFramesRead = 0;
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+ drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+ return totalFramesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+ if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut);
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut);
+ }
+ return 0;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+ }
+ return framesRead;
+}
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((int)pIn[i] - 128) << 24;
+ }
+}
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = pIn[i] << 16;
+ }
+}
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ unsigned int s0 = pIn[i*3 + 0];
+ unsigned int s1 = pIn[i*3 + 1];
+ unsigned int s2 = pIn[i*3 + 2];
+ drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
+ *pOut++ = sample32;
+ }
+}
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+ }
+}
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+ }
+}
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
+ }
+}
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+ for (i= 0; i < sampleCount; ++i) {
+ *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
+ }
+}
+static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ drwav_int16* pSampleData;
+ drwav_uint64 framesRead;
+ DRWAV_ASSERT(pWav != NULL);
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ drwav_uninit(pWav);
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+ return pSampleData;
+}
+static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ float* pSampleData;
+ drwav_uint64 framesRead;
+ DRWAV_ASSERT(pWav != NULL);
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ drwav_uninit(pWav);
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+ return pSampleData;
+}
+static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ drwav_int32* pSampleData;
+ drwav_uint64 framesRead;
+ DRWAV_ASSERT(pWav != NULL);
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL;
+ }
+ drwav_uninit(pWav);
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+ return pSampleData;
+}
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#ifndef DR_WAV_NO_STDIO
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ drwav__free_from_callbacks(p, pAllocationCallbacks);
+ } else {
+ drwav__free_default(p, NULL);
+ }
+}
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u16(data);
+}
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s16(data);
+}
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u32(data);
+}
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s32(data);
+}
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u64(data);
+}
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s64(data);
+}
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+ return drwav__guid_equal(a, b);
+}
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b)
+{
+ return drwav__fourcc_equal(a, b);
+}
+#endif
+/* dr_wav_c end */
+#endif /* DRWAV_IMPLEMENTATION */
+#endif /* MA_NO_WAV */
+
+#if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING)
+#if !defined(DR_FLAC_IMPLEMENTATION) && !defined(DRFLAC_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
+/* dr_flac_c begin */
+#ifndef dr_flac_c
+#define dr_flac_c
+#if defined(__GNUC__)
+ #pragma GCC diagnostic push
+ #if __GNUC__ >= 7
+ #pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
+ #endif
+#endif
+#ifdef __linux__
+ #ifndef _BSD_SOURCE
+ #define _BSD_SOURCE
+ #endif
+ #ifndef __USE_BSD
+ #define __USE_BSD
+ #endif
+ #include
+#endif
+#include
+#include
+#ifdef _MSC_VER
+ #define DRFLAC_INLINE __forceinline
+#elif defined(__GNUC__)
+ #if defined(__STRICT_ANSI__)
+ #define DRFLAC_INLINE __inline__ __attribute__((always_inline))
+ #else
+ #define DRFLAC_INLINE inline __attribute__((always_inline))
+ #endif
+#else
+ #define DRFLAC_INLINE
+#endif
+#if defined(__x86_64__) || defined(_M_X64)
+ #define DRFLAC_X64
+#elif defined(__i386) || defined(_M_IX86)
+ #define DRFLAC_X86
+#elif defined(__arm__) || defined(_M_ARM)
+ #define DRFLAC_ARM
+#endif
+#if !defined(DR_FLAC_NO_SIMD)
+ #if defined(DRFLAC_X64) || defined(DRFLAC_X86)
+ #if defined(_MSC_VER) && !defined(__clang__)
+ #if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2)
+ #define DRFLAC_SUPPORT_SSE2
+ #endif
+ #if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41)
+ #define DRFLAC_SUPPORT_SSE41
+ #endif
+ #else
+ #if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2)
+ #define DRFLAC_SUPPORT_SSE2
+ #endif
+ #if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41)
+ #define DRFLAC_SUPPORT_SSE41
+ #endif
+ #endif
+ #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
+ #if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include()
+ #define DRFLAC_SUPPORT_SSE2
+ #endif
+ #if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include()
+ #define DRFLAC_SUPPORT_SSE41
+ #endif
+ #endif
+ #if defined(DRFLAC_SUPPORT_SSE41)
+ #include
+ #elif defined(DRFLAC_SUPPORT_SSE2)
+ #include
+ #endif
+ #endif
+ #if defined(DRFLAC_ARM)
+ #if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
+ #define DRFLAC_SUPPORT_NEON
+ #endif
+ #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
+ #if !defined(DRFLAC_SUPPORT_NEON) && !defined(DRFLAC_NO_NEON) && __has_include()
+ #define DRFLAC_SUPPORT_NEON
+ #endif
+ #endif
+ #if defined(DRFLAC_SUPPORT_NEON)
+ #include
+ #endif
+ #endif
+#endif
+#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
+ #if defined(_MSC_VER) && !defined(__clang__)
+ #if _MSC_VER >= 1400
+ #include
+ static void drflac__cpuid(int info[4], int fid)
+ {
+ __cpuid(info, fid);
+ }
+ #else
+ #define DRFLAC_NO_CPUID
+ #endif
+ #else
+ #if defined(__GNUC__) || defined(__clang__)
+ static void drflac__cpuid(int info[4], int fid)
+ {
+ #if defined(DRFLAC_X86) && defined(__PIC__)
+ __asm__ __volatile__ (
+ "xchg{l} {%%}ebx, %k1;"
+ "cpuid;"
+ "xchg{l} {%%}ebx, %k1;"
+ : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
+ );
+ #else
+ __asm__ __volatile__ (
+ "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
+ );
+ #endif
+ }
+ #else
+ #define DRFLAC_NO_CPUID
+ #endif
+ #endif
+#else
+ #define DRFLAC_NO_CPUID
+#endif
+static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2)
+ #if defined(DRFLAC_X64)
+ return DRFLAC_TRUE;
+ #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__)
+ return DRFLAC_TRUE;
+ #else
+ #if defined(DRFLAC_NO_CPUID)
+ return DRFLAC_FALSE;
+ #else
+ int info[4];
+ drflac__cpuid(info, 1);
+ return (info[3] & (1 << 26)) != 0;
+ #endif
+ #endif
+ #else
+ return DRFLAC_FALSE;
+ #endif
+#else
+ return DRFLAC_FALSE;
+#endif
+}
+static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void)
+{
+#if defined(DRFLAC_SUPPORT_SSE41)
+ #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41)
+ #if defined(DRFLAC_X64)
+ return DRFLAC_TRUE;
+ #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE4_1__)
+ return DRFLAC_TRUE;
+ #else
+ #if defined(DRFLAC_NO_CPUID)
+ return DRFLAC_FALSE;
+ #else
+ int info[4];
+ drflac__cpuid(info, 1);
+ return (info[2] & (1 << 19)) != 0;
+ #endif
+ #endif
+ #else
+ return DRFLAC_FALSE;
+ #endif
+#else
+ return DRFLAC_FALSE;
+#endif
+}
+#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
+ #define DRFLAC_HAS_LZCNT_INTRINSIC
+#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)))
+ #define DRFLAC_HAS_LZCNT_INTRINSIC
+#elif defined(__clang__)
+ #if defined(__has_builtin)
+ #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl)
+ #define DRFLAC_HAS_LZCNT_INTRINSIC
+ #endif
+ #endif
+#endif
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ #define DRFLAC_HAS_BYTESWAP16_INTRINSIC
+ #define DRFLAC_HAS_BYTESWAP32_INTRINSIC
+ #define DRFLAC_HAS_BYTESWAP64_INTRINSIC
+#elif defined(__clang__)
+ #if defined(__has_builtin)
+ #if __has_builtin(__builtin_bswap16)
+ #define DRFLAC_HAS_BYTESWAP16_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap32)
+ #define DRFLAC_HAS_BYTESWAP32_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap64)
+ #define DRFLAC_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #endif
+#elif defined(__GNUC__)
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+ #define DRFLAC_HAS_BYTESWAP32_INTRINSIC
+ #define DRFLAC_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+ #define DRFLAC_HAS_BYTESWAP16_INTRINSIC
+ #endif
+#endif
+#ifndef DRFLAC_ASSERT
+#include
+#define DRFLAC_ASSERT(expression) assert(expression)
+#endif
+#ifndef DRFLAC_MALLOC
+#define DRFLAC_MALLOC(sz) malloc((sz))
+#endif
+#ifndef DRFLAC_REALLOC
+#define DRFLAC_REALLOC(p, sz) realloc((p), (sz))
+#endif
+#ifndef DRFLAC_FREE
+#define DRFLAC_FREE(p) free((p))
+#endif
+#ifndef DRFLAC_COPY_MEMORY
+#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
+#endif
+#ifndef DRFLAC_ZERO_MEMORY
+#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
+#endif
+#ifndef DRFLAC_ZERO_OBJECT
+#define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p)))
+#endif
+#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64
+typedef drflac_int32 drflac_result;
+#define DRFLAC_SUCCESS 0
+#define DRFLAC_ERROR -1
+#define DRFLAC_INVALID_ARGS -2
+#define DRFLAC_INVALID_OPERATION -3
+#define DRFLAC_OUT_OF_MEMORY -4
+#define DRFLAC_OUT_OF_RANGE -5
+#define DRFLAC_ACCESS_DENIED -6
+#define DRFLAC_DOES_NOT_EXIST -7
+#define DRFLAC_ALREADY_EXISTS -8
+#define DRFLAC_TOO_MANY_OPEN_FILES -9
+#define DRFLAC_INVALID_FILE -10
+#define DRFLAC_TOO_BIG -11
+#define DRFLAC_PATH_TOO_LONG -12
+#define DRFLAC_NAME_TOO_LONG -13
+#define DRFLAC_NOT_DIRECTORY -14
+#define DRFLAC_IS_DIRECTORY -15
+#define DRFLAC_DIRECTORY_NOT_EMPTY -16
+#define DRFLAC_END_OF_FILE -17
+#define DRFLAC_NO_SPACE -18
+#define DRFLAC_BUSY -19
+#define DRFLAC_IO_ERROR -20
+#define DRFLAC_INTERRUPT -21
+#define DRFLAC_UNAVAILABLE -22
+#define DRFLAC_ALREADY_IN_USE -23
+#define DRFLAC_BAD_ADDRESS -24
+#define DRFLAC_BAD_SEEK -25
+#define DRFLAC_BAD_PIPE -26
+#define DRFLAC_DEADLOCK -27
+#define DRFLAC_TOO_MANY_LINKS -28
+#define DRFLAC_NOT_IMPLEMENTED -29
+#define DRFLAC_NO_MESSAGE -30
+#define DRFLAC_BAD_MESSAGE -31
+#define DRFLAC_NO_DATA_AVAILABLE -32
+#define DRFLAC_INVALID_DATA -33
+#define DRFLAC_TIMEOUT -34
+#define DRFLAC_NO_NETWORK -35
+#define DRFLAC_NOT_UNIQUE -36
+#define DRFLAC_NOT_SOCKET -37
+#define DRFLAC_NO_ADDRESS -38
+#define DRFLAC_BAD_PROTOCOL -39
+#define DRFLAC_PROTOCOL_UNAVAILABLE -40
+#define DRFLAC_PROTOCOL_NOT_SUPPORTED -41
+#define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43
+#define DRFLAC_SOCKET_NOT_SUPPORTED -44
+#define DRFLAC_CONNECTION_RESET -45
+#define DRFLAC_ALREADY_CONNECTED -46
+#define DRFLAC_NOT_CONNECTED -47
+#define DRFLAC_CONNECTION_REFUSED -48
+#define DRFLAC_NO_HOST -49
+#define DRFLAC_IN_PROGRESS -50
+#define DRFLAC_CANCELLED -51
+#define DRFLAC_MEMORY_ALREADY_MAPPED -52
+#define DRFLAC_AT_END -53
+#define DRFLAC_CRC_MISMATCH -128
+#define DRFLAC_SUBFRAME_CONSTANT 0
+#define DRFLAC_SUBFRAME_VERBATIM 1
+#define DRFLAC_SUBFRAME_FIXED 8
+#define DRFLAC_SUBFRAME_LPC 32
+#define DRFLAC_SUBFRAME_RESERVED 255
+#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0
+#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1
+#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0
+#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8
+#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9
+#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10
+#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
+DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision)
+{
+ if (pMajor) {
+ *pMajor = DRFLAC_VERSION_MAJOR;
+ }
+ if (pMinor) {
+ *pMinor = DRFLAC_VERSION_MINOR;
+ }
+ if (pRevision) {
+ *pRevision = DRFLAC_VERSION_REVISION;
+ }
+}
+DRFLAC_API const char* drflac_version_string()
+{
+ return DRFLAC_VERSION_STRING;
+}
+#if defined(__has_feature)
+ #if __has_feature(thread_sanitizer)
+ #define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread")))
+ #else
+ #define DRFLAC_NO_THREAD_SANITIZE
+ #endif
+#else
+ #define DRFLAC_NO_THREAD_SANITIZE
+#endif
+#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
+static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE;
+#endif
+#ifndef DRFLAC_NO_CPUID
+static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE;
+static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE;
+DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
+{
+ static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE;
+ if (!isCPUCapsInitialized) {
+#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
+ int info[4] = {0};
+ drflac__cpuid(info, 0x80000001);
+ drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0;
+#endif
+ drflac__gIsSSE2Supported = drflac_has_sse2();
+ drflac__gIsSSE41Supported = drflac_has_sse41();
+ isCPUCapsInitialized = DRFLAC_TRUE;
+ }
+}
+#else
+static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE;
+static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void)
+{
+#if defined(DRFLAC_SUPPORT_NEON)
+ #if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON)
+ #if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
+ return DRFLAC_TRUE;
+ #else
+ return DRFLAC_FALSE;
+ #endif
+ #else
+ return DRFLAC_FALSE;
+ #endif
+#else
+ return DRFLAC_FALSE;
+#endif
+}
+DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
+{
+ drflac__gIsNEONSupported = drflac__has_neon();
+#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
+ drflac__gIsLZCNTSupported = DRFLAC_TRUE;
+#endif
+}
+#endif
+static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void)
+{
+#if defined(DRFLAC_X86) || defined(DRFLAC_X64)
+ return DRFLAC_TRUE;
+#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
+ return DRFLAC_TRUE;
+#else
+ int n = 1;
+ return (*(char*)&n) == 1;
+#endif
+}
+static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n)
+{
+#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ushort(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap16(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF00) >> 8) |
+ ((n & 0x00FF) << 8);
+#endif
+}
+static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n)
+{
+#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ulong(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ #if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT)
+ drflac_uint32 r;
+ __asm__ __volatile__ (
+ #if defined(DRFLAC_64BIT)
+ "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n)
+ #else
+ "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
+ #endif
+ );
+ return r;
+ #else
+ return __builtin_bswap32(n);
+ #endif
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF000000) >> 24) |
+ ((n & 0x00FF0000) >> 8) |
+ ((n & 0x0000FF00) << 8) |
+ ((n & 0x000000FF) << 24);
+#endif
+}
+static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n)
+{
+#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_uint64(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap64(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & (drflac_uint64)0xFF00000000000000) >> 56) |
+ ((n & (drflac_uint64)0x00FF000000000000) >> 40) |
+ ((n & (drflac_uint64)0x0000FF0000000000) >> 24) |
+ ((n & (drflac_uint64)0x000000FF00000000) >> 8) |
+ ((n & (drflac_uint64)0x00000000FF000000) << 8) |
+ ((n & (drflac_uint64)0x0000000000FF0000) << 24) |
+ ((n & (drflac_uint64)0x000000000000FF00) << 40) |
+ ((n & (drflac_uint64)0x00000000000000FF) << 56);
+#endif
+}
+static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n)
+{
+ if (drflac__is_little_endian()) {
+ return drflac__swap_endian_uint16(n);
+ }
+ return n;
+}
+static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n)
+{
+ if (drflac__is_little_endian()) {
+ return drflac__swap_endian_uint32(n);
+ }
+ return n;
+}
+static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n)
+{
+ if (drflac__is_little_endian()) {
+ return drflac__swap_endian_uint64(n);
+ }
+ return n;
+}
+static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n)
+{
+ if (!drflac__is_little_endian()) {
+ return drflac__swap_endian_uint32(n);
+ }
+ return n;
+}
+static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n)
+{
+ drflac_uint32 result = 0;
+ result |= (n & 0x7F000000) >> 3;
+ result |= (n & 0x007F0000) >> 2;
+ result |= (n & 0x00007F00) >> 1;
+ result |= (n & 0x0000007F) >> 0;
+ return result;
+}
+static drflac_uint8 drflac__crc8_table[] = {
+ 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
+ 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
+ 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
+ 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
+ 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
+ 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
+ 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
+ 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
+ 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
+ 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
+ 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
+ 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
+ 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
+ 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
+ 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
+ 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
+};
+static drflac_uint16 drflac__crc16_table[] = {
+ 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011,
+ 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022,
+ 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072,
+ 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041,
+ 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2,
+ 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1,
+ 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1,
+ 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082,
+ 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192,
+ 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1,
+ 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1,
+ 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2,
+ 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151,
+ 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162,
+ 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132,
+ 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101,
+ 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312,
+ 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321,
+ 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371,
+ 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342,
+ 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1,
+ 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2,
+ 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2,
+ 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381,
+ 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291,
+ 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2,
+ 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2,
+ 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1,
+ 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252,
+ 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261,
+ 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231,
+ 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202
+};
+static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data)
+{
+ return drflac__crc8_table[crc ^ data];
+}
+static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count)
+{
+#ifdef DR_FLAC_NO_CRC
+ (void)crc;
+ (void)data;
+ (void)count;
+ return 0;
+#else
+#if 0
+ drflac_uint8 p = 0x07;
+ for (int i = count-1; i >= 0; --i) {
+ drflac_uint8 bit = (data & (1 << i)) >> i;
+ if (crc & 0x80) {
+ crc = ((crc << 1) | bit) ^ p;
+ } else {
+ crc = ((crc << 1) | bit);
+ }
+ }
+ return crc;
+#else
+ drflac_uint32 wholeBytes;
+ drflac_uint32 leftoverBits;
+ drflac_uint64 leftoverDataMask;
+ static drflac_uint64 leftoverDataMaskTable[8] = {
+ 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
+ };
+ DRFLAC_ASSERT(count <= 32);
+ wholeBytes = count >> 3;
+ leftoverBits = count - (wholeBytes*8);
+ leftoverDataMask = leftoverDataMaskTable[leftoverBits];
+ switch (wholeBytes) {
+ case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
+ case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
+ case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
+ case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
+ case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]);
+ }
+ return crc;
+#endif
+#endif
+}
+static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data)
+{
+ return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data];
+}
+static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data)
+{
+#ifdef DRFLAC_64BIT
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
+#endif
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
+ crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
+ return crc;
+}
+static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount)
+{
+ switch (byteCount)
+ {
+#ifdef DRFLAC_64BIT
+ case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
+ case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
+ case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
+ case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
+#endif
+ case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
+ case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
+ case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
+ case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
+ }
+ return crc;
+}
+#if 0
+static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count)
+{
+#ifdef DR_FLAC_NO_CRC
+ (void)crc;
+ (void)data;
+ (void)count;
+ return 0;
+#else
+#if 0
+ drflac_uint16 p = 0x8005;
+ for (int i = count-1; i >= 0; --i) {
+ drflac_uint16 bit = (data & (1ULL << i)) >> i;
+ if (r & 0x8000) {
+ r = ((r << 1) | bit) ^ p;
+ } else {
+ r = ((r << 1) | bit);
+ }
+ }
+ return crc;
+#else
+ drflac_uint32 wholeBytes;
+ drflac_uint32 leftoverBits;
+ drflac_uint64 leftoverDataMask;
+ static drflac_uint64 leftoverDataMaskTable[8] = {
+ 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
+ };
+ DRFLAC_ASSERT(count <= 64);
+ wholeBytes = count >> 3;
+ leftoverBits = count & 7;
+ leftoverDataMask = leftoverDataMaskTable[leftoverBits];
+ switch (wholeBytes) {
+ default:
+ case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
+ case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
+ case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
+ case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
+ case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
+ }
+ return crc;
+#endif
+#endif
+}
+static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count)
+{
+#ifdef DR_FLAC_NO_CRC
+ (void)crc;
+ (void)data;
+ (void)count;
+ return 0;
+#else
+ drflac_uint32 wholeBytes;
+ drflac_uint32 leftoverBits;
+ drflac_uint64 leftoverDataMask;
+ static drflac_uint64 leftoverDataMaskTable[8] = {
+ 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
+ };
+ DRFLAC_ASSERT(count <= 64);
+ wholeBytes = count >> 3;
+ leftoverBits = count & 7;
+ leftoverDataMask = leftoverDataMaskTable[leftoverBits];
+ switch (wholeBytes) {
+ default:
+ case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits)));
+ case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits)));
+ case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits)));
+ case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits)));
+ case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits)));
+ case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits)));
+ case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits)));
+ case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits)));
+ case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
+ }
+ return crc;
+#endif
+}
+static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count)
+{
+#ifdef DRFLAC_64BIT
+ return drflac_crc16__64bit(crc, data, count);
+#else
+ return drflac_crc16__32bit(crc, data, count);
+#endif
+}
+#endif
+#ifdef DRFLAC_64BIT
+#define drflac__be2host__cache_line drflac__be2host_64
+#else
+#define drflac__be2host__cache_line drflac__be2host_32
+#endif
+#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache))
+#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8)
+#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits)
+#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount)))
+#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount))
+#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount))
+#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)))
+#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1)))
+#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2))
+#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0]))
+#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line)
+#ifndef DR_FLAC_NO_CRC
+static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs)
+{
+ bs->crc16 = 0;
+ bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
+}
+static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs)
+{
+ if (bs->crc16CacheIgnoredBytes == 0) {
+ bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache);
+ } else {
+ bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes);
+ bs->crc16CacheIgnoredBytes = 0;
+ }
+}
+static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs)
+{
+ DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0);
+ if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) {
+ drflac__update_crc16(bs);
+ } else {
+ bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes);
+ bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
+ }
+ return bs->crc16;
+}
+#endif
+static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs)
+{
+ size_t bytesRead;
+ size_t alignedL1LineCount;
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+ bs->cache = bs->cacheL2[bs->nextL2Line++];
+ return DRFLAC_TRUE;
+ }
+ if (bs->unalignedByteCount > 0) {
+ return DRFLAC_FALSE;
+ }
+ bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs));
+ bs->nextL2Line = 0;
+ if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) {
+ bs->cache = bs->cacheL2[bs->nextL2Line++];
+ return DRFLAC_TRUE;
+ }
+ alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs);
+ bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs));
+ if (bs->unalignedByteCount > 0) {
+ bs->unalignedCache = bs->cacheL2[alignedL1LineCount];
+ }
+ if (alignedL1LineCount > 0) {
+ size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount;
+ size_t i;
+ for (i = alignedL1LineCount; i > 0; --i) {
+ bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1];
+ }
+ bs->nextL2Line = (drflac_uint32)offset;
+ bs->cache = bs->cacheL2[bs->nextL2Line++];
+ return DRFLAC_TRUE;
+ } else {
+ bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs);
+ return DRFLAC_FALSE;
+ }
+}
+static drflac_bool32 drflac__reload_cache(drflac_bs* bs)
+{
+ size_t bytesRead;
+#ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+#endif
+ if (drflac__reload_l1_cache_from_l2(bs)) {
+ bs->cache = drflac__be2host__cache_line(bs->cache);
+ bs->consumedBits = 0;
+#ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs->cache;
+#endif
+ return DRFLAC_TRUE;
+ }
+ bytesRead = bs->unalignedByteCount;
+ if (bytesRead == 0) {
+ bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ return DRFLAC_FALSE;
+ }
+ DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs));
+ bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8;
+ bs->cache = drflac__be2host__cache_line(bs->unalignedCache);
+ bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs));
+ bs->unalignedByteCount = 0;
+#ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs->cache >> bs->consumedBits;
+ bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
+#endif
+ return DRFLAC_TRUE;
+}
+static void drflac__reset_cache(drflac_bs* bs)
+{
+ bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs);
+ bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ bs->cache = 0;
+ bs->unalignedByteCount = 0;
+ bs->unalignedCache = 0;
+#ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = 0;
+ bs->crc16CacheIgnoredBytes = 0;
+#endif
+}
+static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut)
+{
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResultOut != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 32);
+ if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
+#ifdef DRFLAC_64BIT
+ *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
+ bs->consumedBits += bitCount;
+ bs->cache <<= bitCount;
+#else
+ if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
+ *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
+ bs->consumedBits += bitCount;
+ bs->cache <<= bitCount;
+ } else {
+ *pResultOut = (drflac_uint32)bs->cache;
+ bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ bs->cache = 0;
+ }
+#endif
+ return DRFLAC_TRUE;
+ } else {
+ drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs);
+ drflac_uint32 bitCountLo = bitCount - bitCountHi;
+ drflac_uint32 resultHi;
+ DRFLAC_ASSERT(bitCountHi > 0);
+ DRFLAC_ASSERT(bitCountHi < 32);
+ resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi);
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo);
+ bs->consumedBits += bitCountLo;
+ bs->cache <<= bitCountLo;
+ return DRFLAC_TRUE;
+ }
+}
+static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult)
+{
+ drflac_uint32 result;
+ drflac_uint32 signbit;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResult != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 32);
+ if (!drflac__read_uint32(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ signbit = ((result >> (bitCount-1)) & 0x01);
+ result |= (~signbit + 1) << bitCount;
+ *pResult = (drflac_int32)result;
+ return DRFLAC_TRUE;
+}
+#ifdef DRFLAC_64BIT
+static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut)
+{
+ drflac_uint32 resultHi;
+ drflac_uint32 resultLo;
+ DRFLAC_ASSERT(bitCount <= 64);
+ DRFLAC_ASSERT(bitCount > 32);
+ if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_uint32(bs, 32, &resultLo)) {
+ return DRFLAC_FALSE;
+ }
+ *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo);
+ return DRFLAC_TRUE;
+}
+#endif
+#if 0
+static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut)
+{
+ drflac_uint64 result;
+ drflac_uint64 signbit;
+ DRFLAC_ASSERT(bitCount <= 64);
+ if (!drflac__read_uint64(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ signbit = ((result >> (bitCount-1)) & 0x01);
+ result |= (~signbit + 1) << bitCount;
+ *pResultOut = (drflac_int64)result;
+ return DRFLAC_TRUE;
+}
+#endif
+static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult)
+{
+ drflac_uint32 result;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResult != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 16);
+ if (!drflac__read_uint32(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ *pResult = (drflac_uint16)result;
+ return DRFLAC_TRUE;
+}
+#if 0
+static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult)
+{
+ drflac_int32 result;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResult != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 16);
+ if (!drflac__read_int32(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ *pResult = (drflac_int16)result;
+ return DRFLAC_TRUE;
+}
+#endif
+static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult)
+{
+ drflac_uint32 result;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResult != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 8);
+ if (!drflac__read_uint32(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ *pResult = (drflac_uint8)result;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult)
+{
+ drflac_int32 result;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pResult != NULL);
+ DRFLAC_ASSERT(bitCount > 0);
+ DRFLAC_ASSERT(bitCount <= 8);
+ if (!drflac__read_int32(bs, bitCount, &result)) {
+ return DRFLAC_FALSE;
+ }
+ *pResult = (drflac_int8)result;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek)
+{
+ if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
+ bs->consumedBits += (drflac_uint32)bitsToSeek;
+ bs->cache <<= bitsToSeek;
+ return DRFLAC_TRUE;
+ } else {
+ bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs);
+ bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs);
+ bs->cache = 0;
+#ifdef DRFLAC_64BIT
+ while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
+ drflac_uint64 bin;
+ if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
+ return DRFLAC_FALSE;
+ }
+ bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ }
+#else
+ while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
+ drflac_uint32 bin;
+ if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
+ return DRFLAC_FALSE;
+ }
+ bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ }
+#endif
+ while (bitsToSeek >= 8) {
+ drflac_uint8 bin;
+ if (!drflac__read_uint8(bs, 8, &bin)) {
+ return DRFLAC_FALSE;
+ }
+ bitsToSeek -= 8;
+ }
+ if (bitsToSeek > 0) {
+ drflac_uint8 bin;
+ if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) {
+ return DRFLAC_FALSE;
+ }
+ bitsToSeek = 0;
+ }
+ DRFLAC_ASSERT(bitsToSeek == 0);
+ return DRFLAC_TRUE;
+ }
+}
+static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs)
+{
+ DRFLAC_ASSERT(bs != NULL);
+ if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
+ return DRFLAC_FALSE;
+ }
+ for (;;) {
+ drflac_uint8 hi;
+#ifndef DR_FLAC_NO_CRC
+ drflac__reset_crc16(bs);
+#endif
+ if (!drflac__read_uint8(bs, 8, &hi)) {
+ return DRFLAC_FALSE;
+ }
+ if (hi == 0xFF) {
+ drflac_uint8 lo;
+ if (!drflac__read_uint8(bs, 6, &lo)) {
+ return DRFLAC_FALSE;
+ }
+ if (lo == 0x3E) {
+ return DRFLAC_TRUE;
+ } else {
+ if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ }
+ }
+}
+#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
+#define DRFLAC_IMPLEMENT_CLZ_LZCNT
+#endif
+#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86))
+#define DRFLAC_IMPLEMENT_CLZ_MSVC
+#endif
+static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x)
+{
+ drflac_uint32 n;
+ static drflac_uint32 clz_table_4[] = {
+ 0,
+ 4,
+ 3, 3,
+ 2, 2, 2, 2,
+ 1, 1, 1, 1, 1, 1, 1, 1
+ };
+ if (x == 0) {
+ return sizeof(x)*8;
+ }
+ n = clz_table_4[x >> (sizeof(x)*8 - 4)];
+ if (n == 0) {
+#ifdef DRFLAC_64BIT
+ if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; }
+ if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; }
+ if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; }
+ if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; }
+#else
+ if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; }
+ if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; }
+ if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; }
+#endif
+ n += clz_table_4[x >> (sizeof(x)*8 - 4)];
+ }
+ return n - 1;
+}
+#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
+static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void)
+{
+#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
+ return DRFLAC_TRUE;
+#else
+ #ifdef DRFLAC_HAS_LZCNT_INTRINSIC
+ return drflac__gIsLZCNTSupported;
+ #else
+ return DRFLAC_FALSE;
+ #endif
+#endif
+}
+static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x)
+{
+#if defined(_MSC_VER) && !defined(__clang__)
+ #ifdef DRFLAC_64BIT
+ return (drflac_uint32)__lzcnt64(x);
+ #else
+ return (drflac_uint32)__lzcnt(x);
+ #endif
+#else
+ #if defined(__GNUC__) || defined(__clang__)
+ #if defined(DRFLAC_X64)
+ {
+ drflac_uint64 r;
+ __asm__ __volatile__ (
+ "lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x)
+ );
+ return (drflac_uint32)r;
+ }
+ #elif defined(DRFLAC_X86)
+ {
+ drflac_uint32 r;
+ __asm__ __volatile__ (
+ "lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x)
+ );
+ return r;
+ }
+ #elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT)
+ {
+ unsigned int r;
+ __asm__ __volatile__ (
+ #if defined(DRFLAC_64BIT)
+ "clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x)
+ #else
+ "clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x)
+ #endif
+ );
+ return r;
+ }
+ #else
+ if (x == 0) {
+ return sizeof(x)*8;
+ }
+ #ifdef DRFLAC_64BIT
+ return (drflac_uint32)__builtin_clzll((drflac_uint64)x);
+ #else
+ return (drflac_uint32)__builtin_clzl((drflac_uint32)x);
+ #endif
+ #endif
+ #else
+ #error "This compiler does not support the lzcnt intrinsic."
+ #endif
+#endif
+}
+#endif
+#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
+#include
+static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x)
+{
+ drflac_uint32 n;
+ if (x == 0) {
+ return sizeof(x)*8;
+ }
+#ifdef DRFLAC_64BIT
+ _BitScanReverse64((unsigned long*)&n, x);
+#else
+ _BitScanReverse((unsigned long*)&n, x);
+#endif
+ return sizeof(x)*8 - n - 1;
+}
+#endif
+static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x)
+{
+#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
+ if (drflac__is_lzcnt_supported()) {
+ return drflac__clz_lzcnt(x);
+ } else
+#endif
+ {
+#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
+ return drflac__clz_msvc(x);
+#else
+ return drflac__clz_software(x);
+#endif
+ }
+}
+static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut)
+{
+ drflac_uint32 zeroCounter = 0;
+ drflac_uint32 setBitOffsetPlus1;
+ while (bs->cache == 0) {
+ zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ setBitOffsetPlus1 = drflac__clz(bs->cache);
+ setBitOffsetPlus1 += 1;
+ bs->consumedBits += setBitOffsetPlus1;
+ bs->cache <<= setBitOffsetPlus1;
+ *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart)
+{
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(offsetFromStart > 0);
+ if (offsetFromStart > 0x7FFFFFFF) {
+ drflac_uint64 bytesRemaining = offsetFromStart;
+ if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ bytesRemaining -= 0x7FFFFFFF;
+ while (bytesRemaining > 0x7FFFFFFF) {
+ if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ bytesRemaining -= 0x7FFFFFFF;
+ }
+ if (bytesRemaining > 0) {
+ if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ drflac__reset_cache(bs);
+ return DRFLAC_TRUE;
+}
+static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut)
+{
+ drflac_uint8 crc;
+ drflac_uint64 result;
+ drflac_uint8 utf8[7] = {0};
+ int byteCount;
+ int i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(pNumberOut != NULL);
+ DRFLAC_ASSERT(pCRCOut != NULL);
+ crc = *pCRCOut;
+ if (!drflac__read_uint8(bs, 8, utf8)) {
+ *pNumberOut = 0;
+ return DRFLAC_AT_END;
+ }
+ crc = drflac_crc8(crc, utf8[0], 8);
+ if ((utf8[0] & 0x80) == 0) {
+ *pNumberOut = utf8[0];
+ *pCRCOut = crc;
+ return DRFLAC_SUCCESS;
+ }
+ if ((utf8[0] & 0xE0) == 0xC0) {
+ byteCount = 2;
+ } else if ((utf8[0] & 0xF0) == 0xE0) {
+ byteCount = 3;
+ } else if ((utf8[0] & 0xF8) == 0xF0) {
+ byteCount = 4;
+ } else if ((utf8[0] & 0xFC) == 0xF8) {
+ byteCount = 5;
+ } else if ((utf8[0] & 0xFE) == 0xFC) {
+ byteCount = 6;
+ } else if ((utf8[0] & 0xFF) == 0xFE) {
+ byteCount = 7;
+ } else {
+ *pNumberOut = 0;
+ return DRFLAC_CRC_MISMATCH;
+ }
+ DRFLAC_ASSERT(byteCount > 1);
+ result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1)));
+ for (i = 1; i < byteCount; ++i) {
+ if (!drflac__read_uint8(bs, 8, utf8 + i)) {
+ *pNumberOut = 0;
+ return DRFLAC_AT_END;
+ }
+ crc = drflac_crc8(crc, utf8[i], 8);
+ result = (result << 6) | (utf8[i] & 0x3F);
+ }
+ *pNumberOut = result;
+ *pCRCOut = crc;
+ return DRFLAC_SUCCESS;
+}
+static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
+{
+ drflac_int32 prediction = 0;
+ DRFLAC_ASSERT(order <= 32);
+ switch (order)
+ {
+ case 32: prediction += coefficients[31] * pDecodedSamples[-32];
+ case 31: prediction += coefficients[30] * pDecodedSamples[-31];
+ case 30: prediction += coefficients[29] * pDecodedSamples[-30];
+ case 29: prediction += coefficients[28] * pDecodedSamples[-29];
+ case 28: prediction += coefficients[27] * pDecodedSamples[-28];
+ case 27: prediction += coefficients[26] * pDecodedSamples[-27];
+ case 26: prediction += coefficients[25] * pDecodedSamples[-26];
+ case 25: prediction += coefficients[24] * pDecodedSamples[-25];
+ case 24: prediction += coefficients[23] * pDecodedSamples[-24];
+ case 23: prediction += coefficients[22] * pDecodedSamples[-23];
+ case 22: prediction += coefficients[21] * pDecodedSamples[-22];
+ case 21: prediction += coefficients[20] * pDecodedSamples[-21];
+ case 20: prediction += coefficients[19] * pDecodedSamples[-20];
+ case 19: prediction += coefficients[18] * pDecodedSamples[-19];
+ case 18: prediction += coefficients[17] * pDecodedSamples[-18];
+ case 17: prediction += coefficients[16] * pDecodedSamples[-17];
+ case 16: prediction += coefficients[15] * pDecodedSamples[-16];
+ case 15: prediction += coefficients[14] * pDecodedSamples[-15];
+ case 14: prediction += coefficients[13] * pDecodedSamples[-14];
+ case 13: prediction += coefficients[12] * pDecodedSamples[-13];
+ case 12: prediction += coefficients[11] * pDecodedSamples[-12];
+ case 11: prediction += coefficients[10] * pDecodedSamples[-11];
+ case 10: prediction += coefficients[ 9] * pDecodedSamples[-10];
+ case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9];
+ case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8];
+ case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7];
+ case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6];
+ case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5];
+ case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4];
+ case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3];
+ case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2];
+ case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1];
+ }
+ return (drflac_int32)(prediction >> shift);
+}
+static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
+{
+ drflac_int64 prediction;
+ DRFLAC_ASSERT(order <= 32);
+#ifndef DRFLAC_64BIT
+ if (order == 8)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
+ }
+ else if (order == 7)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ }
+ else if (order == 3)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ }
+ else if (order == 6)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ }
+ else if (order == 5)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ }
+ else if (order == 4)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ }
+ else if (order == 12)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
+ prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
+ prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
+ prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
+ prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
+ }
+ else if (order == 2)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ }
+ else if (order == 1)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ }
+ else if (order == 10)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
+ prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
+ prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
+ }
+ else if (order == 9)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
+ prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
+ }
+ else if (order == 11)
+ {
+ prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
+ prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
+ prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
+ prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
+ prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
+ prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
+ prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
+ prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
+ prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
+ prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
+ prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
+ }
+ else
+ {
+ int j;
+ prediction = 0;
+ for (j = 0; j < (int)order; ++j) {
+ prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1];
+ }
+ }
+#endif
+#ifdef DRFLAC_64BIT
+ prediction = 0;
+ switch (order)
+ {
+ case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32];
+ case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31];
+ case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30];
+ case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29];
+ case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28];
+ case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27];
+ case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26];
+ case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25];
+ case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24];
+ case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23];
+ case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22];
+ case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21];
+ case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20];
+ case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19];
+ case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18];
+ case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17];
+ case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16];
+ case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15];
+ case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14];
+ case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13];
+ case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
+ case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
+ case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10];
+ case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9];
+ case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8];
+ case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7];
+ case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6];
+ case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5];
+ case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4];
+ case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3];
+ case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2];
+ case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1];
+ }
+#endif
+ return (drflac_int32)(prediction >> shift);
+}
+#if 0
+static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ drflac_uint32 i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ for (i = 0; i < count; ++i) {
+ drflac_uint32 zeroCounter = 0;
+ for (;;) {
+ drflac_uint8 bit;
+ if (!drflac__read_uint8(bs, 1, &bit)) {
+ return DRFLAC_FALSE;
+ }
+ if (bit == 0) {
+ zeroCounter += 1;
+ } else {
+ break;
+ }
+ }
+ drflac_uint32 decodedRice;
+ if (riceParam > 0) {
+ if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ decodedRice = 0;
+ }
+ decodedRice |= (zeroCounter << riceParam);
+ if ((decodedRice & 0x01)) {
+ decodedRice = ~(decodedRice >> 1);
+ } else {
+ decodedRice = (decodedRice >> 1);
+ }
+ if (bitsPerSample+shift >= 32) {
+ pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
+ } else {
+ pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
+ }
+ }
+ return DRFLAC_TRUE;
+}
+#endif
+#if 0
+static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
+{
+ drflac_uint32 zeroCounter = 0;
+ drflac_uint32 decodedRice;
+ for (;;) {
+ drflac_uint8 bit;
+ if (!drflac__read_uint8(bs, 1, &bit)) {
+ return DRFLAC_FALSE;
+ }
+ if (bit == 0) {
+ zeroCounter += 1;
+ } else {
+ break;
+ }
+ }
+ if (riceParam > 0) {
+ if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ decodedRice = 0;
+ }
+ *pZeroCounterOut = zeroCounter;
+ *pRiceParamPartOut = decodedRice;
+ return DRFLAC_TRUE;
+}
+#endif
+#if 0
+static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
+{
+ drflac_cache_t riceParamMask;
+ drflac_uint32 zeroCounter;
+ drflac_uint32 setBitOffsetPlus1;
+ drflac_uint32 riceParamPart;
+ drflac_uint32 riceLength;
+ DRFLAC_ASSERT(riceParam > 0);
+ riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam);
+ zeroCounter = 0;
+ while (bs->cache == 0) {
+ zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ setBitOffsetPlus1 = drflac__clz(bs->cache);
+ zeroCounter += setBitOffsetPlus1;
+ setBitOffsetPlus1 += 1;
+ riceLength = setBitOffsetPlus1 + riceParam;
+ if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
+ riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength));
+ bs->consumedBits += riceLength;
+ bs->cache <<= riceLength;
+ } else {
+ drflac_uint32 bitCountLo;
+ drflac_cache_t resultHi;
+ bs->consumedBits += riceLength;
+ bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1);
+ bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs);
+ resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam);
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+#ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+#endif
+ bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
+ bs->consumedBits = 0;
+#ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs->cache;
+#endif
+ } else {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo));
+ bs->consumedBits += bitCountLo;
+ bs->cache <<= bitCountLo;
+ }
+ pZeroCounterOut[0] = zeroCounter;
+ pRiceParamPartOut[0] = riceParamPart;
+ return DRFLAC_TRUE;
+}
+#endif
+static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
+{
+ drflac_uint32 riceParamPlus1 = riceParam + 1;
+ drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1);
+ drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
+ drflac_cache_t bs_cache = bs->cache;
+ drflac_uint32 bs_consumedBits = bs->consumedBits;
+ drflac_uint32 lzcount = drflac__clz(bs_cache);
+ if (lzcount < sizeof(bs_cache)*8) {
+ pZeroCounterOut[0] = lzcount;
+ extract_rice_param_part:
+ bs_cache <<= lzcount;
+ bs_consumedBits += lzcount;
+ if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
+ pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
+ bs_cache <<= riceParamPlus1;
+ bs_consumedBits += riceParamPlus1;
+ } else {
+ drflac_uint32 riceParamPartHi;
+ drflac_uint32 riceParamPartLo;
+ drflac_uint32 riceParamPartLoBitCount;
+ riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
+ riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
+ DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+ #ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+ #endif
+ bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
+ bs_consumedBits = riceParamPartLoBitCount;
+ #ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs_cache;
+ #endif
+ } else {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ bs_cache = bs->cache;
+ bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
+ }
+ riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount)));
+ pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo;
+ bs_cache <<= riceParamPartLoBitCount;
+ }
+ } else {
+ drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits);
+ for (;;) {
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+ #ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+ #endif
+ bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
+ bs_consumedBits = 0;
+ #ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs_cache;
+ #endif
+ } else {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ bs_cache = bs->cache;
+ bs_consumedBits = bs->consumedBits;
+ }
+ lzcount = drflac__clz(bs_cache);
+ zeroCounter += lzcount;
+ if (lzcount < sizeof(bs_cache)*8) {
+ break;
+ }
+ }
+ pZeroCounterOut[0] = zeroCounter;
+ goto extract_rice_param_part;
+ }
+ bs->cache = bs_cache;
+ bs->consumedBits = bs_consumedBits;
+ return DRFLAC_TRUE;
+}
+static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam)
+{
+ drflac_uint32 riceParamPlus1 = riceParam + 1;
+ drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
+ drflac_cache_t bs_cache = bs->cache;
+ drflac_uint32 bs_consumedBits = bs->consumedBits;
+ drflac_uint32 lzcount = drflac__clz(bs_cache);
+ if (lzcount < sizeof(bs_cache)*8) {
+ extract_rice_param_part:
+ bs_cache <<= lzcount;
+ bs_consumedBits += lzcount;
+ if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
+ bs_cache <<= riceParamPlus1;
+ bs_consumedBits += riceParamPlus1;
+ } else {
+ drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
+ DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+ #ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+ #endif
+ bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
+ bs_consumedBits = riceParamPartLoBitCount;
+ #ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs_cache;
+ #endif
+ } else {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ bs_cache = bs->cache;
+ bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
+ }
+ bs_cache <<= riceParamPartLoBitCount;
+ }
+ } else {
+ for (;;) {
+ if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
+ #ifndef DR_FLAC_NO_CRC
+ drflac__update_crc16(bs);
+ #endif
+ bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
+ bs_consumedBits = 0;
+ #ifndef DR_FLAC_NO_CRC
+ bs->crc16Cache = bs_cache;
+ #endif
+ } else {
+ if (!drflac__reload_cache(bs)) {
+ return DRFLAC_FALSE;
+ }
+ bs_cache = bs->cache;
+ bs_consumedBits = bs->consumedBits;
+ }
+ lzcount = drflac__clz(bs_cache);
+ if (lzcount < sizeof(bs_cache)*8) {
+ break;
+ }
+ }
+ goto extract_rice_param_part;
+ }
+ bs->cache = bs_cache;
+ bs->consumedBits = bs_consumedBits;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ drflac_uint32 zeroCountPart0;
+ drflac_uint32 riceParamPart0;
+ drflac_uint32 riceParamMask;
+ drflac_uint32 i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ (void)bitsPerSample;
+ (void)order;
+ (void)shift;
+ (void)coefficients;
+ riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
+ i = 0;
+ while (i < count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamPart0 &= riceParamMask;
+ riceParamPart0 |= (zeroCountPart0 << riceParam);
+ riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
+ pSamplesOut[i] = riceParamPart0;
+ i += 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ drflac_uint32 zeroCountPart0 = 0;
+ drflac_uint32 zeroCountPart1 = 0;
+ drflac_uint32 zeroCountPart2 = 0;
+ drflac_uint32 zeroCountPart3 = 0;
+ drflac_uint32 riceParamPart0 = 0;
+ drflac_uint32 riceParamPart1 = 0;
+ drflac_uint32 riceParamPart2 = 0;
+ drflac_uint32 riceParamPart3 = 0;
+ drflac_uint32 riceParamMask;
+ const drflac_int32* pSamplesOutEnd;
+ drflac_uint32 i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ if (order == 0) {
+ return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ }
+ riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
+ pSamplesOutEnd = pSamplesOut + (count & ~3);
+ if (bitsPerSample+shift > 32) {
+ while (pSamplesOut < pSamplesOutEnd) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamPart0 &= riceParamMask;
+ riceParamPart1 &= riceParamMask;
+ riceParamPart2 &= riceParamMask;
+ riceParamPart3 &= riceParamMask;
+ riceParamPart0 |= (zeroCountPart0 << riceParam);
+ riceParamPart1 |= (zeroCountPart1 << riceParam);
+ riceParamPart2 |= (zeroCountPart2 << riceParam);
+ riceParamPart3 |= (zeroCountPart3 << riceParam);
+ riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
+ riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
+ riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
+ riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
+ pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
+ pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1);
+ pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2);
+ pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3);
+ pSamplesOut += 4;
+ }
+ } else {
+ while (pSamplesOut < pSamplesOutEnd) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamPart0 &= riceParamMask;
+ riceParamPart1 &= riceParamMask;
+ riceParamPart2 &= riceParamMask;
+ riceParamPart3 &= riceParamMask;
+ riceParamPart0 |= (zeroCountPart0 << riceParam);
+ riceParamPart1 |= (zeroCountPart1 << riceParam);
+ riceParamPart2 |= (zeroCountPart2 << riceParam);
+ riceParamPart3 |= (zeroCountPart3 << riceParam);
+ riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
+ riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
+ riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
+ riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
+ pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
+ pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1);
+ pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2);
+ pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3);
+ pSamplesOut += 4;
+ }
+ }
+ i = (count & ~3);
+ while (i < count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamPart0 &= riceParamMask;
+ riceParamPart0 |= (zeroCountPart0 << riceParam);
+ riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
+ if (bitsPerSample+shift > 32) {
+ pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
+ } else {
+ pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
+ }
+ i += 1;
+ pSamplesOut += 1;
+ }
+ return DRFLAC_TRUE;
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b)
+{
+ __m128i r;
+ r = _mm_packs_epi32(a, b);
+ r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0));
+ r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
+ r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
+ return r;
+}
+#endif
+#if defined(DRFLAC_SUPPORT_SSE41)
+static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a)
+{
+ return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
+}
+static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x)
+{
+ __m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
+ __m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2));
+ return _mm_add_epi32(x64, x32);
+}
+static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x)
+{
+ return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
+}
+static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count)
+{
+ __m128i lo = _mm_srli_epi64(x, count);
+ __m128i hi = _mm_srai_epi32(x, count);
+ hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0));
+ return _mm_or_si128(lo, hi);
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ int i;
+ drflac_uint32 riceParamMask;
+ drflac_int32* pDecodedSamples = pSamplesOut;
+ drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
+ drflac_uint32 zeroCountParts0 = 0;
+ drflac_uint32 zeroCountParts1 = 0;
+ drflac_uint32 zeroCountParts2 = 0;
+ drflac_uint32 zeroCountParts3 = 0;
+ drflac_uint32 riceParamParts0 = 0;
+ drflac_uint32 riceParamParts1 = 0;
+ drflac_uint32 riceParamParts2 = 0;
+ drflac_uint32 riceParamParts3 = 0;
+ __m128i coefficients128_0;
+ __m128i coefficients128_4;
+ __m128i coefficients128_8;
+ __m128i samples128_0;
+ __m128i samples128_4;
+ __m128i samples128_8;
+ __m128i riceParamMask128;
+ const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
+ riceParamMask128 = _mm_set1_epi32(riceParamMask);
+ coefficients128_0 = _mm_setzero_si128();
+ coefficients128_4 = _mm_setzero_si128();
+ coefficients128_8 = _mm_setzero_si128();
+ samples128_0 = _mm_setzero_si128();
+ samples128_4 = _mm_setzero_si128();
+ samples128_8 = _mm_setzero_si128();
+#if 1
+ {
+ int runningOrder = order;
+ if (runningOrder >= 4) {
+ coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
+ samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
+ case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
+ case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ if (runningOrder >= 4) {
+ coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
+ samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
+ case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
+ case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ if (runningOrder == 4) {
+ coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
+ samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
+ case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
+ case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
+ coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
+ coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
+ }
+#else
+ switch (order)
+ {
+ case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
+ case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
+ case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
+ case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
+ case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
+ case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
+ case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
+ case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
+ case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
+ case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
+ case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
+ case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
+ }
+#endif
+ while (pDecodedSamples < pDecodedSamplesEnd) {
+ __m128i prediction128;
+ __m128i zeroCountPart128;
+ __m128i riceParamPart128;
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
+ return DRFLAC_FALSE;
+ }
+ zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
+ riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
+ riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
+ riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
+ riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01)));
+ if (order <= 4) {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0);
+ prediction128 = drflac__mm_hadd_epi32(prediction128);
+ prediction128 = _mm_srai_epi32(prediction128, shift);
+ prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
+ samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
+ riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
+ }
+ } else if (order <= 8) {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4);
+ prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
+ prediction128 = drflac__mm_hadd_epi32(prediction128);
+ prediction128 = _mm_srai_epi32(prediction128, shift);
+ prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
+ samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
+ samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
+ riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
+ }
+ } else {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8);
+ prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4));
+ prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
+ prediction128 = drflac__mm_hadd_epi32(prediction128);
+ prediction128 = _mm_srai_epi32(prediction128, shift);
+ prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
+ samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
+ samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
+ samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
+ riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
+ }
+ }
+ _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
+ pDecodedSamples += 4;
+ }
+ i = (count & ~3);
+ while (i < (int)count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamParts0 &= riceParamMask;
+ riceParamParts0 |= (zeroCountParts0 << riceParam);
+ riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
+ pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
+ i += 1;
+ pDecodedSamples += 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ int i;
+ drflac_uint32 riceParamMask;
+ drflac_int32* pDecodedSamples = pSamplesOut;
+ drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
+ drflac_uint32 zeroCountParts0 = 0;
+ drflac_uint32 zeroCountParts1 = 0;
+ drflac_uint32 zeroCountParts2 = 0;
+ drflac_uint32 zeroCountParts3 = 0;
+ drflac_uint32 riceParamParts0 = 0;
+ drflac_uint32 riceParamParts1 = 0;
+ drflac_uint32 riceParamParts2 = 0;
+ drflac_uint32 riceParamParts3 = 0;
+ __m128i coefficients128_0;
+ __m128i coefficients128_4;
+ __m128i coefficients128_8;
+ __m128i samples128_0;
+ __m128i samples128_4;
+ __m128i samples128_8;
+ __m128i prediction128;
+ __m128i riceParamMask128;
+ const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ DRFLAC_ASSERT(order <= 12);
+ riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
+ riceParamMask128 = _mm_set1_epi32(riceParamMask);
+ prediction128 = _mm_setzero_si128();
+ coefficients128_0 = _mm_setzero_si128();
+ coefficients128_4 = _mm_setzero_si128();
+ coefficients128_8 = _mm_setzero_si128();
+ samples128_0 = _mm_setzero_si128();
+ samples128_4 = _mm_setzero_si128();
+ samples128_8 = _mm_setzero_si128();
+#if 1
+ {
+ int runningOrder = order;
+ if (runningOrder >= 4) {
+ coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
+ samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
+ case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
+ case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ if (runningOrder >= 4) {
+ coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
+ samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
+ case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
+ case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ if (runningOrder == 4) {
+ coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
+ samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
+ case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
+ case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
+ }
+ runningOrder = 0;
+ }
+ coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
+ coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
+ coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
+ }
+#else
+ switch (order)
+ {
+ case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
+ case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
+ case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
+ case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
+ case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
+ case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
+ case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
+ case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
+ case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
+ case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
+ case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
+ case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
+ }
+#endif
+ while (pDecodedSamples < pDecodedSamplesEnd) {
+ __m128i zeroCountPart128;
+ __m128i riceParamPart128;
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
+ return DRFLAC_FALSE;
+ }
+ zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
+ riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
+ riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
+ riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
+ riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1)));
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = _mm_xor_si128(prediction128, prediction128);
+ switch (order)
+ {
+ case 12:
+ case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0))));
+ case 10:
+ case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2))));
+ case 8:
+ case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0))));
+ case 6:
+ case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2))));
+ case 4:
+ case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0))));
+ case 2:
+ case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2))));
+ }
+ prediction128 = drflac__mm_hadd_epi64(prediction128);
+ prediction128 = drflac__mm_srai_epi64(prediction128, shift);
+ prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
+ samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
+ samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
+ samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
+ riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
+ }
+ _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
+ pDecodedSamples += 4;
+ }
+ i = (count & ~3);
+ while (i < (int)count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
+ return DRFLAC_FALSE;
+ }
+ riceParamParts0 &= riceParamMask;
+ riceParamParts0 |= (zeroCountParts0 << riceParam);
+ riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
+ pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
+ i += 1;
+ pDecodedSamples += 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ if (order > 0 && order <= 12) {
+ if (bitsPerSample+shift > 32) {
+ return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
+ } else {
+ return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
+ }
+ } else {
+ return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x)
+{
+ vst1q_s32(p+0, x.val[0]);
+ vst1q_s32(p+4, x.val[1]);
+}
+static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x)
+{
+ vst1q_u32(p+0, x.val[0]);
+ vst1q_u32(p+4, x.val[1]);
+}
+static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x)
+{
+ vst1q_f32(p+0, x.val[0]);
+ vst1q_f32(p+4, x.val[1]);
+}
+static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x)
+{
+ vst1q_s16(p, vcombine_s16(x.val[0], x.val[1]));
+}
+static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x)
+{
+ vst1q_u16(p, vcombine_u16(x.val[0], x.val[1]));
+}
+static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0)
+{
+ drflac_int32 x[4];
+ x[3] = x3;
+ x[2] = x2;
+ x[1] = x1;
+ x[0] = x0;
+ return vld1q_s32(x);
+}
+static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b)
+{
+ return vextq_s32(b, a, 1);
+}
+static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b)
+{
+ return vextq_u32(b, a, 1);
+}
+static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x)
+{
+ int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x));
+ return vpadd_s32(r, r);
+}
+static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x)
+{
+ return vadd_s64(vget_high_s64(x), vget_low_s64(x));
+}
+static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x)
+{
+ return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x)));
+}
+static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x)
+{
+ return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF));
+}
+static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x)
+{
+ return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF));
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ int i;
+ drflac_uint32 riceParamMask;
+ drflac_int32* pDecodedSamples = pSamplesOut;
+ drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
+ drflac_uint32 zeroCountParts[4];
+ drflac_uint32 riceParamParts[4];
+ int32x4_t coefficients128_0;
+ int32x4_t coefficients128_4;
+ int32x4_t coefficients128_8;
+ int32x4_t samples128_0;
+ int32x4_t samples128_4;
+ int32x4_t samples128_8;
+ uint32x4_t riceParamMask128;
+ int32x4_t riceParam128;
+ int32x2_t shift64;
+ uint32x4_t one128;
+ const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ riceParamMask = ~((~0UL) << riceParam);
+ riceParamMask128 = vdupq_n_u32(riceParamMask);
+ riceParam128 = vdupq_n_s32(riceParam);
+ shift64 = vdup_n_s32(-shift);
+ one128 = vdupq_n_u32(1);
+ {
+ int runningOrder = order;
+ drflac_int32 tempC[4] = {0, 0, 0, 0};
+ drflac_int32 tempS[4] = {0, 0, 0, 0};
+ if (runningOrder >= 4) {
+ coefficients128_0 = vld1q_s32(coefficients + 0);
+ samples128_0 = vld1q_s32(pSamplesOut - 4);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3];
+ case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2];
+ case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1];
+ }
+ coefficients128_0 = vld1q_s32(tempC);
+ samples128_0 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ if (runningOrder >= 4) {
+ coefficients128_4 = vld1q_s32(coefficients + 4);
+ samples128_4 = vld1q_s32(pSamplesOut - 8);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7];
+ case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6];
+ case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5];
+ }
+ coefficients128_4 = vld1q_s32(tempC);
+ samples128_4 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ if (runningOrder == 4) {
+ coefficients128_8 = vld1q_s32(coefficients + 8);
+ samples128_8 = vld1q_s32(pSamplesOut - 12);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11];
+ case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10];
+ case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9];
+ }
+ coefficients128_8 = vld1q_s32(tempC);
+ samples128_8 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
+ coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
+ coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
+ }
+ while (pDecodedSamples < pDecodedSamplesEnd) {
+ int32x4_t prediction128;
+ int32x2_t prediction64;
+ uint32x4_t zeroCountPart128;
+ uint32x4_t riceParamPart128;
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
+ return DRFLAC_FALSE;
+ }
+ zeroCountPart128 = vld1q_u32(zeroCountParts);
+ riceParamPart128 = vld1q_u32(riceParamParts);
+ riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
+ riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
+ riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
+ if (order <= 4) {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = vmulq_s32(coefficients128_0, samples128_0);
+ prediction64 = drflac__vhaddq_s32(prediction128);
+ prediction64 = vshl_s32(prediction64, shift64);
+ prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
+ samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
+ riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
+ }
+ } else if (order <= 8) {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = vmulq_s32(coefficients128_4, samples128_4);
+ prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
+ prediction64 = drflac__vhaddq_s32(prediction128);
+ prediction64 = vshl_s32(prediction64, shift64);
+ prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
+ samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
+ samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
+ riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
+ }
+ } else {
+ for (i = 0; i < 4; i += 1) {
+ prediction128 = vmulq_s32(coefficients128_8, samples128_8);
+ prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4);
+ prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
+ prediction64 = drflac__vhaddq_s32(prediction128);
+ prediction64 = vshl_s32(prediction64, shift64);
+ prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
+ samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
+ samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
+ samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
+ riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
+ }
+ }
+ vst1q_s32(pDecodedSamples, samples128_0);
+ pDecodedSamples += 4;
+ }
+ i = (count & ~3);
+ while (i < (int)count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
+ return DRFLAC_FALSE;
+ }
+ riceParamParts[0] &= riceParamMask;
+ riceParamParts[0] |= (zeroCountParts[0] << riceParam);
+ riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
+ pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
+ i += 1;
+ pDecodedSamples += 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ int i;
+ drflac_uint32 riceParamMask;
+ drflac_int32* pDecodedSamples = pSamplesOut;
+ drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
+ drflac_uint32 zeroCountParts[4];
+ drflac_uint32 riceParamParts[4];
+ int32x4_t coefficients128_0;
+ int32x4_t coefficients128_4;
+ int32x4_t coefficients128_8;
+ int32x4_t samples128_0;
+ int32x4_t samples128_4;
+ int32x4_t samples128_8;
+ uint32x4_t riceParamMask128;
+ int32x4_t riceParam128;
+ int64x1_t shift64;
+ uint32x4_t one128;
+ const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
+ riceParamMask = ~((~0UL) << riceParam);
+ riceParamMask128 = vdupq_n_u32(riceParamMask);
+ riceParam128 = vdupq_n_s32(riceParam);
+ shift64 = vdup_n_s64(-shift);
+ one128 = vdupq_n_u32(1);
+ {
+ int runningOrder = order;
+ drflac_int32 tempC[4] = {0, 0, 0, 0};
+ drflac_int32 tempS[4] = {0, 0, 0, 0};
+ if (runningOrder >= 4) {
+ coefficients128_0 = vld1q_s32(coefficients + 0);
+ samples128_0 = vld1q_s32(pSamplesOut - 4);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3];
+ case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2];
+ case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1];
+ }
+ coefficients128_0 = vld1q_s32(tempC);
+ samples128_0 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ if (runningOrder >= 4) {
+ coefficients128_4 = vld1q_s32(coefficients + 4);
+ samples128_4 = vld1q_s32(pSamplesOut - 8);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7];
+ case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6];
+ case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5];
+ }
+ coefficients128_4 = vld1q_s32(tempC);
+ samples128_4 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ if (runningOrder == 4) {
+ coefficients128_8 = vld1q_s32(coefficients + 8);
+ samples128_8 = vld1q_s32(pSamplesOut - 12);
+ runningOrder -= 4;
+ } else {
+ switch (runningOrder) {
+ case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11];
+ case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10];
+ case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9];
+ }
+ coefficients128_8 = vld1q_s32(tempC);
+ samples128_8 = vld1q_s32(tempS);
+ runningOrder = 0;
+ }
+ coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
+ coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
+ coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
+ }
+ while (pDecodedSamples < pDecodedSamplesEnd) {
+ int64x2_t prediction128;
+ uint32x4_t zeroCountPart128;
+ uint32x4_t riceParamPart128;
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
+ !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
+ return DRFLAC_FALSE;
+ }
+ zeroCountPart128 = vld1q_u32(zeroCountParts);
+ riceParamPart128 = vld1q_u32(riceParamParts);
+ riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
+ riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
+ riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
+ for (i = 0; i < 4; i += 1) {
+ int64x1_t prediction64;
+ prediction128 = veorq_s64(prediction128, prediction128);
+ switch (order)
+ {
+ case 12:
+ case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8)));
+ case 10:
+ case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8)));
+ case 8:
+ case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4)));
+ case 6:
+ case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4)));
+ case 4:
+ case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0)));
+ case 2:
+ case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0)));
+ }
+ prediction64 = drflac__vhaddq_s64(prediction128);
+ prediction64 = vshl_s64(prediction64, shift64);
+ prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0)));
+ samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
+ samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
+ samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0);
+ riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
+ }
+ vst1q_s32(pDecodedSamples, samples128_0);
+ pDecodedSamples += 4;
+ }
+ i = (count & ~3);
+ while (i < (int)count) {
+ if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
+ return DRFLAC_FALSE;
+ }
+ riceParamParts[0] &= riceParamMask;
+ riceParamParts[0] |= (zeroCountParts[0] << riceParam);
+ riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
+ pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
+ i += 1;
+ pDecodedSamples += 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ if (order > 0 && order <= 12) {
+ if (bitsPerSample+shift > 32) {
+ return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
+ } else {
+ return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
+ }
+ } else {
+ return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ }
+}
+#endif
+static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+#if defined(DRFLAC_SUPPORT_SSE41)
+ if (drflac__gIsSSE41Supported) {
+ return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported) {
+ return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ } else
+#endif
+ {
+ #if 0
+ return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ #else
+ return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
+ #endif
+ }
+}
+static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam)
+{
+ drflac_uint32 i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ for (i = 0; i < count; ++i) {
+ if (!drflac__seek_rice_parts(bs, riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
+{
+ drflac_uint32 i;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(count > 0);
+ DRFLAC_ASSERT(unencodedBitsPerSample <= 31);
+ DRFLAC_ASSERT(pSamplesOut != NULL);
+ for (i = 0; i < count; ++i) {
+ if (unencodedBitsPerSample > 0) {
+ if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ pSamplesOut[i] = 0;
+ }
+ if (bitsPerSample >= 24) {
+ pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
+ } else {
+ pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
+ }
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
+{
+ drflac_uint8 residualMethod;
+ drflac_uint8 partitionOrder;
+ drflac_uint32 samplesInPartition;
+ drflac_uint32 partitionsRemaining;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(blockSize != 0);
+ DRFLAC_ASSERT(pDecodedSamples != NULL);
+ if (!drflac__read_uint8(bs, 2, &residualMethod)) {
+ return DRFLAC_FALSE;
+ }
+ if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
+ return DRFLAC_FALSE;
+ }
+ pDecodedSamples += order;
+ if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
+ return DRFLAC_FALSE;
+ }
+ if (partitionOrder > 8) {
+ return DRFLAC_FALSE;
+ }
+ if ((blockSize / (1 << partitionOrder)) <= order) {
+ return DRFLAC_FALSE;
+ }
+ samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
+ partitionsRemaining = (1 << partitionOrder);
+ for (;;) {
+ drflac_uint8 riceParam = 0;
+ if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
+ if (!drflac__read_uint8(bs, 4, &riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ if (riceParam == 15) {
+ riceParam = 0xFF;
+ }
+ } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
+ if (!drflac__read_uint8(bs, 5, &riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ if (riceParam == 31) {
+ riceParam = 0xFF;
+ }
+ }
+ if (riceParam != 0xFF) {
+ if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ drflac_uint8 unencodedBitsPerSample = 0;
+ if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ pDecodedSamples += samplesInPartition;
+ if (partitionsRemaining == 1) {
+ break;
+ }
+ partitionsRemaining -= 1;
+ if (partitionOrder != 0) {
+ samplesInPartition = blockSize / (1 << partitionOrder);
+ }
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order)
+{
+ drflac_uint8 residualMethod;
+ drflac_uint8 partitionOrder;
+ drflac_uint32 samplesInPartition;
+ drflac_uint32 partitionsRemaining;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(blockSize != 0);
+ if (!drflac__read_uint8(bs, 2, &residualMethod)) {
+ return DRFLAC_FALSE;
+ }
+ if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
+ return DRFLAC_FALSE;
+ }
+ if (partitionOrder > 8) {
+ return DRFLAC_FALSE;
+ }
+ if ((blockSize / (1 << partitionOrder)) <= order) {
+ return DRFLAC_FALSE;
+ }
+ samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
+ partitionsRemaining = (1 << partitionOrder);
+ for (;;)
+ {
+ drflac_uint8 riceParam = 0;
+ if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
+ if (!drflac__read_uint8(bs, 4, &riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ if (riceParam == 15) {
+ riceParam = 0xFF;
+ }
+ } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
+ if (!drflac__read_uint8(bs, 5, &riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ if (riceParam == 31) {
+ riceParam = 0xFF;
+ }
+ }
+ if (riceParam != 0xFF) {
+ if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ drflac_uint8 unencodedBitsPerSample = 0;
+ if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ if (partitionsRemaining == 1) {
+ break;
+ }
+ partitionsRemaining -= 1;
+ samplesInPartition = blockSize / (1 << partitionOrder);
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
+{
+ drflac_uint32 i;
+ drflac_int32 sample;
+ if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
+ return DRFLAC_FALSE;
+ }
+ for (i = 0; i < blockSize; ++i) {
+ pDecodedSamples[i] = sample;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
+{
+ drflac_uint32 i;
+ for (i = 0; i < blockSize; ++i) {
+ drflac_int32 sample;
+ if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
+ return DRFLAC_FALSE;
+ }
+ pDecodedSamples[i] = sample;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
+{
+ drflac_uint32 i;
+ static drflac_int32 lpcCoefficientsTable[5][4] = {
+ {0, 0, 0, 0},
+ {1, 0, 0, 0},
+ {2, -1, 0, 0},
+ {3, -3, 1, 0},
+ {4, -6, 4, -1}
+ };
+ for (i = 0; i < lpcOrder; ++i) {
+ drflac_int32 sample;
+ if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
+ return DRFLAC_FALSE;
+ }
+ pDecodedSamples[i] = sample;
+ }
+ if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) {
+ return DRFLAC_FALSE;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
+{
+ drflac_uint8 i;
+ drflac_uint8 lpcPrecision;
+ drflac_int8 lpcShift;
+ drflac_int32 coefficients[32];
+ for (i = 0; i < lpcOrder; ++i) {
+ drflac_int32 sample;
+ if (!drflac__read_int32(bs, bitsPerSample, &sample)) {
+ return DRFLAC_FALSE;
+ }
+ pDecodedSamples[i] = sample;
+ }
+ if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
+ return DRFLAC_FALSE;
+ }
+ if (lpcPrecision == 15) {
+ return DRFLAC_FALSE;
+ }
+ lpcPrecision += 1;
+ if (!drflac__read_int8(bs, 5, &lpcShift)) {
+ return DRFLAC_FALSE;
+ }
+ DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients));
+ for (i = 0; i < lpcOrder; ++i) {
+ if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) {
+ return DRFLAC_FALSE;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header)
+{
+ const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000};
+ const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1};
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(header != NULL);
+ for (;;) {
+ drflac_uint8 crc8 = 0xCE;
+ drflac_uint8 reserved = 0;
+ drflac_uint8 blockingStrategy = 0;
+ drflac_uint8 blockSize = 0;
+ drflac_uint8 sampleRate = 0;
+ drflac_uint8 channelAssignment = 0;
+ drflac_uint8 bitsPerSample = 0;
+ drflac_bool32 isVariableBlockSize;
+ if (!drflac__find_and_seek_to_next_sync_code(bs)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_uint8(bs, 1, &reserved)) {
+ return DRFLAC_FALSE;
+ }
+ if (reserved == 1) {
+ continue;
+ }
+ crc8 = drflac_crc8(crc8, reserved, 1);
+ if (!drflac__read_uint8(bs, 1, &blockingStrategy)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, blockingStrategy, 1);
+ if (!drflac__read_uint8(bs, 4, &blockSize)) {
+ return DRFLAC_FALSE;
+ }
+ if (blockSize == 0) {
+ continue;
+ }
+ crc8 = drflac_crc8(crc8, blockSize, 4);
+ if (!drflac__read_uint8(bs, 4, &sampleRate)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, sampleRate, 4);
+ if (!drflac__read_uint8(bs, 4, &channelAssignment)) {
+ return DRFLAC_FALSE;
+ }
+ if (channelAssignment > 10) {
+ continue;
+ }
+ crc8 = drflac_crc8(crc8, channelAssignment, 4);
+ if (!drflac__read_uint8(bs, 3, &bitsPerSample)) {
+ return DRFLAC_FALSE;
+ }
+ if (bitsPerSample == 3 || bitsPerSample == 7) {
+ continue;
+ }
+ crc8 = drflac_crc8(crc8, bitsPerSample, 3);
+ if (!drflac__read_uint8(bs, 1, &reserved)) {
+ return DRFLAC_FALSE;
+ }
+ if (reserved == 1) {
+ continue;
+ }
+ crc8 = drflac_crc8(crc8, reserved, 1);
+ isVariableBlockSize = blockingStrategy == 1;
+ if (isVariableBlockSize) {
+ drflac_uint64 pcmFrameNumber;
+ drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8);
+ if (result != DRFLAC_SUCCESS) {
+ if (result == DRFLAC_AT_END) {
+ return DRFLAC_FALSE;
+ } else {
+ continue;
+ }
+ }
+ header->flacFrameNumber = 0;
+ header->pcmFrameNumber = pcmFrameNumber;
+ } else {
+ drflac_uint64 flacFrameNumber = 0;
+ drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8);
+ if (result != DRFLAC_SUCCESS) {
+ if (result == DRFLAC_AT_END) {
+ return DRFLAC_FALSE;
+ } else {
+ continue;
+ }
+ }
+ header->flacFrameNumber = (drflac_uint32)flacFrameNumber;
+ header->pcmFrameNumber = 0;
+ }
+ DRFLAC_ASSERT(blockSize > 0);
+ if (blockSize == 1) {
+ header->blockSizeInPCMFrames = 192;
+ } else if (blockSize >= 2 && blockSize <= 5) {
+ header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2));
+ } else if (blockSize == 6) {
+ if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8);
+ header->blockSizeInPCMFrames += 1;
+ } else if (blockSize == 7) {
+ if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16);
+ header->blockSizeInPCMFrames += 1;
+ } else {
+ DRFLAC_ASSERT(blockSize >= 8);
+ header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8));
+ }
+ if (sampleRate <= 11) {
+ header->sampleRate = sampleRateTable[sampleRate];
+ } else if (sampleRate == 12) {
+ if (!drflac__read_uint32(bs, 8, &header->sampleRate)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, header->sampleRate, 8);
+ header->sampleRate *= 1000;
+ } else if (sampleRate == 13) {
+ if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, header->sampleRate, 16);
+ } else if (sampleRate == 14) {
+ if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
+ return DRFLAC_FALSE;
+ }
+ crc8 = drflac_crc8(crc8, header->sampleRate, 16);
+ header->sampleRate *= 10;
+ } else {
+ continue;
+ }
+ header->channelAssignment = channelAssignment;
+ header->bitsPerSample = bitsPerSampleTable[bitsPerSample];
+ if (header->bitsPerSample == 0) {
+ header->bitsPerSample = streaminfoBitsPerSample;
+ }
+ if (!drflac__read_uint8(bs, 8, &header->crc8)) {
+ return DRFLAC_FALSE;
+ }
+#ifndef DR_FLAC_NO_CRC
+ if (header->crc8 != crc8) {
+ continue;
+ }
+#endif
+ return DRFLAC_TRUE;
+ }
+}
+static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe)
+{
+ drflac_uint8 header;
+ int type;
+ if (!drflac__read_uint8(bs, 8, &header)) {
+ return DRFLAC_FALSE;
+ }
+ if ((header & 0x80) != 0) {
+ return DRFLAC_FALSE;
+ }
+ type = (header & 0x7E) >> 1;
+ if (type == 0) {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT;
+ } else if (type == 1) {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM;
+ } else {
+ if ((type & 0x20) != 0) {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_LPC;
+ pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1;
+ } else if ((type & 0x08) != 0) {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED;
+ pSubframe->lpcOrder = (drflac_uint8)(type & 0x07);
+ if (pSubframe->lpcOrder > 4) {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
+ pSubframe->lpcOrder = 0;
+ }
+ } else {
+ pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
+ }
+ }
+ if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) {
+ return DRFLAC_FALSE;
+ }
+ pSubframe->wastedBitsPerSample = 0;
+ if ((header & 0x01) == 1) {
+ unsigned int wastedBitsPerSample;
+ if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) {
+ return DRFLAC_FALSE;
+ }
+ pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut)
+{
+ drflac_subframe* pSubframe;
+ drflac_uint32 subframeBitsPerSample;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(frame != NULL);
+ pSubframe = frame->subframes + subframeIndex;
+ if (!drflac__read_subframe_header(bs, pSubframe)) {
+ return DRFLAC_FALSE;
+ }
+ subframeBitsPerSample = frame->header.bitsPerSample;
+ if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
+ subframeBitsPerSample += 1;
+ } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
+ subframeBitsPerSample += 1;
+ }
+ if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
+ return DRFLAC_FALSE;
+ }
+ subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
+ pSubframe->pSamplesS32 = pDecodedSamplesOut;
+ switch (pSubframe->subframeType)
+ {
+ case DRFLAC_SUBFRAME_CONSTANT:
+ {
+ drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
+ } break;
+ case DRFLAC_SUBFRAME_VERBATIM:
+ {
+ drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
+ } break;
+ case DRFLAC_SUBFRAME_FIXED:
+ {
+ drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
+ } break;
+ case DRFLAC_SUBFRAME_LPC:
+ {
+ drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
+ } break;
+ default: return DRFLAC_FALSE;
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex)
+{
+ drflac_subframe* pSubframe;
+ drflac_uint32 subframeBitsPerSample;
+ DRFLAC_ASSERT(bs != NULL);
+ DRFLAC_ASSERT(frame != NULL);
+ pSubframe = frame->subframes + subframeIndex;
+ if (!drflac__read_subframe_header(bs, pSubframe)) {
+ return DRFLAC_FALSE;
+ }
+ subframeBitsPerSample = frame->header.bitsPerSample;
+ if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
+ subframeBitsPerSample += 1;
+ } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
+ subframeBitsPerSample += 1;
+ }
+ if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
+ return DRFLAC_FALSE;
+ }
+ subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
+ pSubframe->pSamplesS32 = NULL;
+ switch (pSubframe->subframeType)
+ {
+ case DRFLAC_SUBFRAME_CONSTANT:
+ {
+ if (!drflac__seek_bits(bs, subframeBitsPerSample)) {
+ return DRFLAC_FALSE;
+ }
+ } break;
+ case DRFLAC_SUBFRAME_VERBATIM:
+ {
+ unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample;
+ if (!drflac__seek_bits(bs, bitsToSeek)) {
+ return DRFLAC_FALSE;
+ }
+ } break;
+ case DRFLAC_SUBFRAME_FIXED:
+ {
+ unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
+ if (!drflac__seek_bits(bs, bitsToSeek)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
+ return DRFLAC_FALSE;
+ }
+ } break;
+ case DRFLAC_SUBFRAME_LPC:
+ {
+ drflac_uint8 lpcPrecision;
+ unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
+ if (!drflac__seek_bits(bs, bitsToSeek)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
+ return DRFLAC_FALSE;
+ }
+ if (lpcPrecision == 15) {
+ return DRFLAC_FALSE;
+ }
+ lpcPrecision += 1;
+ bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5;
+ if (!drflac__seek_bits(bs, bitsToSeek)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
+ return DRFLAC_FALSE;
+ }
+ } break;
+ default: return DRFLAC_FALSE;
+ }
+ return DRFLAC_TRUE;
+}
+static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment)
+{
+ drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2};
+ DRFLAC_ASSERT(channelAssignment <= 10);
+ return lookup[channelAssignment];
+}
+static drflac_result drflac__decode_flac_frame(drflac* pFlac)
+{
+ int channelCount;
+ int i;
+ drflac_uint8 paddingSizeInBits;
+ drflac_uint16 desiredCRC16;
+#ifndef DR_FLAC_NO_CRC
+ drflac_uint16 actualCRC16;
+#endif
+ DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes));
+ if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) {
+ return DRFLAC_ERROR;
+ }
+ channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
+ if (channelCount != (int)pFlac->channels) {
+ return DRFLAC_ERROR;
+ }
+ for (i = 0; i < channelCount; ++i) {
+ if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) {
+ return DRFLAC_ERROR;
+ }
+ }
+ paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7);
+ if (paddingSizeInBits > 0) {
+ drflac_uint8 padding = 0;
+ if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) {
+ return DRFLAC_AT_END;
+ }
+ }
+#ifndef DR_FLAC_NO_CRC
+ actualCRC16 = drflac__flush_crc16(&pFlac->bs);
+#endif
+ if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
+ return DRFLAC_AT_END;
+ }
+#ifndef DR_FLAC_NO_CRC
+ if (actualCRC16 != desiredCRC16) {
+ return DRFLAC_CRC_MISMATCH;
+ }
+#endif
+ pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
+ return DRFLAC_SUCCESS;
+}
+static drflac_result drflac__seek_flac_frame(drflac* pFlac)
+{
+ int channelCount;
+ int i;
+ drflac_uint16 desiredCRC16;
+#ifndef DR_FLAC_NO_CRC
+ drflac_uint16 actualCRC16;
+#endif
+ channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
+ for (i = 0; i < channelCount; ++i) {
+ if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) {
+ return DRFLAC_ERROR;
+ }
+ }
+ if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) {
+ return DRFLAC_ERROR;
+ }
+#ifndef DR_FLAC_NO_CRC
+ actualCRC16 = drflac__flush_crc16(&pFlac->bs);
+#endif
+ if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
+ return DRFLAC_AT_END;
+ }
+#ifndef DR_FLAC_NO_CRC
+ if (actualCRC16 != desiredCRC16) {
+ return DRFLAC_CRC_MISMATCH;
+ }
+#endif
+ return DRFLAC_SUCCESS;
+}
+static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac)
+{
+ DRFLAC_ASSERT(pFlac != NULL);
+ for (;;) {
+ drflac_result result;
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ result = drflac__decode_flac_frame(pFlac);
+ if (result != DRFLAC_SUCCESS) {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ continue;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ return DRFLAC_TRUE;
+ }
+}
+static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame)
+{
+ drflac_uint64 firstPCMFrame;
+ drflac_uint64 lastPCMFrame;
+ DRFLAC_ASSERT(pFlac != NULL);
+ firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber;
+ if (firstPCMFrame == 0) {
+ firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames;
+ }
+ lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
+ if (lastPCMFrame > 0) {
+ lastPCMFrame -= 1;
+ }
+ if (pFirstPCMFrame) {
+ *pFirstPCMFrame = firstPCMFrame;
+ }
+ if (pLastPCMFrame) {
+ *pLastPCMFrame = lastPCMFrame;
+ }
+}
+static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac)
+{
+ drflac_bool32 result;
+ DRFLAC_ASSERT(pFlac != NULL);
+ result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes);
+ DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
+ pFlac->currentPCMFrame = 0;
+ return result;
+}
+static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac)
+{
+ DRFLAC_ASSERT(pFlac != NULL);
+ return drflac__seek_flac_frame(pFlac);
+}
+static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek)
+{
+ drflac_uint64 pcmFramesRead = 0;
+ while (pcmFramesToSeek > 0) {
+ if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
+ break;
+ }
+ } else {
+ if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) {
+ pcmFramesRead += pcmFramesToSeek;
+ pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek;
+ pcmFramesToSeek = 0;
+ } else {
+ pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining;
+ pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining;
+ pFlac->currentFLACFrame.pcmFramesRemaining = 0;
+ }
+ }
+ }
+ pFlac->currentPCMFrame += pcmFramesRead;
+ return pcmFramesRead;
+}
+static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex)
+{
+ drflac_bool32 isMidFrame = DRFLAC_FALSE;
+ drflac_uint64 runningPCMFrameCount;
+ DRFLAC_ASSERT(pFlac != NULL);
+ if (pcmFrameIndex >= pFlac->currentPCMFrame) {
+ runningPCMFrameCount = pFlac->currentPCMFrame;
+ if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ isMidFrame = DRFLAC_TRUE;
+ }
+ } else {
+ runningPCMFrameCount = 0;
+ if (!drflac__seek_to_first_frame(pFlac)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ for (;;) {
+ drflac_uint64 pcmFrameCountInThisFLACFrame;
+ drflac_uint64 firstPCMFrameInFLACFrame = 0;
+ drflac_uint64 lastPCMFrameInFLACFrame = 0;
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
+ pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
+ if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
+ drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
+ if (!isMidFrame) {
+ drflac_result result = drflac__decode_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ goto next_iteration;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
+ }
+ } else {
+ if (!isMidFrame) {
+ drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ goto next_iteration;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
+ pFlac->currentFLACFrame.pcmFramesRemaining = 0;
+ isMidFrame = DRFLAC_FALSE;
+ }
+ if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
+ return DRFLAC_TRUE;
+ }
+ }
+ next_iteration:
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ }
+}
+#if !defined(DR_FLAC_NO_CRC)
+#define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f
+static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset)
+{
+ DRFLAC_ASSERT(pFlac != NULL);
+ DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL);
+ DRFLAC_ASSERT(targetByte >= rangeLo);
+ DRFLAC_ASSERT(targetByte <= rangeHi);
+ *pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes;
+ for (;;) {
+ if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) {
+ if (targetByte == 0) {
+ drflac__seek_to_first_frame(pFlac);
+ return DRFLAC_FALSE;
+ }
+ targetByte = rangeLo + ((rangeHi - rangeLo)/2);
+ rangeHi = targetByte;
+ } else {
+ DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
+#if 1
+ if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
+ targetByte = rangeLo + ((rangeHi - rangeLo)/2);
+ rangeHi = targetByte;
+ } else {
+ break;
+ }
+#else
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ targetByte = rangeLo + ((rangeHi - rangeLo)/2);
+ rangeHi = targetByte;
+ } else {
+ break;
+ }
+#endif
+ }
+ }
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
+ DRFLAC_ASSERT(targetByte <= rangeHi);
+ *pLastSuccessfulSeekOffset = targetByte;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset)
+{
+#if 0
+ if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) {
+ if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) {
+ return DRFLAC_FALSE;
+ }
+ }
+#endif
+ return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset;
+}
+static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi)
+{
+ drflac_uint64 targetByte;
+ drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount;
+ drflac_uint64 pcmRangeHi = 0;
+ drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1;
+ drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo;
+ drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
+ targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO);
+ if (targetByte > byteRangeHi) {
+ targetByte = byteRangeHi;
+ }
+ for (;;) {
+ if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) {
+ drflac_uint64 newPCMRangeLo;
+ drflac_uint64 newPCMRangeHi;
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi);
+ if (pcmRangeLo == newPCMRangeLo) {
+ if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) {
+ break;
+ }
+ if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
+ return DRFLAC_TRUE;
+ } else {
+ break;
+ }
+ }
+ pcmRangeLo = newPCMRangeLo;
+ pcmRangeHi = newPCMRangeHi;
+ if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) {
+ if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) {
+ return DRFLAC_TRUE;
+ } else {
+ break;
+ }
+ } else {
+ const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f);
+ if (pcmRangeLo > pcmFrameIndex) {
+ byteRangeHi = lastSuccessfulSeekOffset;
+ if (byteRangeLo > byteRangeHi) {
+ byteRangeLo = byteRangeHi;
+ }
+ targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2);
+ if (targetByte < byteRangeLo) {
+ targetByte = byteRangeLo;
+ }
+ } else {
+ if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) {
+ if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
+ return DRFLAC_TRUE;
+ } else {
+ break;
+ }
+ } else {
+ byteRangeLo = lastSuccessfulSeekOffset;
+ if (byteRangeHi < byteRangeLo) {
+ byteRangeHi = byteRangeLo;
+ }
+ targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio);
+ if (targetByte > byteRangeHi) {
+ targetByte = byteRangeHi;
+ }
+ if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) {
+ closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset;
+ }
+ }
+ }
+ }
+ } else {
+ break;
+ }
+ }
+ drflac__seek_to_first_frame(pFlac);
+ return DRFLAC_FALSE;
+}
+static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex)
+{
+ drflac_uint64 byteRangeLo;
+ drflac_uint64 byteRangeHi;
+ drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
+ if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) {
+ return DRFLAC_FALSE;
+ }
+ if (pcmFrameIndex < seekForwardThreshold) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex;
+ }
+ byteRangeLo = pFlac->firstFLACFramePosInBytes;
+ byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
+ return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi);
+}
+#endif
+static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex)
+{
+ drflac_uint32 iClosestSeekpoint = 0;
+ drflac_bool32 isMidFrame = DRFLAC_FALSE;
+ drflac_uint64 runningPCMFrameCount;
+ drflac_uint32 iSeekpoint;
+ DRFLAC_ASSERT(pFlac != NULL);
+ if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) {
+ return DRFLAC_FALSE;
+ }
+ for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
+ if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) {
+ break;
+ }
+ iClosestSeekpoint = iSeekpoint;
+ }
+ if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) {
+ return DRFLAC_FALSE;
+ }
+ if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) {
+ return DRFLAC_FALSE;
+ }
+#if !defined(DR_FLAC_NO_CRC)
+ if (pFlac->totalPCMFrameCount > 0) {
+ drflac_uint64 byteRangeLo;
+ drflac_uint64 byteRangeHi;
+ byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
+ byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset;
+ if (iClosestSeekpoint < pFlac->seekpointCount-1) {
+ drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1;
+ if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) {
+ return DRFLAC_FALSE;
+ }
+ if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) {
+ byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1;
+ }
+ }
+ if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
+ if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
+ if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) {
+ return DRFLAC_TRUE;
+ }
+ }
+ }
+ }
+#endif
+ if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) {
+ runningPCMFrameCount = pFlac->currentPCMFrame;
+ if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ isMidFrame = DRFLAC_TRUE;
+ }
+ } else {
+ runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame;
+ if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ for (;;) {
+ drflac_uint64 pcmFrameCountInThisFLACFrame;
+ drflac_uint64 firstPCMFrameInFLACFrame = 0;
+ drflac_uint64 lastPCMFrameInFLACFrame = 0;
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
+ pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
+ if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
+ drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
+ if (!isMidFrame) {
+ drflac_result result = drflac__decode_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ goto next_iteration;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
+ }
+ } else {
+ if (!isMidFrame) {
+ drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ goto next_iteration;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
+ pFlac->currentFLACFrame.pcmFramesRemaining = 0;
+ isMidFrame = DRFLAC_FALSE;
+ }
+ if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
+ return DRFLAC_TRUE;
+ }
+ }
+ next_iteration:
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ }
+}
+#ifndef DR_FLAC_NO_OGG
+typedef struct
+{
+ drflac_uint8 capturePattern[4];
+ drflac_uint8 structureVersion;
+ drflac_uint8 headerType;
+ drflac_uint64 granulePosition;
+ drflac_uint32 serialNumber;
+ drflac_uint32 sequenceNumber;
+ drflac_uint32 checksum;
+ drflac_uint8 segmentCount;
+ drflac_uint8 segmentTable[255];
+} drflac_ogg_page_header;
+#endif
+typedef struct
+{
+ drflac_read_proc onRead;
+ drflac_seek_proc onSeek;
+ drflac_meta_proc onMeta;
+ drflac_container container;
+ void* pUserData;
+ void* pUserDataMD;
+ drflac_uint32 sampleRate;
+ drflac_uint8 channels;
+ drflac_uint8 bitsPerSample;
+ drflac_uint64 totalPCMFrameCount;
+ drflac_uint16 maxBlockSizeInPCMFrames;
+ drflac_uint64 runningFilePos;
+ drflac_bool32 hasStreamInfoBlock;
+ drflac_bool32 hasMetadataBlocks;
+ drflac_bs bs;
+ drflac_frame_header firstFrameHeader;
+#ifndef DR_FLAC_NO_OGG
+ drflac_uint32 oggSerial;
+ drflac_uint64 oggFirstBytePos;
+ drflac_ogg_page_header oggBosHeader;
+#endif
+} drflac_init_info;
+static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
+{
+ blockHeader = drflac__be2host_32(blockHeader);
+ *isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31);
+ *blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24);
+ *blockSize = (blockHeader & 0x00FFFFFFUL);
+}
+static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
+{
+ drflac_uint32 blockHeader;
+ *blockSize = 0;
+ if (onRead(pUserData, &blockHeader, 4) != 4) {
+ return DRFLAC_FALSE;
+ }
+ drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize);
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo)
+{
+ drflac_uint32 blockSizes;
+ drflac_uint64 frameSizes = 0;
+ drflac_uint64 importantProps;
+ drflac_uint8 md5[16];
+ if (onRead(pUserData, &blockSizes, 4) != 4) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, &frameSizes, 6) != 6) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, &importantProps, 8) != 8) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) {
+ return DRFLAC_FALSE;
+ }
+ blockSizes = drflac__be2host_32(blockSizes);
+ frameSizes = drflac__be2host_64(frameSizes);
+ importantProps = drflac__be2host_64(importantProps);
+ pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16);
+ pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF);
+ pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40);
+ pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16);
+ pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44);
+ pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1;
+ pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1;
+ pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF)));
+ DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5));
+ return DRFLAC_TRUE;
+}
+static void* drflac__malloc_default(size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRFLAC_MALLOC(sz);
+}
+static void* drflac__realloc_default(void* p, size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRFLAC_REALLOC(p, sz);
+}
+static void drflac__free_default(void* p, void* pUserData)
+{
+ (void)pUserData;
+ DRFLAC_FREE(p);
+}
+static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onMalloc != NULL) {
+ return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+ }
+ return NULL;
+}
+static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+ void* p2;
+ p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+ if (p2 == NULL) {
+ return NULL;
+ }
+ if (p != NULL) {
+ DRFLAC_COPY_MEMORY(p2, p, szOld);
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+ return p2;
+ }
+ return NULL;
+}
+static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ if (p == NULL || pAllocationCallbacks == NULL) {
+ return;
+ }
+ if (pAllocationCallbacks->onFree != NULL) {
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+}
+static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize, drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac_uint64 runningFilePos = 42;
+ drflac_uint64 seektablePos = 0;
+ drflac_uint32 seektableSize = 0;
+ for (;;) {
+ drflac_metadata metadata;
+ drflac_uint8 isLastBlock = 0;
+ drflac_uint8 blockType;
+ drflac_uint32 blockSize;
+ if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) {
+ return DRFLAC_FALSE;
+ }
+ runningFilePos += 4;
+ metadata.type = blockType;
+ metadata.pRawData = NULL;
+ metadata.rawDataSize = 0;
+ switch (blockType)
+ {
+ case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION:
+ {
+ if (blockSize < 4) {
+ return DRFLAC_FALSE;
+ }
+ if (onMeta) {
+ void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData);
+ metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32));
+ metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32);
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE:
+ {
+ seektablePos = runningFilePos;
+ seektableSize = blockSize;
+ if (onMeta) {
+ drflac_uint32 iSeekpoint;
+ void* pRawData;
+ pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint);
+ metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData;
+ for (iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) {
+ drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint;
+ pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame);
+ pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset);
+ pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount);
+ }
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT:
+ {
+ if (blockSize < 8) {
+ return DRFLAC_FALSE;
+ }
+ if (onMeta) {
+ void* pRawData;
+ const char* pRunningData;
+ const char* pRunningDataEnd;
+ drflac_uint32 i;
+ pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ pRunningData = (const char*)pRawData;
+ pRunningDataEnd = (const char*)pRawData + blockSize;
+ metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength;
+ metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.data.vorbis_comment.pComments = pRunningData;
+ for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) {
+ drflac_uint32 commentLength;
+ if (pRunningDataEnd - pRunningData < 4) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ pRunningData += commentLength;
+ }
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET:
+ {
+ if (blockSize < 396) {
+ return DRFLAC_FALSE;
+ }
+ if (onMeta) {
+ void* pRawData;
+ const char* pRunningData;
+ const char* pRunningDataEnd;
+ drflac_uint8 iTrack;
+ drflac_uint8 iIndex;
+ pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ pRunningData = (const char*)pRawData;
+ pRunningDataEnd = (const char*)pRawData + blockSize;
+ DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128;
+ metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8;
+ metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259;
+ metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1;
+ metadata.data.cuesheet.pTrackData = pRunningData;
+ for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) {
+ drflac_uint8 indexCount;
+ drflac_uint32 indexPointSize;
+ if (pRunningDataEnd - pRunningData < 36) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ pRunningData += 35;
+ indexCount = pRunningData[0]; pRunningData += 1;
+ indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index);
+ if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ for (iIndex = 0; iIndex < indexCount; ++iIndex) {
+ drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData;
+ pRunningData += sizeof(drflac_cuesheet_track_index);
+ pTrack->offset = drflac__be2host_64(pTrack->offset);
+ }
+ }
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_PICTURE:
+ {
+ if (blockSize < 32) {
+ return DRFLAC_FALSE;
+ }
+ if (onMeta) {
+ void* pRawData;
+ const char* pRunningData;
+ const char* pRunningDataEnd;
+ pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ pRunningData = (const char*)pRawData;
+ pRunningDataEnd = (const char*)pRawData + blockSize;
+ metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength;
+ metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength;
+ metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData;
+ if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_PADDING:
+ {
+ if (onMeta) {
+ metadata.data.padding.unused = 0;
+ if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
+ isLastBlock = DRFLAC_TRUE;
+ } else {
+ onMeta(pUserDataMD, &metadata);
+ }
+ }
+ } break;
+ case DRFLAC_METADATA_BLOCK_TYPE_INVALID:
+ {
+ if (onMeta) {
+ if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
+ isLastBlock = DRFLAC_TRUE;
+ }
+ }
+ } break;
+ default:
+ {
+ if (onMeta) {
+ void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
+ if (pRawData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, pRawData, blockSize) != blockSize) {
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ return DRFLAC_FALSE;
+ }
+ metadata.pRawData = pRawData;
+ metadata.rawDataSize = blockSize;
+ onMeta(pUserDataMD, &metadata);
+ drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
+ }
+ } break;
+ }
+ if (onMeta == NULL && blockSize > 0) {
+ if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
+ isLastBlock = DRFLAC_TRUE;
+ }
+ }
+ runningFilePos += blockSize;
+ if (isLastBlock) {
+ break;
+ }
+ }
+ *pSeektablePos = seektablePos;
+ *pSeektableSize = seektableSize;
+ *pFirstFramePos = runningFilePos;
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
+{
+ drflac_uint8 isLastBlock;
+ drflac_uint8 blockType;
+ drflac_uint32 blockSize;
+ (void)onSeek;
+ pInit->container = drflac_container_native;
+ if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
+ return DRFLAC_FALSE;
+ }
+ if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
+ if (!relaxed) {
+ return DRFLAC_FALSE;
+ } else {
+ pInit->hasStreamInfoBlock = DRFLAC_FALSE;
+ pInit->hasMetadataBlocks = DRFLAC_FALSE;
+ if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) {
+ return DRFLAC_FALSE;
+ }
+ if (pInit->firstFrameHeader.bitsPerSample == 0) {
+ return DRFLAC_FALSE;
+ }
+ pInit->sampleRate = pInit->firstFrameHeader.sampleRate;
+ pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment);
+ pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample;
+ pInit->maxBlockSizeInPCMFrames = 65535;
+ return DRFLAC_TRUE;
+ }
+ } else {
+ drflac_streaminfo streaminfo;
+ if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
+ return DRFLAC_FALSE;
+ }
+ pInit->hasStreamInfoBlock = DRFLAC_TRUE;
+ pInit->sampleRate = streaminfo.sampleRate;
+ pInit->channels = streaminfo.channels;
+ pInit->bitsPerSample = streaminfo.bitsPerSample;
+ pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
+ pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames;
+ pInit->hasMetadataBlocks = !isLastBlock;
+ if (onMeta) {
+ drflac_metadata metadata;
+ metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
+ metadata.pRawData = NULL;
+ metadata.rawDataSize = 0;
+ metadata.data.streaminfo = streaminfo;
+ onMeta(pUserDataMD, &metadata);
+ }
+ return DRFLAC_TRUE;
+ }
+}
+#ifndef DR_FLAC_NO_OGG
+#define DRFLAC_OGG_MAX_PAGE_SIZE 65307
+#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199
+typedef enum
+{
+ drflac_ogg_recover_on_crc_mismatch,
+ drflac_ogg_fail_on_crc_mismatch
+} drflac_ogg_crc_mismatch_recovery;
+#ifndef DR_FLAC_NO_CRC
+static drflac_uint32 drflac__crc32_table[] = {
+ 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L,
+ 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L,
+ 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L,
+ 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL,
+ 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L,
+ 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L,
+ 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L,
+ 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL,
+ 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L,
+ 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L,
+ 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L,
+ 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL,
+ 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L,
+ 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L,
+ 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L,
+ 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL,
+ 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL,
+ 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L,
+ 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L,
+ 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL,
+ 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL,
+ 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L,
+ 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L,
+ 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL,
+ 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL,
+ 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L,
+ 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L,
+ 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL,
+ 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL,
+ 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L,
+ 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L,
+ 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL,
+ 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L,
+ 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL,
+ 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL,
+ 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L,
+ 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L,
+ 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL,
+ 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL,
+ 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L,
+ 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L,
+ 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL,
+ 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL,
+ 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L,
+ 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L,
+ 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL,
+ 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL,
+ 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L,
+ 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L,
+ 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL,
+ 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L,
+ 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L,
+ 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L,
+ 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL,
+ 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L,
+ 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L,
+ 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L,
+ 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL,
+ 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L,
+ 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L,
+ 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L,
+ 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL,
+ 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L,
+ 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L
+};
+#endif
+static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data)
+{
+#ifndef DR_FLAC_NO_CRC
+ return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data];
+#else
+ (void)data;
+ return crc32;
+#endif
+}
+#if 0
+static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data)
+{
+ crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF));
+ crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF));
+ crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF));
+ crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF));
+ return crc32;
+}
+static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data)
+{
+ crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF));
+ crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF));
+ return crc32;
+}
+#endif
+static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize)
+{
+ drflac_uint32 i;
+ for (i = 0; i < dataSize; ++i) {
+ crc32 = drflac_crc32_byte(crc32, pData[i]);
+ }
+ return crc32;
+}
+static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4])
+{
+ return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S';
+}
+static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader)
+{
+ return 27 + pHeader->segmentCount;
+}
+static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader)
+{
+ drflac_uint32 pageBodySize = 0;
+ int i;
+ for (i = 0; i < pHeader->segmentCount; ++i) {
+ pageBodySize += pHeader->segmentTable[i];
+ }
+ return pageBodySize;
+}
+static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
+{
+ drflac_uint8 data[23];
+ drflac_uint32 i;
+ DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32);
+ if (onRead(pUserData, data, 23) != 23) {
+ return DRFLAC_AT_END;
+ }
+ *pBytesRead += 23;
+ pHeader->capturePattern[0] = 'O';
+ pHeader->capturePattern[1] = 'g';
+ pHeader->capturePattern[2] = 'g';
+ pHeader->capturePattern[3] = 'S';
+ pHeader->structureVersion = data[0];
+ pHeader->headerType = data[1];
+ DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8);
+ DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4);
+ DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4);
+ DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4);
+ pHeader->segmentCount = data[22];
+ data[18] = 0;
+ data[19] = 0;
+ data[20] = 0;
+ data[21] = 0;
+ for (i = 0; i < 23; ++i) {
+ *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]);
+ }
+ if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) {
+ return DRFLAC_AT_END;
+ }
+ *pBytesRead += pHeader->segmentCount;
+ for (i = 0; i < pHeader->segmentCount; ++i) {
+ *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]);
+ }
+ return DRFLAC_SUCCESS;
+}
+static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
+{
+ drflac_uint8 id[4];
+ *pBytesRead = 0;
+ if (onRead(pUserData, id, 4) != 4) {
+ return DRFLAC_AT_END;
+ }
+ *pBytesRead += 4;
+ for (;;) {
+ if (drflac_ogg__is_capture_pattern(id)) {
+ drflac_result result;
+ *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
+ result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32);
+ if (result == DRFLAC_SUCCESS) {
+ return DRFLAC_SUCCESS;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ continue;
+ } else {
+ return result;
+ }
+ }
+ } else {
+ id[0] = id[1];
+ id[1] = id[2];
+ id[2] = id[3];
+ if (onRead(pUserData, &id[3], 1) != 1) {
+ return DRFLAC_AT_END;
+ }
+ *pBytesRead += 1;
+ }
+ }
+}
+typedef struct
+{
+ drflac_read_proc onRead;
+ drflac_seek_proc onSeek;
+ void* pUserData;
+ drflac_uint64 currentBytePos;
+ drflac_uint64 firstBytePos;
+ drflac_uint32 serialNumber;
+ drflac_ogg_page_header bosPageHeader;
+ drflac_ogg_page_header currentPageHeader;
+ drflac_uint32 bytesRemainingInPage;
+ drflac_uint32 pageDataSize;
+ drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE];
+} drflac_oggbs;
+static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead)
+{
+ size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead);
+ oggbs->currentBytePos += bytesActuallyRead;
+ return bytesActuallyRead;
+}
+static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin)
+{
+ if (origin == drflac_seek_origin_start) {
+ if (offset <= 0x7FFFFFFF) {
+ if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->currentBytePos = offset;
+ return DRFLAC_TRUE;
+ } else {
+ if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->currentBytePos = offset;
+ return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current);
+ }
+ } else {
+ while (offset > 0x7FFFFFFF) {
+ if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->currentBytePos += 0x7FFFFFFF;
+ offset -= 0x7FFFFFFF;
+ }
+ if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->currentBytePos += offset;
+ return DRFLAC_TRUE;
+ }
+}
+static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod)
+{
+ drflac_ogg_page_header header;
+ for (;;) {
+ drflac_uint32 crc32 = 0;
+ drflac_uint32 bytesRead;
+ drflac_uint32 pageBodySize;
+#ifndef DR_FLAC_NO_CRC
+ drflac_uint32 actualCRC32;
+#endif
+ if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->currentBytePos += bytesRead;
+ pageBodySize = drflac_ogg__get_page_body_size(&header);
+ if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) {
+ continue;
+ }
+ if (header.serialNumber != oggbs->serialNumber) {
+ if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ continue;
+ }
+ if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->pageDataSize = pageBodySize;
+#ifndef DR_FLAC_NO_CRC
+ actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize);
+ if (actualCRC32 != header.checksum) {
+ if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) {
+ continue;
+ } else {
+ drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch);
+ return DRFLAC_FALSE;
+ }
+ }
+#else
+ (void)recoveryMethod;
+#endif
+ oggbs->currentPageHeader = header;
+ oggbs->bytesRemainingInPage = pageBodySize;
+ return DRFLAC_TRUE;
+ }
+}
+#if 0
+static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg)
+{
+ drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage;
+ drflac_uint8 iSeg = 0;
+ drflac_uint32 iByte = 0;
+ while (iByte < bytesConsumedInPage) {
+ drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
+ if (iByte + segmentSize > bytesConsumedInPage) {
+ break;
+ } else {
+ iSeg += 1;
+ iByte += segmentSize;
+ }
+ }
+ *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte);
+ return iSeg;
+}
+static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs)
+{
+ for (;;) {
+ drflac_bool32 atEndOfPage = DRFLAC_FALSE;
+ drflac_uint8 bytesRemainingInSeg;
+ drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg);
+ drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg;
+ for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) {
+ drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
+ if (segmentSize < 255) {
+ if (iSeg == oggbs->currentPageHeader.segmentCount-1) {
+ atEndOfPage = DRFLAC_TRUE;
+ }
+ break;
+ }
+ bytesToEndOfPacketOrPage += segmentSize;
+ }
+ drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current);
+ oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage;
+ if (atEndOfPage) {
+ if (!drflac_oggbs__goto_next_page(oggbs)) {
+ return DRFLAC_FALSE;
+ }
+ if ((oggbs->currentPageHeader.headerType & 0x01) == 0) {
+ return DRFLAC_TRUE;
+ }
+ } else {
+ return DRFLAC_TRUE;
+ }
+ }
+}
+static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs)
+{
+ return drflac_oggbs__seek_to_next_packet(oggbs);
+}
+#endif
+static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead)
+{
+ drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
+ drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut;
+ size_t bytesRead = 0;
+ DRFLAC_ASSERT(oggbs != NULL);
+ DRFLAC_ASSERT(pRunningBufferOut != NULL);
+ while (bytesRead < bytesToRead) {
+ size_t bytesRemainingToRead = bytesToRead - bytesRead;
+ if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) {
+ DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead);
+ bytesRead += bytesRemainingToRead;
+ oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead;
+ break;
+ }
+ if (oggbs->bytesRemainingInPage > 0) {
+ DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage);
+ bytesRead += oggbs->bytesRemainingInPage;
+ pRunningBufferOut += oggbs->bytesRemainingInPage;
+ oggbs->bytesRemainingInPage = 0;
+ }
+ DRFLAC_ASSERT(bytesRemainingToRead > 0);
+ if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
+ break;
+ }
+ }
+ return bytesRead;
+}
+static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin)
+{
+ drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
+ int bytesSeeked = 0;
+ DRFLAC_ASSERT(oggbs != NULL);
+ DRFLAC_ASSERT(offset >= 0);
+ if (origin == drflac_seek_origin_start) {
+ if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
+ return DRFLAC_FALSE;
+ }
+ return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current);
+ }
+ DRFLAC_ASSERT(origin == drflac_seek_origin_current);
+ while (bytesSeeked < offset) {
+ int bytesRemainingToSeek = offset - bytesSeeked;
+ DRFLAC_ASSERT(bytesRemainingToSeek >= 0);
+ if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) {
+ bytesSeeked += bytesRemainingToSeek;
+ (void)bytesSeeked;
+ oggbs->bytesRemainingInPage -= bytesRemainingToSeek;
+ break;
+ }
+ if (oggbs->bytesRemainingInPage > 0) {
+ bytesSeeked += (int)oggbs->bytesRemainingInPage;
+ oggbs->bytesRemainingInPage = 0;
+ }
+ DRFLAC_ASSERT(bytesRemainingToSeek > 0);
+ if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ return DRFLAC_TRUE;
+}
+static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
+{
+ drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
+ drflac_uint64 originalBytePos;
+ drflac_uint64 runningGranulePosition;
+ drflac_uint64 runningFrameBytePos;
+ drflac_uint64 runningPCMFrameCount;
+ DRFLAC_ASSERT(oggbs != NULL);
+ originalBytePos = oggbs->currentBytePos;
+ if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) {
+ return DRFLAC_FALSE;
+ }
+ oggbs->bytesRemainingInPage = 0;
+ runningGranulePosition = 0;
+ for (;;) {
+ if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
+ drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start);
+ return DRFLAC_FALSE;
+ }
+ runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize;
+ if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) {
+ break;
+ }
+ if ((oggbs->currentPageHeader.headerType & 0x01) == 0) {
+ if (oggbs->currentPageHeader.segmentTable[0] >= 2) {
+ drflac_uint8 firstBytesInPage[2];
+ firstBytesInPage[0] = oggbs->pageData[0];
+ firstBytesInPage[1] = oggbs->pageData[1];
+ if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) {
+ runningGranulePosition = oggbs->currentPageHeader.granulePosition;
+ }
+ continue;
+ }
+ }
+ }
+ if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) {
+ return DRFLAC_FALSE;
+ }
+ if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
+ return DRFLAC_FALSE;
+ }
+ runningPCMFrameCount = runningGranulePosition;
+ for (;;) {
+ drflac_uint64 firstPCMFrameInFLACFrame = 0;
+ drflac_uint64 lastPCMFrameInFLACFrame = 0;
+ drflac_uint64 pcmFrameCountInThisFrame;
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ return DRFLAC_FALSE;
+ }
+ drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
+ pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
+ if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) {
+ drflac_result result = drflac__decode_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ pFlac->currentPCMFrame = pcmFrameIndex;
+ pFlac->currentFLACFrame.pcmFramesRemaining = 0;
+ return DRFLAC_TRUE;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) {
+ drflac_result result = drflac__decode_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount);
+ if (pcmFramesToDecode == 0) {
+ return DRFLAC_TRUE;
+ }
+ pFlac->currentPCMFrame = runningPCMFrameCount;
+ return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ continue;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ runningPCMFrameCount += pcmFrameCountInThisFrame;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ continue;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ }
+ }
+}
+static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
+{
+ drflac_ogg_page_header header;
+ drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
+ drflac_uint32 bytesRead = 0;
+ (void)relaxed;
+ pInit->container = drflac_container_ogg;
+ pInit->oggFirstBytePos = 0;
+ if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
+ return DRFLAC_FALSE;
+ }
+ pInit->runningFilePos += bytesRead;
+ for (;;) {
+ int pageBodySize;
+ if ((header.headerType & 0x02) == 0) {
+ return DRFLAC_FALSE;
+ }
+ pageBodySize = drflac_ogg__get_page_body_size(&header);
+ if (pageBodySize == 51) {
+ drflac_uint32 bytesRemainingInPage = pageBodySize;
+ drflac_uint8 packetType;
+ if (onRead(pUserData, &packetType, 1) != 1) {
+ return DRFLAC_FALSE;
+ }
+ bytesRemainingInPage -= 1;
+ if (packetType == 0x7F) {
+ drflac_uint8 sig[4];
+ if (onRead(pUserData, sig, 4) != 4) {
+ return DRFLAC_FALSE;
+ }
+ bytesRemainingInPage -= 4;
+ if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') {
+ drflac_uint8 mappingVersion[2];
+ if (onRead(pUserData, mappingVersion, 2) != 2) {
+ return DRFLAC_FALSE;
+ }
+ if (mappingVersion[0] != 1) {
+ return DRFLAC_FALSE;
+ }
+ if (!onSeek(pUserData, 2, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ if (onRead(pUserData, sig, 4) != 4) {
+ return DRFLAC_FALSE;
+ }
+ if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') {
+ drflac_streaminfo streaminfo;
+ drflac_uint8 isLastBlock;
+ drflac_uint8 blockType;
+ drflac_uint32 blockSize;
+ if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
+ return DRFLAC_FALSE;
+ }
+ if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
+ return DRFLAC_FALSE;
+ }
+ if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
+ pInit->hasStreamInfoBlock = DRFLAC_TRUE;
+ pInit->sampleRate = streaminfo.sampleRate;
+ pInit->channels = streaminfo.channels;
+ pInit->bitsPerSample = streaminfo.bitsPerSample;
+ pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
+ pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames;
+ pInit->hasMetadataBlocks = !isLastBlock;
+ if (onMeta) {
+ drflac_metadata metadata;
+ metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
+ metadata.pRawData = NULL;
+ metadata.rawDataSize = 0;
+ metadata.data.streaminfo = streaminfo;
+ onMeta(pUserDataMD, &metadata);
+ }
+ pInit->runningFilePos += pageBodySize;
+ pInit->oggFirstBytePos = pInit->runningFilePos - 79;
+ pInit->oggSerial = header.serialNumber;
+ pInit->oggBosHeader = header;
+ break;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ } else {
+ if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ }
+ pInit->runningFilePos += pageBodySize;
+ if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
+ return DRFLAC_FALSE;
+ }
+ pInit->runningFilePos += bytesRead;
+ }
+ pInit->hasMetadataBlocks = DRFLAC_TRUE;
+ return DRFLAC_TRUE;
+}
+#endif
+static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD)
+{
+ drflac_bool32 relaxed;
+ drflac_uint8 id[4];
+ if (pInit == NULL || onRead == NULL || onSeek == NULL) {
+ return DRFLAC_FALSE;
+ }
+ DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit));
+ pInit->onRead = onRead;
+ pInit->onSeek = onSeek;
+ pInit->onMeta = onMeta;
+ pInit->container = container;
+ pInit->pUserData = pUserData;
+ pInit->pUserDataMD = pUserDataMD;
+ pInit->bs.onRead = onRead;
+ pInit->bs.onSeek = onSeek;
+ pInit->bs.pUserData = pUserData;
+ drflac__reset_cache(&pInit->bs);
+ relaxed = container != drflac_container_unknown;
+ for (;;) {
+ if (onRead(pUserData, id, 4) != 4) {
+ return DRFLAC_FALSE;
+ }
+ pInit->runningFilePos += 4;
+ if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') {
+ drflac_uint8 header[6];
+ drflac_uint8 flags;
+ drflac_uint32 headerSize;
+ if (onRead(pUserData, header, 6) != 6) {
+ return DRFLAC_FALSE;
+ }
+ pInit->runningFilePos += 6;
+ flags = header[1];
+ DRFLAC_COPY_MEMORY(&headerSize, header+2, 4);
+ headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize));
+ if (flags & 0x10) {
+ headerSize += 10;
+ }
+ if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) {
+ return DRFLAC_FALSE;
+ }
+ pInit->runningFilePos += headerSize;
+ } else {
+ break;
+ }
+ }
+ if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') {
+ return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
+ }
+#ifndef DR_FLAC_NO_OGG
+ if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') {
+ return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
+ }
+#endif
+ if (relaxed) {
+ if (container == drflac_container_native) {
+ return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
+ }
+#ifndef DR_FLAC_NO_OGG
+ if (container == drflac_container_ogg) {
+ return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
+ }
+#endif
+ }
+ return DRFLAC_FALSE;
+}
+static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit)
+{
+ DRFLAC_ASSERT(pFlac != NULL);
+ DRFLAC_ASSERT(pInit != NULL);
+ DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac));
+ pFlac->bs = pInit->bs;
+ pFlac->onMeta = pInit->onMeta;
+ pFlac->pUserDataMD = pInit->pUserDataMD;
+ pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames;
+ pFlac->sampleRate = pInit->sampleRate;
+ pFlac->channels = (drflac_uint8)pInit->channels;
+ pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample;
+ pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount;
+ pFlac->container = pInit->container;
+}
+static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac_init_info init;
+ drflac_uint32 allocationSize;
+ drflac_uint32 wholeSIMDVectorCountPerChannel;
+ drflac_uint32 decodedSamplesAllocationSize;
+#ifndef DR_FLAC_NO_OGG
+ drflac_oggbs oggbs;
+#endif
+ drflac_uint64 firstFramePos;
+ drflac_uint64 seektablePos;
+ drflac_uint32 seektableSize;
+ drflac_allocation_callbacks allocationCallbacks;
+ drflac* pFlac;
+ drflac__init_cpu_caps();
+ if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) {
+ return NULL;
+ }
+ if (pAllocationCallbacks != NULL) {
+ allocationCallbacks = *pAllocationCallbacks;
+ if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) {
+ return NULL;
+ }
+ } else {
+ allocationCallbacks.pUserData = NULL;
+ allocationCallbacks.onMalloc = drflac__malloc_default;
+ allocationCallbacks.onRealloc = drflac__realloc_default;
+ allocationCallbacks.onFree = drflac__free_default;
+ }
+ allocationSize = sizeof(drflac);
+ if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) {
+ wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32)));
+ } else {
+ wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1;
+ }
+ decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels;
+ allocationSize += decodedSamplesAllocationSize;
+ allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE;
+#ifndef DR_FLAC_NO_OGG
+ if (init.container == drflac_container_ogg) {
+ allocationSize += sizeof(drflac_oggbs);
+ }
+ DRFLAC_ZERO_MEMORY(&oggbs, sizeof(oggbs));
+ if (init.container == drflac_container_ogg) {
+ oggbs.onRead = onRead;
+ oggbs.onSeek = onSeek;
+ oggbs.pUserData = pUserData;
+ oggbs.currentBytePos = init.oggFirstBytePos;
+ oggbs.firstBytePos = init.oggFirstBytePos;
+ oggbs.serialNumber = init.oggSerial;
+ oggbs.bosPageHeader = init.oggBosHeader;
+ oggbs.bytesRemainingInPage = 0;
+ }
+#endif
+ firstFramePos = 42;
+ seektablePos = 0;
+ seektableSize = 0;
+ if (init.hasMetadataBlocks) {
+ drflac_read_proc onReadOverride = onRead;
+ drflac_seek_proc onSeekOverride = onSeek;
+ void* pUserDataOverride = pUserData;
+#ifndef DR_FLAC_NO_OGG
+ if (init.container == drflac_container_ogg) {
+ onReadOverride = drflac__on_read_ogg;
+ onSeekOverride = drflac__on_seek_ogg;
+ pUserDataOverride = (void*)&oggbs;
+ }
+#endif
+ if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize, &allocationCallbacks)) {
+ return NULL;
+ }
+ allocationSize += seektableSize;
+ }
+ pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ drflac__init_from_info(pFlac, &init);
+ pFlac->allocationCallbacks = allocationCallbacks;
+ pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE);
+#ifndef DR_FLAC_NO_OGG
+ if (init.container == drflac_container_ogg) {
+ drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize);
+ *pInternalOggbs = oggbs;
+ pFlac->bs.onRead = drflac__on_read_ogg;
+ pFlac->bs.onSeek = drflac__on_seek_ogg;
+ pFlac->bs.pUserData = (void*)pInternalOggbs;
+ pFlac->_oggbs = (void*)pInternalOggbs;
+ }
+#endif
+ pFlac->firstFLACFramePosInBytes = firstFramePos;
+#ifndef DR_FLAC_NO_OGG
+ if (init.container == drflac_container_ogg)
+ {
+ pFlac->pSeekpoints = NULL;
+ pFlac->seekpointCount = 0;
+ }
+ else
+#endif
+ {
+ if (seektablePos != 0) {
+ pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints);
+ pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize);
+ DRFLAC_ASSERT(pFlac->bs.onSeek != NULL);
+ DRFLAC_ASSERT(pFlac->bs.onRead != NULL);
+ if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) {
+ if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) {
+ drflac_uint32 iSeekpoint;
+ for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
+ pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame);
+ pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset);
+ pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount);
+ }
+ } else {
+ pFlac->pSeekpoints = NULL;
+ pFlac->seekpointCount = 0;
+ }
+ if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) {
+ drflac__free_from_callbacks(pFlac, &allocationCallbacks);
+ return NULL;
+ }
+ } else {
+ pFlac->pSeekpoints = NULL;
+ pFlac->seekpointCount = 0;
+ }
+ }
+ }
+ if (!init.hasStreamInfoBlock) {
+ pFlac->currentFLACFrame.header = init.firstFrameHeader;
+ for (;;) {
+ drflac_result result = drflac__decode_flac_frame(pFlac);
+ if (result == DRFLAC_SUCCESS) {
+ break;
+ } else {
+ if (result == DRFLAC_CRC_MISMATCH) {
+ if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
+ drflac__free_from_callbacks(pFlac, &allocationCallbacks);
+ return NULL;
+ }
+ continue;
+ } else {
+ drflac__free_from_callbacks(pFlac, &allocationCallbacks);
+ return NULL;
+ }
+ }
+ }
+ }
+ return pFlac;
+}
+#ifndef DR_FLAC_NO_STDIO
+#include
+#include
+#include
+static drflac_result drflac_result_from_errno(int e)
+{
+ switch (e)
+ {
+ case 0: return DRFLAC_SUCCESS;
+ #ifdef EPERM
+ case EPERM: return DRFLAC_INVALID_OPERATION;
+ #endif
+ #ifdef ENOENT
+ case ENOENT: return DRFLAC_DOES_NOT_EXIST;
+ #endif
+ #ifdef ESRCH
+ case ESRCH: return DRFLAC_DOES_NOT_EXIST;
+ #endif
+ #ifdef EINTR
+ case EINTR: return DRFLAC_INTERRUPT;
+ #endif
+ #ifdef EIO
+ case EIO: return DRFLAC_IO_ERROR;
+ #endif
+ #ifdef ENXIO
+ case ENXIO: return DRFLAC_DOES_NOT_EXIST;
+ #endif
+ #ifdef E2BIG
+ case E2BIG: return DRFLAC_INVALID_ARGS;
+ #endif
+ #ifdef ENOEXEC
+ case ENOEXEC: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef EBADF
+ case EBADF: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef ECHILD
+ case ECHILD: return DRFLAC_ERROR;
+ #endif
+ #ifdef EAGAIN
+ case EAGAIN: return DRFLAC_UNAVAILABLE;
+ #endif
+ #ifdef ENOMEM
+ case ENOMEM: return DRFLAC_OUT_OF_MEMORY;
+ #endif
+ #ifdef EACCES
+ case EACCES: return DRFLAC_ACCESS_DENIED;
+ #endif
+ #ifdef EFAULT
+ case EFAULT: return DRFLAC_BAD_ADDRESS;
+ #endif
+ #ifdef ENOTBLK
+ case ENOTBLK: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBUSY
+ case EBUSY: return DRFLAC_BUSY;
+ #endif
+ #ifdef EEXIST
+ case EEXIST: return DRFLAC_ALREADY_EXISTS;
+ #endif
+ #ifdef EXDEV
+ case EXDEV: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENODEV
+ case ENODEV: return DRFLAC_DOES_NOT_EXIST;
+ #endif
+ #ifdef ENOTDIR
+ case ENOTDIR: return DRFLAC_NOT_DIRECTORY;
+ #endif
+ #ifdef EISDIR
+ case EISDIR: return DRFLAC_IS_DIRECTORY;
+ #endif
+ #ifdef EINVAL
+ case EINVAL: return DRFLAC_INVALID_ARGS;
+ #endif
+ #ifdef ENFILE
+ case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef EMFILE
+ case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef ENOTTY
+ case ENOTTY: return DRFLAC_INVALID_OPERATION;
+ #endif
+ #ifdef ETXTBSY
+ case ETXTBSY: return DRFLAC_BUSY;
+ #endif
+ #ifdef EFBIG
+ case EFBIG: return DRFLAC_TOO_BIG;
+ #endif
+ #ifdef ENOSPC
+ case ENOSPC: return DRFLAC_NO_SPACE;
+ #endif
+ #ifdef ESPIPE
+ case ESPIPE: return DRFLAC_BAD_SEEK;
+ #endif
+ #ifdef EROFS
+ case EROFS: return DRFLAC_ACCESS_DENIED;
+ #endif
+ #ifdef EMLINK
+ case EMLINK: return DRFLAC_TOO_MANY_LINKS;
+ #endif
+ #ifdef EPIPE
+ case EPIPE: return DRFLAC_BAD_PIPE;
+ #endif
+ #ifdef EDOM
+ case EDOM: return DRFLAC_OUT_OF_RANGE;
+ #endif
+ #ifdef ERANGE
+ case ERANGE: return DRFLAC_OUT_OF_RANGE;
+ #endif
+ #ifdef EDEADLK
+ case EDEADLK: return DRFLAC_DEADLOCK;
+ #endif
+ #ifdef ENAMETOOLONG
+ case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG;
+ #endif
+ #ifdef ENOLCK
+ case ENOLCK: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOSYS
+ case ENOSYS: return DRFLAC_NOT_IMPLEMENTED;
+ #endif
+ #ifdef ENOTEMPTY
+ case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY;
+ #endif
+ #ifdef ELOOP
+ case ELOOP: return DRFLAC_TOO_MANY_LINKS;
+ #endif
+ #ifdef ENOMSG
+ case ENOMSG: return DRFLAC_NO_MESSAGE;
+ #endif
+ #ifdef EIDRM
+ case EIDRM: return DRFLAC_ERROR;
+ #endif
+ #ifdef ECHRNG
+ case ECHRNG: return DRFLAC_ERROR;
+ #endif
+ #ifdef EL2NSYNC
+ case EL2NSYNC: return DRFLAC_ERROR;
+ #endif
+ #ifdef EL3HLT
+ case EL3HLT: return DRFLAC_ERROR;
+ #endif
+ #ifdef EL3RST
+ case EL3RST: return DRFLAC_ERROR;
+ #endif
+ #ifdef ELNRNG
+ case ELNRNG: return DRFLAC_OUT_OF_RANGE;
+ #endif
+ #ifdef EUNATCH
+ case EUNATCH: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOCSI
+ case ENOCSI: return DRFLAC_ERROR;
+ #endif
+ #ifdef EL2HLT
+ case EL2HLT: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBADE
+ case EBADE: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBADR
+ case EBADR: return DRFLAC_ERROR;
+ #endif
+ #ifdef EXFULL
+ case EXFULL: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOANO
+ case ENOANO: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBADRQC
+ case EBADRQC: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBADSLT
+ case EBADSLT: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBFONT
+ case EBFONT: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef ENOSTR
+ case ENOSTR: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENODATA
+ case ENODATA: return DRFLAC_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ETIME
+ case ETIME: return DRFLAC_TIMEOUT;
+ #endif
+ #ifdef ENOSR
+ case ENOSR: return DRFLAC_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ENONET
+ case ENONET: return DRFLAC_NO_NETWORK;
+ #endif
+ #ifdef ENOPKG
+ case ENOPKG: return DRFLAC_ERROR;
+ #endif
+ #ifdef EREMOTE
+ case EREMOTE: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOLINK
+ case ENOLINK: return DRFLAC_ERROR;
+ #endif
+ #ifdef EADV
+ case EADV: return DRFLAC_ERROR;
+ #endif
+ #ifdef ESRMNT
+ case ESRMNT: return DRFLAC_ERROR;
+ #endif
+ #ifdef ECOMM
+ case ECOMM: return DRFLAC_ERROR;
+ #endif
+ #ifdef EPROTO
+ case EPROTO: return DRFLAC_ERROR;
+ #endif
+ #ifdef EMULTIHOP
+ case EMULTIHOP: return DRFLAC_ERROR;
+ #endif
+ #ifdef EDOTDOT
+ case EDOTDOT: return DRFLAC_ERROR;
+ #endif
+ #ifdef EBADMSG
+ case EBADMSG: return DRFLAC_BAD_MESSAGE;
+ #endif
+ #ifdef EOVERFLOW
+ case EOVERFLOW: return DRFLAC_TOO_BIG;
+ #endif
+ #ifdef ENOTUNIQ
+ case ENOTUNIQ: return DRFLAC_NOT_UNIQUE;
+ #endif
+ #ifdef EBADFD
+ case EBADFD: return DRFLAC_ERROR;
+ #endif
+ #ifdef EREMCHG
+ case EREMCHG: return DRFLAC_ERROR;
+ #endif
+ #ifdef ELIBACC
+ case ELIBACC: return DRFLAC_ACCESS_DENIED;
+ #endif
+ #ifdef ELIBBAD
+ case ELIBBAD: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef ELIBSCN
+ case ELIBSCN: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef ELIBMAX
+ case ELIBMAX: return DRFLAC_ERROR;
+ #endif
+ #ifdef ELIBEXEC
+ case ELIBEXEC: return DRFLAC_ERROR;
+ #endif
+ #ifdef EILSEQ
+ case EILSEQ: return DRFLAC_INVALID_DATA;
+ #endif
+ #ifdef ERESTART
+ case ERESTART: return DRFLAC_ERROR;
+ #endif
+ #ifdef ESTRPIPE
+ case ESTRPIPE: return DRFLAC_ERROR;
+ #endif
+ #ifdef EUSERS
+ case EUSERS: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOTSOCK
+ case ENOTSOCK: return DRFLAC_NOT_SOCKET;
+ #endif
+ #ifdef EDESTADDRREQ
+ case EDESTADDRREQ: return DRFLAC_NO_ADDRESS;
+ #endif
+ #ifdef EMSGSIZE
+ case EMSGSIZE: return DRFLAC_TOO_BIG;
+ #endif
+ #ifdef EPROTOTYPE
+ case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL;
+ #endif
+ #ifdef ENOPROTOOPT
+ case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE;
+ #endif
+ #ifdef EPROTONOSUPPORT
+ case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED;
+ #endif
+ #ifdef ESOCKTNOSUPPORT
+ case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED;
+ #endif
+ #ifdef EOPNOTSUPP
+ case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION;
+ #endif
+ #ifdef EPFNOSUPPORT
+ case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EAFNOSUPPORT
+ case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EADDRINUSE
+ case EADDRINUSE: return DRFLAC_ALREADY_IN_USE;
+ #endif
+ #ifdef EADDRNOTAVAIL
+ case EADDRNOTAVAIL: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENETDOWN
+ case ENETDOWN: return DRFLAC_NO_NETWORK;
+ #endif
+ #ifdef ENETUNREACH
+ case ENETUNREACH: return DRFLAC_NO_NETWORK;
+ #endif
+ #ifdef ENETRESET
+ case ENETRESET: return DRFLAC_NO_NETWORK;
+ #endif
+ #ifdef ECONNABORTED
+ case ECONNABORTED: return DRFLAC_NO_NETWORK;
+ #endif
+ #ifdef ECONNRESET
+ case ECONNRESET: return DRFLAC_CONNECTION_RESET;
+ #endif
+ #ifdef ENOBUFS
+ case ENOBUFS: return DRFLAC_NO_SPACE;
+ #endif
+ #ifdef EISCONN
+ case EISCONN: return DRFLAC_ALREADY_CONNECTED;
+ #endif
+ #ifdef ENOTCONN
+ case ENOTCONN: return DRFLAC_NOT_CONNECTED;
+ #endif
+ #ifdef ESHUTDOWN
+ case ESHUTDOWN: return DRFLAC_ERROR;
+ #endif
+ #ifdef ETOOMANYREFS
+ case ETOOMANYREFS: return DRFLAC_ERROR;
+ #endif
+ #ifdef ETIMEDOUT
+ case ETIMEDOUT: return DRFLAC_TIMEOUT;
+ #endif
+ #ifdef ECONNREFUSED
+ case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED;
+ #endif
+ #ifdef EHOSTDOWN
+ case EHOSTDOWN: return DRFLAC_NO_HOST;
+ #endif
+ #ifdef EHOSTUNREACH
+ case EHOSTUNREACH: return DRFLAC_NO_HOST;
+ #endif
+ #ifdef EALREADY
+ case EALREADY: return DRFLAC_IN_PROGRESS;
+ #endif
+ #ifdef EINPROGRESS
+ case EINPROGRESS: return DRFLAC_IN_PROGRESS;
+ #endif
+ #ifdef ESTALE
+ case ESTALE: return DRFLAC_INVALID_FILE;
+ #endif
+ #ifdef EUCLEAN
+ case EUCLEAN: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOTNAM
+ case ENOTNAM: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENAVAIL
+ case ENAVAIL: return DRFLAC_ERROR;
+ #endif
+ #ifdef EISNAM
+ case EISNAM: return DRFLAC_ERROR;
+ #endif
+ #ifdef EREMOTEIO
+ case EREMOTEIO: return DRFLAC_IO_ERROR;
+ #endif
+ #ifdef EDQUOT
+ case EDQUOT: return DRFLAC_NO_SPACE;
+ #endif
+ #ifdef ENOMEDIUM
+ case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST;
+ #endif
+ #ifdef EMEDIUMTYPE
+ case EMEDIUMTYPE: return DRFLAC_ERROR;
+ #endif
+ #ifdef ECANCELED
+ case ECANCELED: return DRFLAC_CANCELLED;
+ #endif
+ #ifdef ENOKEY
+ case ENOKEY: return DRFLAC_ERROR;
+ #endif
+ #ifdef EKEYEXPIRED
+ case EKEYEXPIRED: return DRFLAC_ERROR;
+ #endif
+ #ifdef EKEYREVOKED
+ case EKEYREVOKED: return DRFLAC_ERROR;
+ #endif
+ #ifdef EKEYREJECTED
+ case EKEYREJECTED: return DRFLAC_ERROR;
+ #endif
+ #ifdef EOWNERDEAD
+ case EOWNERDEAD: return DRFLAC_ERROR;
+ #endif
+ #ifdef ENOTRECOVERABLE
+ case ENOTRECOVERABLE: return DRFLAC_ERROR;
+ #endif
+ #ifdef ERFKILL
+ case ERFKILL: return DRFLAC_ERROR;
+ #endif
+ #ifdef EHWPOISON
+ case EHWPOISON: return DRFLAC_ERROR;
+ #endif
+ default: return DRFLAC_ERROR;
+ }
+}
+static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+ errno_t err;
+#endif
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRFLAC_INVALID_ARGS;
+ }
+#if _MSC_VER && _MSC_VER >= 1400
+ err = fopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drflac_result_from_errno(err);
+ }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+ *ppFile = fopen(pFilePath, pOpenMode);
+#else
+ #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+ *ppFile = fopen64(pFilePath, pOpenMode);
+ #else
+ *ppFile = fopen(pFilePath, pOpenMode);
+ #endif
+#endif
+ if (*ppFile == NULL) {
+ drflac_result result = drflac_result_from_errno(errno);
+ if (result == DRFLAC_SUCCESS) {
+ result = DRFLAC_ERROR;
+ }
+ return result;
+ }
+#endif
+ return DRFLAC_SUCCESS;
+}
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
+ #define DRFLAC_HAS_WFOPEN
+ #endif
+#endif
+static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRFLAC_INVALID_ARGS;
+ }
+#if defined(DRFLAC_HAS_WFOPEN)
+ {
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
+ errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drflac_result_from_errno(err);
+ }
+ #else
+ *ppFile = _wfopen(pFilePath, pOpenMode);
+ if (*ppFile == NULL) {
+ return drflac_result_from_errno(errno);
+ }
+ #endif
+ (void)pAllocationCallbacks;
+ }
+#else
+ {
+ mbstate_t mbs;
+ size_t lenMB;
+ const wchar_t* pFilePathTemp = pFilePath;
+ char* pFilePathMB = NULL;
+ char pOpenModeMB[32] = {0};
+ DRFLAC_ZERO_OBJECT(&mbs);
+ lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+ if (lenMB == (size_t)-1) {
+ return drflac_result_from_errno(errno);
+ }
+ pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
+ if (pFilePathMB == NULL) {
+ return DRFLAC_OUT_OF_MEMORY;
+ }
+ pFilePathTemp = pFilePath;
+ DRFLAC_ZERO_OBJECT(&mbs);
+ wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+ {
+ size_t i = 0;
+ for (;;) {
+ if (pOpenMode[i] == 0) {
+ pOpenModeMB[i] = '\0';
+ break;
+ }
+ pOpenModeMB[i] = (char)pOpenMode[i];
+ i += 1;
+ }
+ }
+ *ppFile = fopen(pFilePathMB, pOpenModeMB);
+ drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
+ }
+ if (*ppFile == NULL) {
+ return DRFLAC_ERROR;
+ }
+#endif
+ return DRFLAC_SUCCESS;
+}
+static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead)
+{
+ return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData);
+}
+static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin)
+{
+ DRFLAC_ASSERT(offset >= 0);
+ return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ FILE* pFile;
+ if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
+ return NULL;
+ }
+ pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ fclose(pFile);
+ return NULL;
+ }
+ return pFlac;
+}
+DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ FILE* pFile;
+ if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
+ return NULL;
+ }
+ pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ fclose(pFile);
+ return NULL;
+ }
+ return pFlac;
+}
+DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ FILE* pFile;
+ if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
+ return NULL;
+ }
+ pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ fclose(pFile);
+ return pFlac;
+ }
+ return pFlac;
+}
+DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ FILE* pFile;
+ if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
+ return NULL;
+ }
+ pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ fclose(pFile);
+ return pFlac;
+ }
+ return pFlac;
+}
+#endif
+static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead)
+{
+ drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
+ size_t bytesRemaining;
+ DRFLAC_ASSERT(memoryStream != NULL);
+ DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos);
+ bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos;
+ if (bytesToRead > bytesRemaining) {
+ bytesToRead = bytesRemaining;
+ }
+ if (bytesToRead > 0) {
+ DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead);
+ memoryStream->currentReadPos += bytesToRead;
+ }
+ return bytesToRead;
+}
+static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin)
+{
+ drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
+ DRFLAC_ASSERT(memoryStream != NULL);
+ DRFLAC_ASSERT(offset >= 0);
+ if (offset > (drflac_int64)memoryStream->dataSize) {
+ return DRFLAC_FALSE;
+ }
+ if (origin == drflac_seek_origin_current) {
+ if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) {
+ memoryStream->currentReadPos += offset;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ } else {
+ if ((drflac_uint32)offset <= memoryStream->dataSize) {
+ memoryStream->currentReadPos = offset;
+ } else {
+ return DRFLAC_FALSE;
+ }
+ }
+ return DRFLAC_TRUE;
+}
+DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac__memory_stream memoryStream;
+ drflac* pFlac;
+ memoryStream.data = (const drflac_uint8*)pData;
+ memoryStream.dataSize = dataSize;
+ memoryStream.currentReadPos = 0;
+ pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ pFlac->memoryStream = memoryStream;
+#ifndef DR_FLAC_NO_OGG
+ if (pFlac->container == drflac_container_ogg)
+ {
+ drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
+ oggbs->pUserData = &pFlac->memoryStream;
+ }
+ else
+#endif
+ {
+ pFlac->bs.pUserData = &pFlac->memoryStream;
+ }
+ return pFlac;
+}
+DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac__memory_stream memoryStream;
+ drflac* pFlac;
+ memoryStream.data = (const drflac_uint8*)pData;
+ memoryStream.dataSize = dataSize;
+ memoryStream.currentReadPos = 0;
+ pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ pFlac->memoryStream = memoryStream;
+#ifndef DR_FLAC_NO_OGG
+ if (pFlac->container == drflac_container_ogg)
+ {
+ drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
+ oggbs->pUserData = &pFlac->memoryStream;
+ }
+ else
+#endif
+ {
+ pFlac->bs.pUserData = &pFlac->memoryStream;
+ }
+ return pFlac;
+}
+DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
+}
+DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks);
+}
+DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
+}
+DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks);
+}
+DRFLAC_API void drflac_close(drflac* pFlac)
+{
+ if (pFlac == NULL) {
+ return;
+ }
+#ifndef DR_FLAC_NO_STDIO
+ if (pFlac->bs.onRead == drflac__on_read_stdio) {
+ fclose((FILE*)pFlac->bs.pUserData);
+ }
+#ifndef DR_FLAC_NO_OGG
+ if (pFlac->container == drflac_container_ogg) {
+ drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
+ DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg);
+ if (oggbs->onRead == drflac__on_read_stdio) {
+ fclose((FILE*)oggbs->pUserData);
+ }
+ }
+#endif
+#endif
+ drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks);
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 right0 = left0 - side0;
+ drflac_uint32 right1 = left1 - side1;
+ drflac_uint32 right2 = left2 - side2;
+ drflac_uint32 right3 = left3 - side3;
+ pOutputSamples[i*8+0] = (drflac_int32)left0;
+ pOutputSamples[i*8+1] = (drflac_int32)right0;
+ pOutputSamples[i*8+2] = (drflac_int32)left1;
+ pOutputSamples[i*8+3] = (drflac_int32)right1;
+ pOutputSamples[i*8+4] = (drflac_int32)left2;
+ pOutputSamples[i*8+5] = (drflac_int32)right2;
+ pOutputSamples[i*8+6] = (drflac_int32)left3;
+ pOutputSamples[i*8+7] = (drflac_int32)right3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i right = _mm_sub_epi32(left, side);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t left;
+ uint32x4_t side;
+ uint32x4_t right;
+ left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ right = vsubq_u32(left, side);
+ drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 left0 = right0 + side0;
+ drflac_uint32 left1 = right1 + side1;
+ drflac_uint32 left2 = right2 + side2;
+ drflac_uint32 left3 = right3 + side3;
+ pOutputSamples[i*8+0] = (drflac_int32)left0;
+ pOutputSamples[i*8+1] = (drflac_int32)right0;
+ pOutputSamples[i*8+2] = (drflac_int32)left1;
+ pOutputSamples[i*8+3] = (drflac_int32)right1;
+ pOutputSamples[i*8+4] = (drflac_int32)left2;
+ pOutputSamples[i*8+5] = (drflac_int32)right2;
+ pOutputSamples[i*8+6] = (drflac_int32)left3;
+ pOutputSamples[i*8+7] = (drflac_int32)right3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i left = _mm_add_epi32(right, side);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t side;
+ uint32x4_t right;
+ uint32x4_t left;
+ side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ left = vaddq_u32(right, side);
+ drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left;
+ pOutputSamples[i*2+1] = (drflac_int32)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
+ pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_int32 shift = unusedBitsPerSample;
+ if (shift > 0) {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = (mid0 + side0) << shift;
+ temp1L = (mid1 + side1) << shift;
+ temp2L = (mid2 + side2) << shift;
+ temp3L = (mid3 + side3) << shift;
+ temp0R = (mid0 - side0) << shift;
+ temp1R = (mid1 - side1) << shift;
+ temp2R = (mid2 - side2) << shift;
+ temp3R = (mid3 - side3) << shift;
+ pOutputSamples[i*8+0] = (drflac_int32)temp0L;
+ pOutputSamples[i*8+1] = (drflac_int32)temp0R;
+ pOutputSamples[i*8+2] = (drflac_int32)temp1L;
+ pOutputSamples[i*8+3] = (drflac_int32)temp1R;
+ pOutputSamples[i*8+4] = (drflac_int32)temp2L;
+ pOutputSamples[i*8+5] = (drflac_int32)temp2R;
+ pOutputSamples[i*8+6] = (drflac_int32)temp3L;
+ pOutputSamples[i*8+7] = (drflac_int32)temp3R;
+ }
+ } else {
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
+ temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
+ temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
+ temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
+ temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
+ temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
+ temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
+ temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
+ pOutputSamples[i*8+0] = (drflac_int32)temp0L;
+ pOutputSamples[i*8+1] = (drflac_int32)temp0R;
+ pOutputSamples[i*8+2] = (drflac_int32)temp1L;
+ pOutputSamples[i*8+3] = (drflac_int32)temp1R;
+ pOutputSamples[i*8+4] = (drflac_int32)temp2L;
+ pOutputSamples[i*8+5] = (drflac_int32)temp2R;
+ pOutputSamples[i*8+6] = (drflac_int32)temp3L;
+ pOutputSamples[i*8+7] = (drflac_int32)temp3R;
+ }
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
+ pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_int32 shift = unusedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i left;
+ __m128i right;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
+ right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
+ pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
+ }
+ } else {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i left;
+ __m128i right;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
+ right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
+ pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
+ }
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_int32 shift = unusedBitsPerSample;
+ int32x4_t wbpsShift0_4;
+ int32x4_t wbpsShift1_4;
+ uint32x4_t one4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ one4 = vdupq_n_u32(1);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t mid;
+ uint32x4_t side;
+ int32x4_t left;
+ int32x4_t right;
+ mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
+ left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
+ right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
+ drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
+ pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
+ }
+ } else {
+ int32x4_t shift4;
+ shift -= 1;
+ shift4 = vdupq_n_s32(shift);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t mid;
+ uint32x4_t side;
+ int32x4_t left;
+ int32x4_t right;
+ mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
+ left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
+ right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
+ drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
+ pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
+ }
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample));
+ pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample));
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
+ pOutputSamples[i*8+0] = (drflac_int32)tempL0;
+ pOutputSamples[i*8+1] = (drflac_int32)tempR0;
+ pOutputSamples[i*8+2] = (drflac_int32)tempL1;
+ pOutputSamples[i*8+3] = (drflac_int32)tempR1;
+ pOutputSamples[i*8+4] = (drflac_int32)tempL2;
+ pOutputSamples[i*8+5] = (drflac_int32)tempR2;
+ pOutputSamples[i*8+6] = (drflac_int32)tempL3;
+ pOutputSamples[i*8+7] = (drflac_int32)tempR3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift4_0 = vdupq_n_s32(shift0);
+ int32x4_t shift4_1 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ int32x4_t left;
+ int32x4_t right;
+ left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0));
+ right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1));
+ drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut)
+{
+ drflac_uint64 framesRead;
+ drflac_uint32 unusedBitsPerSample;
+ if (pFlac == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
+ }
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
+ unusedBitsPerSample = 32 - pFlac->bitsPerSample;
+ framesRead = 0;
+ while (framesToRead > 0) {
+ if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
+ break;
+ }
+ } else {
+ unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
+ drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
+ drflac_uint64 frameCountThisIteration = framesToRead;
+ if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
+ frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
+ }
+ if (channelCount == 2) {
+ const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
+ const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
+ switch (pFlac->currentFLACFrame.header.channelAssignment)
+ {
+ case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
+ {
+ drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
+ {
+ drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
+ {
+ drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
+ default:
+ {
+ drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ }
+ } else {
+ drflac_uint64 i;
+ for (i = 0; i < frameCountThisIteration; ++i) {
+ unsigned int j;
+ for (j = 0; j < channelCount; ++j) {
+ pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
+ }
+ }
+ }
+ framesRead += frameCountThisIteration;
+ pBufferOut += frameCountThisIteration * channelCount;
+ framesToRead -= frameCountThisIteration;
+ pFlac->currentPCMFrame += frameCountThisIteration;
+ pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
+ }
+ }
+ return framesRead;
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 right = left - side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 right0 = left0 - side0;
+ drflac_uint32 right1 = left1 - side1;
+ drflac_uint32 right2 = left2 - side2;
+ drflac_uint32 right3 = left3 - side3;
+ left0 >>= 16;
+ left1 >>= 16;
+ left2 >>= 16;
+ left3 >>= 16;
+ right0 >>= 16;
+ right1 >>= 16;
+ right2 >>= 16;
+ right3 >>= 16;
+ pOutputSamples[i*8+0] = (drflac_int16)left0;
+ pOutputSamples[i*8+1] = (drflac_int16)right0;
+ pOutputSamples[i*8+2] = (drflac_int16)left1;
+ pOutputSamples[i*8+3] = (drflac_int16)right1;
+ pOutputSamples[i*8+4] = (drflac_int16)left2;
+ pOutputSamples[i*8+5] = (drflac_int16)right2;
+ pOutputSamples[i*8+6] = (drflac_int16)left3;
+ pOutputSamples[i*8+7] = (drflac_int16)right3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i right = _mm_sub_epi32(left, side);
+ left = _mm_srai_epi32(left, 16);
+ right = _mm_srai_epi32(right, 16);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t left;
+ uint32x4_t side;
+ uint32x4_t right;
+ left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ right = vsubq_u32(left, side);
+ left = vshrq_n_u32(left, 16);
+ right = vshrq_n_u32(right, 16);
+ drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 left = right + side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 left0 = right0 + side0;
+ drflac_uint32 left1 = right1 + side1;
+ drflac_uint32 left2 = right2 + side2;
+ drflac_uint32 left3 = right3 + side3;
+ left0 >>= 16;
+ left1 >>= 16;
+ left2 >>= 16;
+ left3 >>= 16;
+ right0 >>= 16;
+ right1 >>= 16;
+ right2 >>= 16;
+ right3 >>= 16;
+ pOutputSamples[i*8+0] = (drflac_int16)left0;
+ pOutputSamples[i*8+1] = (drflac_int16)right0;
+ pOutputSamples[i*8+2] = (drflac_int16)left1;
+ pOutputSamples[i*8+3] = (drflac_int16)right1;
+ pOutputSamples[i*8+4] = (drflac_int16)left2;
+ pOutputSamples[i*8+5] = (drflac_int16)right2;
+ pOutputSamples[i*8+6] = (drflac_int16)left3;
+ pOutputSamples[i*8+7] = (drflac_int16)right3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i left = _mm_add_epi32(right, side);
+ left = _mm_srai_epi32(left, 16);
+ right = _mm_srai_epi32(right, 16);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t side;
+ uint32x4_t right;
+ uint32x4_t left;
+ side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ left = vaddq_u32(right, side);
+ left = vshrq_n_u32(left, 16);
+ right = vshrq_n_u32(right, 16);
+ drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ left >>= 16;
+ right >>= 16;
+ pOutputSamples[i*2+0] = (drflac_int16)left;
+ pOutputSamples[i*2+1] = (drflac_int16)right;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample;
+ if (shift > 0) {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = (mid0 + side0) << shift;
+ temp1L = (mid1 + side1) << shift;
+ temp2L = (mid2 + side2) << shift;
+ temp3L = (mid3 + side3) << shift;
+ temp0R = (mid0 - side0) << shift;
+ temp1R = (mid1 - side1) << shift;
+ temp2R = (mid2 - side2) << shift;
+ temp3R = (mid3 - side3) << shift;
+ temp0L >>= 16;
+ temp1L >>= 16;
+ temp2L >>= 16;
+ temp3L >>= 16;
+ temp0R >>= 16;
+ temp1R >>= 16;
+ temp2R >>= 16;
+ temp3R >>= 16;
+ pOutputSamples[i*8+0] = (drflac_int16)temp0L;
+ pOutputSamples[i*8+1] = (drflac_int16)temp0R;
+ pOutputSamples[i*8+2] = (drflac_int16)temp1L;
+ pOutputSamples[i*8+3] = (drflac_int16)temp1R;
+ pOutputSamples[i*8+4] = (drflac_int16)temp2L;
+ pOutputSamples[i*8+5] = (drflac_int16)temp2R;
+ pOutputSamples[i*8+6] = (drflac_int16)temp3L;
+ pOutputSamples[i*8+7] = (drflac_int16)temp3R;
+ }
+ } else {
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = ((drflac_int32)(mid0 + side0) >> 1);
+ temp1L = ((drflac_int32)(mid1 + side1) >> 1);
+ temp2L = ((drflac_int32)(mid2 + side2) >> 1);
+ temp3L = ((drflac_int32)(mid3 + side3) >> 1);
+ temp0R = ((drflac_int32)(mid0 - side0) >> 1);
+ temp1R = ((drflac_int32)(mid1 - side1) >> 1);
+ temp2R = ((drflac_int32)(mid2 - side2) >> 1);
+ temp3R = ((drflac_int32)(mid3 - side3) >> 1);
+ temp0L >>= 16;
+ temp1L >>= 16;
+ temp2L >>= 16;
+ temp3L >>= 16;
+ temp0R >>= 16;
+ temp1R >>= 16;
+ temp2R >>= 16;
+ temp3R >>= 16;
+ pOutputSamples[i*8+0] = (drflac_int16)temp0L;
+ pOutputSamples[i*8+1] = (drflac_int16)temp0R;
+ pOutputSamples[i*8+2] = (drflac_int16)temp1L;
+ pOutputSamples[i*8+3] = (drflac_int16)temp1R;
+ pOutputSamples[i*8+4] = (drflac_int16)temp2L;
+ pOutputSamples[i*8+5] = (drflac_int16)temp2R;
+ pOutputSamples[i*8+6] = (drflac_int16)temp3L;
+ pOutputSamples[i*8+7] = (drflac_int16)temp3R;
+ }
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i left;
+ __m128i right;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
+ right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
+ left = _mm_srai_epi32(left, 16);
+ right = _mm_srai_epi32(right, 16);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
+ }
+ } else {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i left;
+ __m128i right;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
+ right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
+ left = _mm_srai_epi32(left, 16);
+ right = _mm_srai_epi32(right, 16);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
+ }
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample;
+ int32x4_t wbpsShift0_4;
+ int32x4_t wbpsShift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t mid;
+ uint32x4_t side;
+ int32x4_t left;
+ int32x4_t right;
+ mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
+ left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
+ right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
+ left = vshrq_n_s32(left, 16);
+ right = vshrq_n_s32(right, 16);
+ drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
+ }
+ } else {
+ int32x4_t shift4;
+ shift -= 1;
+ shift4 = vdupq_n_s32(shift);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t mid;
+ uint32x4_t side;
+ int32x4_t left;
+ int32x4_t right;
+ mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
+ left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
+ right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
+ left = vshrq_n_s32(left, 16);
+ right = vshrq_n_s32(right, 16);
+ drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
+ }
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
+ tempL0 >>= 16;
+ tempL1 >>= 16;
+ tempL2 >>= 16;
+ tempL3 >>= 16;
+ tempR0 >>= 16;
+ tempR1 >>= 16;
+ tempR2 >>= 16;
+ tempR3 >>= 16;
+ pOutputSamples[i*8+0] = (drflac_int16)tempL0;
+ pOutputSamples[i*8+1] = (drflac_int16)tempR0;
+ pOutputSamples[i*8+2] = (drflac_int16)tempL1;
+ pOutputSamples[i*8+3] = (drflac_int16)tempR1;
+ pOutputSamples[i*8+4] = (drflac_int16)tempL2;
+ pOutputSamples[i*8+5] = (drflac_int16)tempR2;
+ pOutputSamples[i*8+6] = (drflac_int16)tempL3;
+ pOutputSamples[i*8+7] = (drflac_int16)tempR3;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ left = _mm_srai_epi32(left, 16);
+ right = _mm_srai_epi32(right, 16);
+ _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ int32x4_t shift0_4 = vdupq_n_s32(shift0);
+ int32x4_t shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ int32x4_t left;
+ int32x4_t right;
+ left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
+ right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
+ left = vshrq_n_s32(left, 16);
+ right = vshrq_n_s32(right, 16);
+ drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
+ pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut)
+{
+ drflac_uint64 framesRead;
+ drflac_uint32 unusedBitsPerSample;
+ if (pFlac == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
+ }
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
+ unusedBitsPerSample = 32 - pFlac->bitsPerSample;
+ framesRead = 0;
+ while (framesToRead > 0) {
+ if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
+ break;
+ }
+ } else {
+ unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
+ drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
+ drflac_uint64 frameCountThisIteration = framesToRead;
+ if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
+ frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
+ }
+ if (channelCount == 2) {
+ const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
+ const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
+ switch (pFlac->currentFLACFrame.header.channelAssignment)
+ {
+ case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
+ {
+ drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
+ {
+ drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
+ {
+ drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
+ default:
+ {
+ drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ }
+ } else {
+ drflac_uint64 i;
+ for (i = 0; i < frameCountThisIteration; ++i) {
+ unsigned int j;
+ for (j = 0; j < channelCount; ++j) {
+ drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
+ pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16);
+ }
+ }
+ }
+ framesRead += frameCountThisIteration;
+ pBufferOut += frameCountThisIteration * channelCount;
+ framesToRead -= frameCountThisIteration;
+ pFlac->currentPCMFrame += frameCountThisIteration;
+ pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
+ }
+ }
+ return framesRead;
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
+ pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ float factor = 1 / 2147483648.0;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 right0 = left0 - side0;
+ drflac_uint32 right1 = left1 - side1;
+ drflac_uint32 right2 = left2 - side2;
+ drflac_uint32 right3 = left3 - side3;
+ pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
+ pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
+ pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
+ pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
+ pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
+ pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
+ pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
+ pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)right * factor;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ __m128 factor;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor = _mm_set1_ps(1.0f / 8388608.0f);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i right = _mm_sub_epi32(left, side);
+ __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
+ __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
+ _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
+ _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
+ pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ float32x4_t factor4;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor4 = vdupq_n_f32(1.0f / 8388608.0f);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t left;
+ uint32x4_t side;
+ uint32x4_t right;
+ float32x4_t leftf;
+ float32x4_t rightf;
+ left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ right = vsubq_u32(left, side);
+ leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
+ rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
+ drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 left = pInputSamples0U32[i] << shift0;
+ drflac_uint32 side = pInputSamples1U32[i] << shift1;
+ drflac_uint32 right = left - side;
+ pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
+ pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ for (i = 0; i < frameCount; ++i) {
+ drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
+ pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ float factor = 1 / 2147483648.0;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
+ drflac_uint32 left0 = right0 + side0;
+ drflac_uint32 left1 = right1 + side1;
+ drflac_uint32 left2 = right2 + side2;
+ drflac_uint32 left3 = right3 + side3;
+ pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
+ pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
+ pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
+ pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
+ pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
+ pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
+ pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
+ pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)right * factor;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ __m128 factor;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor = _mm_set1_ps(1.0f / 8388608.0f);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ __m128i left = _mm_add_epi32(right, side);
+ __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
+ __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
+ _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
+ _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
+ pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ float32x4_t factor4;
+ int32x4_t shift0_4;
+ int32x4_t shift1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor4 = vdupq_n_f32(1.0f / 8388608.0f);
+ shift0_4 = vdupq_n_s32(shift0);
+ shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t side;
+ uint32x4_t right;
+ uint32x4_t left;
+ float32x4_t leftf;
+ float32x4_t rightf;
+ side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
+ right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
+ left = vaddq_u32(right, side);
+ leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
+ rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
+ drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 side = pInputSamples0U32[i] << shift0;
+ drflac_uint32 right = pInputSamples1U32[i] << shift1;
+ drflac_uint32 left = right + side;
+ pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
+ pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
+ pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample;
+ float factor = 1 / 2147483648.0;
+ if (shift > 0) {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = (mid0 + side0) << shift;
+ temp1L = (mid1 + side1) << shift;
+ temp2L = (mid2 + side2) << shift;
+ temp3L = (mid3 + side3) << shift;
+ temp0R = (mid0 - side0) << shift;
+ temp1R = (mid1 - side1) << shift;
+ temp2R = (mid2 - side2) << shift;
+ temp3R = (mid3 - side3) << shift;
+ pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
+ pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
+ pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
+ pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
+ pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
+ pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
+ pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
+ pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
+ }
+ } else {
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 temp0L;
+ drflac_uint32 temp1L;
+ drflac_uint32 temp2L;
+ drflac_uint32 temp3L;
+ drflac_uint32 temp0R;
+ drflac_uint32 temp1R;
+ drflac_uint32 temp2R;
+ drflac_uint32 temp3R;
+ drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid0 = (mid0 << 1) | (side0 & 0x01);
+ mid1 = (mid1 << 1) | (side1 & 0x01);
+ mid2 = (mid2 << 1) | (side2 & 0x01);
+ mid3 = (mid3 << 1) | (side3 & 0x01);
+ temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
+ temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
+ temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
+ temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
+ temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
+ temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
+ temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
+ temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
+ pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
+ pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
+ pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
+ pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
+ pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
+ pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
+ pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
+ pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
+ }
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample - 8;
+ float factor;
+ __m128 factor128;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor = 1.0f / 8388608.0f;
+ factor128 = _mm_set1_ps(factor);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i tempL;
+ __m128i tempR;
+ __m128 leftf;
+ __m128 rightf;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
+ tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
+ leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
+ rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
+ _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
+ _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
+ pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
+ }
+ } else {
+ shift -= 1;
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i mid;
+ __m128i side;
+ __m128i tempL;
+ __m128i tempR;
+ __m128 leftf;
+ __m128 rightf;
+ mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
+ tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
+ tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
+ leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
+ rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
+ _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
+ _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
+ }
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift = unusedBitsPerSample - 8;
+ float factor;
+ float32x4_t factor4;
+ int32x4_t shift4;
+ int32x4_t wbps0_4;
+ int32x4_t wbps1_4;
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
+ factor = 1.0f / 8388608.0f;
+ factor4 = vdupq_n_f32(factor);
+ wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
+ wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
+ if (shift == 0) {
+ for (i = 0; i < frameCount4; ++i) {
+ int32x4_t lefti;
+ int32x4_t righti;
+ float32x4_t leftf;
+ float32x4_t rightf;
+ uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
+ uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
+ lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
+ righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
+ leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
+ rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
+ drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
+ pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
+ }
+ } else {
+ shift -= 1;
+ shift4 = vdupq_n_s32(shift);
+ for (i = 0; i < frameCount4; ++i) {
+ uint32x4_t mid;
+ uint32x4_t side;
+ int32x4_t lefti;
+ int32x4_t righti;
+ float32x4_t leftf;
+ float32x4_t rightf;
+ mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
+ side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
+ mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
+ lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
+ righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
+ leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
+ rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
+ drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ mid = (mid << 1) | (side & 0x01);
+ pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
+ }
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+#if 0
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ for (drflac_uint64 i = 0; i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0);
+ pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0);
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
+ drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
+ float factor = 1 / 2147483648.0;
+ for (i = 0; i < frameCount4; ++i) {
+ drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
+ drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
+ drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
+ drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
+ drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
+ drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
+ drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
+ drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
+ pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor;
+ pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor;
+ pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor;
+ pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor;
+ pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor;
+ pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor;
+ pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor;
+ pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor;
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
+ }
+}
+#if defined(DRFLAC_SUPPORT_SSE2)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ float factor = 1.0f / 8388608.0f;
+ __m128 factor128 = _mm_set1_ps(factor);
+ for (i = 0; i < frameCount4; ++i) {
+ __m128i lefti;
+ __m128i righti;
+ __m128 leftf;
+ __m128 rightf;
+ lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
+ righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
+ leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128);
+ rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128);
+ _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
+ _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
+ }
+}
+#endif
+#if defined(DRFLAC_SUPPORT_NEON)
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+ drflac_uint64 i;
+ drflac_uint64 frameCount4 = frameCount >> 2;
+ const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
+ const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
+ drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
+ drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
+ float factor = 1.0f / 8388608.0f;
+ float32x4_t factor4 = vdupq_n_f32(factor);
+ int32x4_t shift0_4 = vdupq_n_s32(shift0);
+ int32x4_t shift1_4 = vdupq_n_s32(shift1);
+ for (i = 0; i < frameCount4; ++i) {
+ int32x4_t lefti;
+ int32x4_t righti;
+ float32x4_t leftf;
+ float32x4_t rightf;
+ lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
+ righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
+ leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
+ rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
+ drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
+ }
+ for (i = (frameCount4 << 2); i < frameCount; ++i) {
+ pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
+ pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
+ }
+}
+#endif
+static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
+{
+#if defined(DRFLAC_SUPPORT_SSE2)
+ if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#elif defined(DRFLAC_SUPPORT_NEON)
+ if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
+ drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+ } else
+#endif
+ {
+#if 0
+ drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#else
+ drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
+#endif
+ }
+}
+DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut)
+{
+ drflac_uint64 framesRead;
+ drflac_uint32 unusedBitsPerSample;
+ if (pFlac == NULL || framesToRead == 0) {
+ return 0;
+ }
+ if (pBufferOut == NULL) {
+ return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
+ }
+ DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
+ unusedBitsPerSample = 32 - pFlac->bitsPerSample;
+ framesRead = 0;
+ while (framesToRead > 0) {
+ if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
+ if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
+ break;
+ }
+ } else {
+ unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
+ drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
+ drflac_uint64 frameCountThisIteration = framesToRead;
+ if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
+ frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
+ }
+ if (channelCount == 2) {
+ const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
+ const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
+ switch (pFlac->currentFLACFrame.header.channelAssignment)
+ {
+ case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
+ {
+ drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
+ {
+ drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
+ {
+ drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
+ default:
+ {
+ drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
+ } break;
+ }
+ } else {
+ drflac_uint64 i;
+ for (i = 0; i < frameCountThisIteration; ++i) {
+ unsigned int j;
+ for (j = 0; j < channelCount; ++j) {
+ drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
+ pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0);
+ }
+ }
+ }
+ framesRead += frameCountThisIteration;
+ pBufferOut += frameCountThisIteration * channelCount;
+ framesToRead -= frameCountThisIteration;
+ pFlac->currentPCMFrame += frameCountThisIteration;
+ pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration;
+ }
+ }
+ return framesRead;
+}
+DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
+{
+ if (pFlac == NULL) {
+ return DRFLAC_FALSE;
+ }
+ if (pFlac->currentPCMFrame == pcmFrameIndex) {
+ return DRFLAC_TRUE;
+ }
+ if (pFlac->firstFLACFramePosInBytes == 0) {
+ return DRFLAC_FALSE;
+ }
+ if (pcmFrameIndex == 0) {
+ pFlac->currentPCMFrame = 0;
+ return drflac__seek_to_first_frame(pFlac);
+ } else {
+ drflac_bool32 wasSuccessful = DRFLAC_FALSE;
+ if (pcmFrameIndex > pFlac->totalPCMFrameCount) {
+ pcmFrameIndex = pFlac->totalPCMFrameCount;
+ }
+ if (pcmFrameIndex > pFlac->currentPCMFrame) {
+ drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame);
+ if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) {
+ pFlac->currentFLACFrame.pcmFramesRemaining -= offset;
+ pFlac->currentPCMFrame = pcmFrameIndex;
+ return DRFLAC_TRUE;
+ }
+ } else {
+ drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex);
+ drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
+ drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining;
+ if (currentFLACFramePCMFramesConsumed > offsetAbs) {
+ pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs;
+ pFlac->currentPCMFrame = pcmFrameIndex;
+ return DRFLAC_TRUE;
+ }
+ }
+#ifndef DR_FLAC_NO_OGG
+ if (pFlac->container == drflac_container_ogg)
+ {
+ wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex);
+ }
+ else
+#endif
+ {
+ if (!pFlac->_noSeekTableSeek) {
+ wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex);
+ }
+#if !defined(DR_FLAC_NO_CRC)
+ if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) {
+ wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex);
+ }
+#endif
+ if (!wasSuccessful && !pFlac->_noBruteForceSeek) {
+ wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex);
+ }
+ }
+ pFlac->currentPCMFrame = pcmFrameIndex;
+ return wasSuccessful;
+ }
+}
+#if defined(SIZE_MAX)
+ #define DRFLAC_SIZE_MAX SIZE_MAX
+#else
+ #if defined(DRFLAC_64BIT)
+ #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF)
+ #else
+ #define DRFLAC_SIZE_MAX 0xFFFFFFFF
+ #endif
+#endif
+#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \
+static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\
+{ \
+ type* pSampleData = NULL; \
+ drflac_uint64 totalPCMFrameCount; \
+ \
+ DRFLAC_ASSERT(pFlac != NULL); \
+ \
+ totalPCMFrameCount = pFlac->totalPCMFrameCount; \
+ \
+ if (totalPCMFrameCount == 0) { \
+ type buffer[4096]; \
+ drflac_uint64 pcmFramesRead; \
+ size_t sampleDataBufferSize = sizeof(buffer); \
+ \
+ pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \
+ if (pSampleData == NULL) { \
+ goto on_error; \
+ } \
+ \
+ while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \
+ if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \
+ type* pNewSampleData; \
+ size_t newSampleDataBufferSize; \
+ \
+ newSampleDataBufferSize = sampleDataBufferSize * 2; \
+ pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \
+ if (pNewSampleData == NULL) { \
+ drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \
+ goto on_error; \
+ } \
+ \
+ sampleDataBufferSize = newSampleDataBufferSize; \
+ pSampleData = pNewSampleData; \
+ } \
+ \
+ DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \
+ totalPCMFrameCount += pcmFramesRead; \
+ } \
+ \
+ \
+ DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \
+ } else { \
+ drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \
+ if (dataSize > DRFLAC_SIZE_MAX) { \
+ goto on_error; \
+ } \
+ \
+ pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); \
+ if (pSampleData == NULL) { \
+ goto on_error; \
+ } \
+ \
+ totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \
+ } \
+ \
+ if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \
+ if (channelsOut) *channelsOut = pFlac->channels; \
+ if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \
+ \
+ drflac_close(pFlac); \
+ return pSampleData; \
+ \
+on_error: \
+ drflac_close(pFlac); \
+ return NULL; \
+}
+DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32)
+DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16)
+DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float)
+DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalPCMFrameCountOut) {
+ *totalPCMFrameCountOut = 0;
+ }
+ pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
+}
+DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalPCMFrameCountOut) {
+ *totalPCMFrameCountOut = 0;
+ }
+ pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
+}
+DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalPCMFrameCountOut) {
+ *totalPCMFrameCountOut = 0;
+ }
+ pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
+}
+#ifndef DR_FLAC_NO_STDIO
+DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_file(filename, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_file(filename, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_file(filename, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+#endif
+DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ drflac* pFlac;
+ if (sampleRate) {
+ *sampleRate = 0;
+ }
+ if (channels) {
+ *channels = 0;
+ }
+ if (totalPCMFrameCount) {
+ *totalPCMFrameCount = 0;
+ }
+ pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
+ if (pFlac == NULL) {
+ return NULL;
+ }
+ return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
+}
+DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ drflac__free_from_callbacks(p, pAllocationCallbacks);
+ } else {
+ drflac__free_default(p, NULL);
+ }
+}
+DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments)
+{
+ if (pIter == NULL) {
+ return;
+ }
+ pIter->countRemaining = commentCount;
+ pIter->pRunningData = (const char*)pComments;
+}
+DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut)
+{
+ drflac_int32 length;
+ const char* pComment;
+ if (pCommentLengthOut) {
+ *pCommentLengthOut = 0;
+ }
+ if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
+ return NULL;
+ }
+ length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData);
+ pIter->pRunningData += 4;
+ pComment = pIter->pRunningData;
+ pIter->pRunningData += length;
+ pIter->countRemaining -= 1;
+ if (pCommentLengthOut) {
+ *pCommentLengthOut = length;
+ }
+ return pComment;
+}
+DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData)
+{
+ if (pIter == NULL) {
+ return;
+ }
+ pIter->countRemaining = trackCount;
+ pIter->pRunningData = (const char*)pTrackData;
+}
+DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack)
+{
+ drflac_cuesheet_track cuesheetTrack;
+ const char* pRunningData;
+ drflac_uint64 offsetHi;
+ drflac_uint64 offsetLo;
+ if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
+ return DRFLAC_FALSE;
+ }
+ pRunningData = pIter->pRunningData;
+ offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
+ cuesheetTrack.offset = offsetLo | (offsetHi << 32);
+ cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1;
+ DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12;
+ cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0;
+ cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14;
+ cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1;
+ cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index);
+ pIter->pRunningData = pRunningData;
+ pIter->countRemaining -= 1;
+ if (pCuesheetTrack) {
+ *pCuesheetTrack = cuesheetTrack;
+ }
+ return DRFLAC_TRUE;
+}
+#if defined(__GNUC__)
+ #pragma GCC diagnostic pop
+#endif
+#endif
+/* dr_flac_c end */
+#endif /* DRFLAC_IMPLEMENTATION */
+#endif /* MA_NO_FLAC */
+
+#if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING)
+#if !defined(DR_MP3_IMPLEMENTATION) && !defined(DRMP3_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
+/* dr_mp3_c begin */
+#ifndef dr_mp3_c
+#define dr_mp3_c
+#include
+#include
+#include
+DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision)
+{
+ if (pMajor) {
+ *pMajor = DRMP3_VERSION_MAJOR;
+ }
+ if (pMinor) {
+ *pMinor = DRMP3_VERSION_MINOR;
+ }
+ if (pRevision) {
+ *pRevision = DRMP3_VERSION_REVISION;
+ }
+}
+DRMP3_API const char* drmp3_version_string()
+{
+ return DRMP3_VERSION_STRING;
+}
+#if defined(__TINYC__)
+#define DR_MP3_NO_SIMD
+#endif
+#define DRMP3_OFFSET_PTR(p, offset) ((void*)((drmp3_uint8*)(p) + (offset)))
+#define DRMP3_MAX_FREE_FORMAT_FRAME_SIZE 2304
+#ifndef DRMP3_MAX_FRAME_SYNC_MATCHES
+#define DRMP3_MAX_FRAME_SYNC_MATCHES 10
+#endif
+#define DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES DRMP3_MAX_FREE_FORMAT_FRAME_SIZE
+#define DRMP3_MAX_BITRESERVOIR_BYTES 511
+#define DRMP3_SHORT_BLOCK_TYPE 2
+#define DRMP3_STOP_BLOCK_TYPE 3
+#define DRMP3_MODE_MONO 3
+#define DRMP3_MODE_JOINT_STEREO 1
+#define DRMP3_HDR_SIZE 4
+#define DRMP3_HDR_IS_MONO(h) (((h[3]) & 0xC0) == 0xC0)
+#define DRMP3_HDR_IS_MS_STEREO(h) (((h[3]) & 0xE0) == 0x60)
+#define DRMP3_HDR_IS_FREE_FORMAT(h) (((h[2]) & 0xF0) == 0)
+#define DRMP3_HDR_IS_CRC(h) (!((h[1]) & 1))
+#define DRMP3_HDR_TEST_PADDING(h) ((h[2]) & 0x2)
+#define DRMP3_HDR_TEST_MPEG1(h) ((h[1]) & 0x8)
+#define DRMP3_HDR_TEST_NOT_MPEG25(h) ((h[1]) & 0x10)
+#define DRMP3_HDR_TEST_I_STEREO(h) ((h[3]) & 0x10)
+#define DRMP3_HDR_TEST_MS_STEREO(h) ((h[3]) & 0x20)
+#define DRMP3_HDR_GET_STEREO_MODE(h) (((h[3]) >> 6) & 3)
+#define DRMP3_HDR_GET_STEREO_MODE_EXT(h) (((h[3]) >> 4) & 3)
+#define DRMP3_HDR_GET_LAYER(h) (((h[1]) >> 1) & 3)
+#define DRMP3_HDR_GET_BITRATE(h) ((h[2]) >> 4)
+#define DRMP3_HDR_GET_SAMPLE_RATE(h) (((h[2]) >> 2) & 3)
+#define DRMP3_HDR_GET_MY_SAMPLE_RATE(h) (DRMP3_HDR_GET_SAMPLE_RATE(h) + (((h[1] >> 3) & 1) + ((h[1] >> 4) & 1))*3)
+#define DRMP3_HDR_IS_FRAME_576(h) ((h[1] & 14) == 2)
+#define DRMP3_HDR_IS_LAYER_1(h) ((h[1] & 6) == 6)
+#define DRMP3_BITS_DEQUANTIZER_OUT -1
+#define DRMP3_MAX_SCF (255 + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210)
+#define DRMP3_MAX_SCFI ((DRMP3_MAX_SCF + 3) & ~3)
+#define DRMP3_MIN(a, b) ((a) > (b) ? (b) : (a))
+#define DRMP3_MAX(a, b) ((a) < (b) ? (b) : (a))
+#if !defined(DR_MP3_NO_SIMD)
+#if !defined(DR_MP3_ONLY_SIMD) && (defined(_M_X64) || defined(_M_ARM64) || defined(__x86_64__) || defined(__aarch64__))
+#define DR_MP3_ONLY_SIMD
+#endif
+#if ((defined(_MSC_VER) && _MSC_VER >= 1400) && (defined(_M_IX86) || defined(_M_X64))) || ((defined(__i386__) || defined(__x86_64__)) && defined(__SSE2__))
+#if defined(_MSC_VER)
+#include
+#endif
+#include
+#define DRMP3_HAVE_SSE 1
+#define DRMP3_HAVE_SIMD 1
+#define DRMP3_VSTORE _mm_storeu_ps
+#define DRMP3_VLD _mm_loadu_ps
+#define DRMP3_VSET _mm_set1_ps
+#define DRMP3_VADD _mm_add_ps
+#define DRMP3_VSUB _mm_sub_ps
+#define DRMP3_VMUL _mm_mul_ps
+#define DRMP3_VMAC(a, x, y) _mm_add_ps(a, _mm_mul_ps(x, y))
+#define DRMP3_VMSB(a, x, y) _mm_sub_ps(a, _mm_mul_ps(x, y))
+#define DRMP3_VMUL_S(x, s) _mm_mul_ps(x, _mm_set1_ps(s))
+#define DRMP3_VREV(x) _mm_shuffle_ps(x, x, _MM_SHUFFLE(0, 1, 2, 3))
+typedef __m128 drmp3_f4;
+#if defined(_MSC_VER) || defined(DR_MP3_ONLY_SIMD)
+#define drmp3_cpuid __cpuid
+#else
+static __inline__ __attribute__((always_inline)) void drmp3_cpuid(int CPUInfo[], const int InfoType)
+{
+#if defined(__PIC__)
+ __asm__ __volatile__(
+#if defined(__x86_64__)
+ "push %%rbx\n"
+ "cpuid\n"
+ "xchgl %%ebx, %1\n"
+ "pop %%rbx\n"
+#else
+ "xchgl %%ebx, %1\n"
+ "cpuid\n"
+ "xchgl %%ebx, %1\n"
+#endif
+ : "=a" (CPUInfo[0]), "=r" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
+ : "a" (InfoType));
+#else
+ __asm__ __volatile__(
+ "cpuid"
+ : "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
+ : "a" (InfoType));
+#endif
+}
+#endif
+static int drmp3_have_simd(void)
+{
+#ifdef DR_MP3_ONLY_SIMD
+ return 1;
+#else
+ static int g_have_simd;
+ int CPUInfo[4];
+#ifdef MINIMP3_TEST
+ static int g_counter;
+ if (g_counter++ > 100)
+ return 0;
+#endif
+ if (g_have_simd)
+ goto end;
+ drmp3_cpuid(CPUInfo, 0);
+ if (CPUInfo[0] > 0)
+ {
+ drmp3_cpuid(CPUInfo, 1);
+ g_have_simd = (CPUInfo[3] & (1 << 26)) + 1;
+ return g_have_simd - 1;
+ }
+end:
+ return g_have_simd - 1;
+#endif
+}
+#elif defined(__ARM_NEON) || defined(__aarch64__)
+#include
+#define DRMP3_HAVE_SSE 0
+#define DRMP3_HAVE_SIMD 1
+#define DRMP3_VSTORE vst1q_f32
+#define DRMP3_VLD vld1q_f32
+#define DRMP3_VSET vmovq_n_f32
+#define DRMP3_VADD vaddq_f32
+#define DRMP3_VSUB vsubq_f32
+#define DRMP3_VMUL vmulq_f32
+#define DRMP3_VMAC(a, x, y) vmlaq_f32(a, x, y)
+#define DRMP3_VMSB(a, x, y) vmlsq_f32(a, x, y)
+#define DRMP3_VMUL_S(x, s) vmulq_f32(x, vmovq_n_f32(s))
+#define DRMP3_VREV(x) vcombine_f32(vget_high_f32(vrev64q_f32(x)), vget_low_f32(vrev64q_f32(x)))
+typedef float32x4_t drmp3_f4;
+static int drmp3_have_simd(void)
+{
+ return 1;
+}
+#else
+#define DRMP3_HAVE_SSE 0
+#define DRMP3_HAVE_SIMD 0
+#ifdef DR_MP3_ONLY_SIMD
+#error DR_MP3_ONLY_SIMD used, but SSE/NEON not enabled
+#endif
+#endif
+#else
+#define DRMP3_HAVE_SIMD 0
+#endif
+#if defined(__ARM_ARCH) && (__ARM_ARCH >= 6) && !defined(__aarch64__)
+#define DRMP3_HAVE_ARMV6 1
+static __inline__ __attribute__((always_inline)) drmp3_int32 drmp3_clip_int16_arm(int32_t a)
+{
+ drmp3_int32 x = 0;
+ __asm__ ("ssat %0, #16, %1" : "=r"(x) : "r"(a));
+ return x;
+}
+#endif
+typedef struct
+{
+ const drmp3_uint8 *buf;
+ int pos, limit;
+} drmp3_bs;
+typedef struct
+{
+ float scf[3*64];
+ drmp3_uint8 total_bands, stereo_bands, bitalloc[64], scfcod[64];
+} drmp3_L12_scale_info;
+typedef struct
+{
+ drmp3_uint8 tab_offset, code_tab_width, band_count;
+} drmp3_L12_subband_alloc;
+typedef struct
+{
+ const drmp3_uint8 *sfbtab;
+ drmp3_uint16 part_23_length, big_values, scalefac_compress;
+ drmp3_uint8 global_gain, block_type, mixed_block_flag, n_long_sfb, n_short_sfb;
+ drmp3_uint8 table_select[3], region_count[3], subblock_gain[3];
+ drmp3_uint8 preflag, scalefac_scale, count1_table, scfsi;
+} drmp3_L3_gr_info;
+typedef struct
+{
+ drmp3_bs bs;
+ drmp3_uint8 maindata[DRMP3_MAX_BITRESERVOIR_BYTES + DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES];
+ drmp3_L3_gr_info gr_info[4];
+ float grbuf[2][576], scf[40], syn[18 + 15][2*32];
+ drmp3_uint8 ist_pos[2][39];
+} drmp3dec_scratch;
+static void drmp3_bs_init(drmp3_bs *bs, const drmp3_uint8 *data, int bytes)
+{
+ bs->buf = data;
+ bs->pos = 0;
+ bs->limit = bytes*8;
+}
+static drmp3_uint32 drmp3_bs_get_bits(drmp3_bs *bs, int n)
+{
+ drmp3_uint32 next, cache = 0, s = bs->pos & 7;
+ int shl = n + s;
+ const drmp3_uint8 *p = bs->buf + (bs->pos >> 3);
+ if ((bs->pos += n) > bs->limit)
+ return 0;
+ next = *p++ & (255 >> s);
+ while ((shl -= 8) > 0)
+ {
+ cache |= next << shl;
+ next = *p++;
+ }
+ return cache | (next >> -shl);
+}
+static int drmp3_hdr_valid(const drmp3_uint8 *h)
+{
+ return h[0] == 0xff &&
+ ((h[1] & 0xF0) == 0xf0 || (h[1] & 0xFE) == 0xe2) &&
+ (DRMP3_HDR_GET_LAYER(h) != 0) &&
+ (DRMP3_HDR_GET_BITRATE(h) != 15) &&
+ (DRMP3_HDR_GET_SAMPLE_RATE(h) != 3);
+}
+static int drmp3_hdr_compare(const drmp3_uint8 *h1, const drmp3_uint8 *h2)
+{
+ return drmp3_hdr_valid(h2) &&
+ ((h1[1] ^ h2[1]) & 0xFE) == 0 &&
+ ((h1[2] ^ h2[2]) & 0x0C) == 0 &&
+ !(DRMP3_HDR_IS_FREE_FORMAT(h1) ^ DRMP3_HDR_IS_FREE_FORMAT(h2));
+}
+static unsigned drmp3_hdr_bitrate_kbps(const drmp3_uint8 *h)
+{
+ static const drmp3_uint8 halfrate[2][3][15] = {
+ { { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,16,24,28,32,40,48,56,64,72,80,88,96,112,128 } },
+ { { 0,16,20,24,28,32,40,48,56,64,80,96,112,128,160 }, { 0,16,24,28,32,40,48,56,64,80,96,112,128,160,192 }, { 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224 } },
+ };
+ return 2*halfrate[!!DRMP3_HDR_TEST_MPEG1(h)][DRMP3_HDR_GET_LAYER(h) - 1][DRMP3_HDR_GET_BITRATE(h)];
+}
+static unsigned drmp3_hdr_sample_rate_hz(const drmp3_uint8 *h)
+{
+ static const unsigned g_hz[3] = { 44100, 48000, 32000 };
+ return g_hz[DRMP3_HDR_GET_SAMPLE_RATE(h)] >> (int)!DRMP3_HDR_TEST_MPEG1(h) >> (int)!DRMP3_HDR_TEST_NOT_MPEG25(h);
+}
+static unsigned drmp3_hdr_frame_samples(const drmp3_uint8 *h)
+{
+ return DRMP3_HDR_IS_LAYER_1(h) ? 384 : (1152 >> (int)DRMP3_HDR_IS_FRAME_576(h));
+}
+static int drmp3_hdr_frame_bytes(const drmp3_uint8 *h, int free_format_size)
+{
+ int frame_bytes = drmp3_hdr_frame_samples(h)*drmp3_hdr_bitrate_kbps(h)*125/drmp3_hdr_sample_rate_hz(h);
+ if (DRMP3_HDR_IS_LAYER_1(h))
+ {
+ frame_bytes &= ~3;
+ }
+ return frame_bytes ? frame_bytes : free_format_size;
+}
+static int drmp3_hdr_padding(const drmp3_uint8 *h)
+{
+ return DRMP3_HDR_TEST_PADDING(h) ? (DRMP3_HDR_IS_LAYER_1(h) ? 4 : 1) : 0;
+}
+#ifndef DR_MP3_ONLY_MP3
+static const drmp3_L12_subband_alloc *drmp3_L12_subband_alloc_table(const drmp3_uint8 *hdr, drmp3_L12_scale_info *sci)
+{
+ const drmp3_L12_subband_alloc *alloc;
+ int mode = DRMP3_HDR_GET_STEREO_MODE(hdr);
+ int nbands, stereo_bands = (mode == DRMP3_MODE_MONO) ? 0 : (mode == DRMP3_MODE_JOINT_STEREO) ? (DRMP3_HDR_GET_STEREO_MODE_EXT(hdr) << 2) + 4 : 32;
+ if (DRMP3_HDR_IS_LAYER_1(hdr))
+ {
+ static const drmp3_L12_subband_alloc g_alloc_L1[] = { { 76, 4, 32 } };
+ alloc = g_alloc_L1;
+ nbands = 32;
+ } else if (!DRMP3_HDR_TEST_MPEG1(hdr))
+ {
+ static const drmp3_L12_subband_alloc g_alloc_L2M2[] = { { 60, 4, 4 }, { 44, 3, 7 }, { 44, 2, 19 } };
+ alloc = g_alloc_L2M2;
+ nbands = 30;
+ } else
+ {
+ static const drmp3_L12_subband_alloc g_alloc_L2M1[] = { { 0, 4, 3 }, { 16, 4, 8 }, { 32, 3, 12 }, { 40, 2, 7 } };
+ int sample_rate_idx = DRMP3_HDR_GET_SAMPLE_RATE(hdr);
+ unsigned kbps = drmp3_hdr_bitrate_kbps(hdr) >> (int)(mode != DRMP3_MODE_MONO);
+ if (!kbps)
+ {
+ kbps = 192;
+ }
+ alloc = g_alloc_L2M1;
+ nbands = 27;
+ if (kbps < 56)
+ {
+ static const drmp3_L12_subband_alloc g_alloc_L2M1_lowrate[] = { { 44, 4, 2 }, { 44, 3, 10 } };
+ alloc = g_alloc_L2M1_lowrate;
+ nbands = sample_rate_idx == 2 ? 12 : 8;
+ } else if (kbps >= 96 && sample_rate_idx != 1)
+ {
+ nbands = 30;
+ }
+ }
+ sci->total_bands = (drmp3_uint8)nbands;
+ sci->stereo_bands = (drmp3_uint8)DRMP3_MIN(stereo_bands, nbands);
+ return alloc;
+}
+static void drmp3_L12_read_scalefactors(drmp3_bs *bs, drmp3_uint8 *pba, drmp3_uint8 *scfcod, int bands, float *scf)
+{
+ static const float g_deq_L12[18*3] = {
+#define DRMP3_DQ(x) 9.53674316e-07f/x, 7.56931807e-07f/x, 6.00777173e-07f/x
+ DRMP3_DQ(3),DRMP3_DQ(7),DRMP3_DQ(15),DRMP3_DQ(31),DRMP3_DQ(63),DRMP3_DQ(127),DRMP3_DQ(255),DRMP3_DQ(511),DRMP3_DQ(1023),DRMP3_DQ(2047),DRMP3_DQ(4095),DRMP3_DQ(8191),DRMP3_DQ(16383),DRMP3_DQ(32767),DRMP3_DQ(65535),DRMP3_DQ(3),DRMP3_DQ(5),DRMP3_DQ(9)
+ };
+ int i, m;
+ for (i = 0; i < bands; i++)
+ {
+ float s = 0;
+ int ba = *pba++;
+ int mask = ba ? 4 + ((19 >> scfcod[i]) & 3) : 0;
+ for (m = 4; m; m >>= 1)
+ {
+ if (mask & m)
+ {
+ int b = drmp3_bs_get_bits(bs, 6);
+ s = g_deq_L12[ba*3 - 6 + b % 3]*(int)(1 << 21 >> b/3);
+ }
+ *scf++ = s;
+ }
+ }
+}
+static void drmp3_L12_read_scale_info(const drmp3_uint8 *hdr, drmp3_bs *bs, drmp3_L12_scale_info *sci)
+{
+ static const drmp3_uint8 g_bitalloc_code_tab[] = {
+ 0,17, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16,
+ 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,16,
+ 0,17,18, 3,19,4,5,16,
+ 0,17,18,16,
+ 0,17,18,19, 4,5,6, 7,8, 9,10,11,12,13,14,15,
+ 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,14,
+ 0, 2, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16
+ };
+ const drmp3_L12_subband_alloc *subband_alloc = drmp3_L12_subband_alloc_table(hdr, sci);
+ int i, k = 0, ba_bits = 0;
+ const drmp3_uint8 *ba_code_tab = g_bitalloc_code_tab;
+ for (i = 0; i < sci->total_bands; i++)
+ {
+ drmp3_uint8 ba;
+ if (i == k)
+ {
+ k += subband_alloc->band_count;
+ ba_bits = subband_alloc->code_tab_width;
+ ba_code_tab = g_bitalloc_code_tab + subband_alloc->tab_offset;
+ subband_alloc++;
+ }
+ ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)];
+ sci->bitalloc[2*i] = ba;
+ if (i < sci->stereo_bands)
+ {
+ ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)];
+ }
+ sci->bitalloc[2*i + 1] = sci->stereo_bands ? ba : 0;
+ }
+ for (i = 0; i < 2*sci->total_bands; i++)
+ {
+ sci->scfcod[i] = (drmp3_uint8)(sci->bitalloc[i] ? DRMP3_HDR_IS_LAYER_1(hdr) ? 2 : drmp3_bs_get_bits(bs, 2) : 6);
+ }
+ drmp3_L12_read_scalefactors(bs, sci->bitalloc, sci->scfcod, sci->total_bands*2, sci->scf);
+ for (i = sci->stereo_bands; i < sci->total_bands; i++)
+ {
+ sci->bitalloc[2*i + 1] = 0;
+ }
+}
+static int drmp3_L12_dequantize_granule(float *grbuf, drmp3_bs *bs, drmp3_L12_scale_info *sci, int group_size)
+{
+ int i, j, k, choff = 576;
+ for (j = 0; j < 4; j++)
+ {
+ float *dst = grbuf + group_size*j;
+ for (i = 0; i < 2*sci->total_bands; i++)
+ {
+ int ba = sci->bitalloc[i];
+ if (ba != 0)
+ {
+ if (ba < 17)
+ {
+ int half = (1 << (ba - 1)) - 1;
+ for (k = 0; k < group_size; k++)
+ {
+ dst[k] = (float)((int)drmp3_bs_get_bits(bs, ba) - half);
+ }
+ } else
+ {
+ unsigned mod = (2 << (ba - 17)) + 1;
+ unsigned code = drmp3_bs_get_bits(bs, mod + 2 - (mod >> 3));
+ for (k = 0; k < group_size; k++, code /= mod)
+ {
+ dst[k] = (float)((int)(code % mod - mod/2));
+ }
+ }
+ }
+ dst += choff;
+ choff = 18 - choff;
+ }
+ }
+ return group_size*4;
+}
+static void drmp3_L12_apply_scf_384(drmp3_L12_scale_info *sci, const float *scf, float *dst)
+{
+ int i, k;
+ memcpy(dst + 576 + sci->stereo_bands*18, dst + sci->stereo_bands*18, (sci->total_bands - sci->stereo_bands)*18*sizeof(float));
+ for (i = 0; i < sci->total_bands; i++, dst += 18, scf += 6)
+ {
+ for (k = 0; k < 12; k++)
+ {
+ dst[k + 0] *= scf[0];
+ dst[k + 576] *= scf[3];
+ }
+ }
+}
+#endif
+static int drmp3_L3_read_side_info(drmp3_bs *bs, drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr)
+{
+ static const drmp3_uint8 g_scf_long[8][23] = {
+ { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
+ { 12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2,0 },
+ { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
+ { 6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36,0 },
+ { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
+ { 4,4,4,4,4,4,6,6,8,8,10,12,16,20,24,28,34,42,50,54,76,158,0 },
+ { 4,4,4,4,4,4,6,6,6,8,10,12,16,18,22,28,34,40,46,54,54,192,0 },
+ { 4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102,26,0 }
+ };
+ static const drmp3_uint8 g_scf_short[8][40] = {
+ { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
+ { 8,8,8,8,8,8,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
+ { 4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
+ { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
+ { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
+ { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
+ { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
+ { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
+ };
+ static const drmp3_uint8 g_scf_mixed[8][40] = {
+ { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
+ { 12,12,12,4,4,4,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
+ { 6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
+ { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
+ { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
+ { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
+ { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
+ { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
+ };
+ unsigned tables, scfsi = 0;
+ int main_data_begin, part_23_sum = 0;
+ int gr_count = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2;
+ int sr_idx = DRMP3_HDR_GET_MY_SAMPLE_RATE(hdr); sr_idx -= (sr_idx != 0);
+ if (DRMP3_HDR_TEST_MPEG1(hdr))
+ {
+ gr_count *= 2;
+ main_data_begin = drmp3_bs_get_bits(bs, 9);
+ scfsi = drmp3_bs_get_bits(bs, 7 + gr_count);
+ } else
+ {
+ main_data_begin = drmp3_bs_get_bits(bs, 8 + gr_count) >> gr_count;
+ }
+ do
+ {
+ if (DRMP3_HDR_IS_MONO(hdr))
+ {
+ scfsi <<= 4;
+ }
+ gr->part_23_length = (drmp3_uint16)drmp3_bs_get_bits(bs, 12);
+ part_23_sum += gr->part_23_length;
+ gr->big_values = (drmp3_uint16)drmp3_bs_get_bits(bs, 9);
+ if (gr->big_values > 288)
+ {
+ return -1;
+ }
+ gr->global_gain = (drmp3_uint8)drmp3_bs_get_bits(bs, 8);
+ gr->scalefac_compress = (drmp3_uint16)drmp3_bs_get_bits(bs, DRMP3_HDR_TEST_MPEG1(hdr) ? 4 : 9);
+ gr->sfbtab = g_scf_long[sr_idx];
+ gr->n_long_sfb = 22;
+ gr->n_short_sfb = 0;
+ if (drmp3_bs_get_bits(bs, 1))
+ {
+ gr->block_type = (drmp3_uint8)drmp3_bs_get_bits(bs, 2);
+ if (!gr->block_type)
+ {
+ return -1;
+ }
+ gr->mixed_block_flag = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
+ gr->region_count[0] = 7;
+ gr->region_count[1] = 255;
+ if (gr->block_type == DRMP3_SHORT_BLOCK_TYPE)
+ {
+ scfsi &= 0x0F0F;
+ if (!gr->mixed_block_flag)
+ {
+ gr->region_count[0] = 8;
+ gr->sfbtab = g_scf_short[sr_idx];
+ gr->n_long_sfb = 0;
+ gr->n_short_sfb = 39;
+ } else
+ {
+ gr->sfbtab = g_scf_mixed[sr_idx];
+ gr->n_long_sfb = DRMP3_HDR_TEST_MPEG1(hdr) ? 8 : 6;
+ gr->n_short_sfb = 30;
+ }
+ }
+ tables = drmp3_bs_get_bits(bs, 10);
+ tables <<= 5;
+ gr->subblock_gain[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
+ gr->subblock_gain[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
+ gr->subblock_gain[2] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
+ } else
+ {
+ gr->block_type = 0;
+ gr->mixed_block_flag = 0;
+ tables = drmp3_bs_get_bits(bs, 15);
+ gr->region_count[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 4);
+ gr->region_count[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
+ gr->region_count[2] = 255;
+ }
+ gr->table_select[0] = (drmp3_uint8)(tables >> 10);
+ gr->table_select[1] = (drmp3_uint8)((tables >> 5) & 31);
+ gr->table_select[2] = (drmp3_uint8)((tables) & 31);
+ gr->preflag = (drmp3_uint8)(DRMP3_HDR_TEST_MPEG1(hdr) ? drmp3_bs_get_bits(bs, 1) : (gr->scalefac_compress >= 500));
+ gr->scalefac_scale = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
+ gr->count1_table = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
+ gr->scfsi = (drmp3_uint8)((scfsi >> 12) & 15);
+ scfsi <<= 4;
+ gr++;
+ } while(--gr_count);
+ if (part_23_sum + bs->pos > bs->limit + main_data_begin*8)
+ {
+ return -1;
+ }
+ return main_data_begin;
+}
+static void drmp3_L3_read_scalefactors(drmp3_uint8 *scf, drmp3_uint8 *ist_pos, const drmp3_uint8 *scf_size, const drmp3_uint8 *scf_count, drmp3_bs *bitbuf, int scfsi)
+{
+ int i, k;
+ for (i = 0; i < 4 && scf_count[i]; i++, scfsi *= 2)
+ {
+ int cnt = scf_count[i];
+ if (scfsi & 8)
+ {
+ memcpy(scf, ist_pos, cnt);
+ } else
+ {
+ int bits = scf_size[i];
+ if (!bits)
+ {
+ memset(scf, 0, cnt);
+ memset(ist_pos, 0, cnt);
+ } else
+ {
+ int max_scf = (scfsi < 0) ? (1 << bits) - 1 : -1;
+ for (k = 0; k < cnt; k++)
+ {
+ int s = drmp3_bs_get_bits(bitbuf, bits);
+ ist_pos[k] = (drmp3_uint8)(s == max_scf ? -1 : s);
+ scf[k] = (drmp3_uint8)s;
+ }
+ }
+ }
+ ist_pos += cnt;
+ scf += cnt;
+ }
+ scf[0] = scf[1] = scf[2] = 0;
+}
+static float drmp3_L3_ldexp_q2(float y, int exp_q2)
+{
+ static const float g_expfrac[4] = { 9.31322575e-10f,7.83145814e-10f,6.58544508e-10f,5.53767716e-10f };
+ int e;
+ do
+ {
+ e = DRMP3_MIN(30*4, exp_q2);
+ y *= g_expfrac[e & 3]*(1 << 30 >> (e >> 2));
+ } while ((exp_q2 -= e) > 0);
+ return y;
+}
+static void drmp3_L3_decode_scalefactors(const drmp3_uint8 *hdr, drmp3_uint8 *ist_pos, drmp3_bs *bs, const drmp3_L3_gr_info *gr, float *scf, int ch)
+{
+ static const drmp3_uint8 g_scf_partitions[3][28] = {
+ { 6,5,5, 5,6,5,5,5,6,5, 7,3,11,10,0,0, 7, 7, 7,0, 6, 6,6,3, 8, 8,5,0 },
+ { 8,9,6,12,6,9,9,9,6,9,12,6,15,18,0,0, 6,15,12,0, 6,12,9,6, 6,18,9,0 },
+ { 9,9,6,12,9,9,9,9,9,9,12,6,18,18,0,0,12,12,12,0,12, 9,9,6,15,12,9,0 }
+ };
+ const drmp3_uint8 *scf_partition = g_scf_partitions[!!gr->n_short_sfb + !gr->n_long_sfb];
+ drmp3_uint8 scf_size[4], iscf[40];
+ int i, scf_shift = gr->scalefac_scale + 1, gain_exp, scfsi = gr->scfsi;
+ float gain;
+ if (DRMP3_HDR_TEST_MPEG1(hdr))
+ {
+ static const drmp3_uint8 g_scfc_decode[16] = { 0,1,2,3, 12,5,6,7, 9,10,11,13, 14,15,18,19 };
+ int part = g_scfc_decode[gr->scalefac_compress];
+ scf_size[1] = scf_size[0] = (drmp3_uint8)(part >> 2);
+ scf_size[3] = scf_size[2] = (drmp3_uint8)(part & 3);
+ } else
+ {
+ static const drmp3_uint8 g_mod[6*4] = { 5,5,4,4,5,5,4,1,4,3,1,1,5,6,6,1,4,4,4,1,4,3,1,1 };
+ int k, modprod, sfc, ist = DRMP3_HDR_TEST_I_STEREO(hdr) && ch;
+ sfc = gr->scalefac_compress >> ist;
+ for (k = ist*3*4; sfc >= 0; sfc -= modprod, k += 4)
+ {
+ for (modprod = 1, i = 3; i >= 0; i--)
+ {
+ scf_size[i] = (drmp3_uint8)(sfc / modprod % g_mod[k + i]);
+ modprod *= g_mod[k + i];
+ }
+ }
+ scf_partition += k;
+ scfsi = -16;
+ }
+ drmp3_L3_read_scalefactors(iscf, ist_pos, scf_size, scf_partition, bs, scfsi);
+ if (gr->n_short_sfb)
+ {
+ int sh = 3 - scf_shift;
+ for (i = 0; i < gr->n_short_sfb; i += 3)
+ {
+ iscf[gr->n_long_sfb + i + 0] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 0] + (gr->subblock_gain[0] << sh));
+ iscf[gr->n_long_sfb + i + 1] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 1] + (gr->subblock_gain[1] << sh));
+ iscf[gr->n_long_sfb + i + 2] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 2] + (gr->subblock_gain[2] << sh));
+ }
+ } else if (gr->preflag)
+ {
+ static const drmp3_uint8 g_preamp[10] = { 1,1,1,1,2,2,3,3,3,2 };
+ for (i = 0; i < 10; i++)
+ {
+ iscf[11 + i] = (drmp3_uint8)(iscf[11 + i] + g_preamp[i]);
+ }
+ }
+ gain_exp = gr->global_gain + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210 - (DRMP3_HDR_IS_MS_STEREO(hdr) ? 2 : 0);
+ gain = drmp3_L3_ldexp_q2(1 << (DRMP3_MAX_SCFI/4), DRMP3_MAX_SCFI - gain_exp);
+ for (i = 0; i < (int)(gr->n_long_sfb + gr->n_short_sfb); i++)
+ {
+ scf[i] = drmp3_L3_ldexp_q2(gain, iscf[i] << scf_shift);
+ }
+}
+static const float g_drmp3_pow43[129 + 16] = {
+ 0,-1,-2.519842f,-4.326749f,-6.349604f,-8.549880f,-10.902724f,-13.390518f,-16.000000f,-18.720754f,-21.544347f,-24.463781f,-27.473142f,-30.567351f,-33.741992f,-36.993181f,
+ 0,1,2.519842f,4.326749f,6.349604f,8.549880f,10.902724f,13.390518f,16.000000f,18.720754f,21.544347f,24.463781f,27.473142f,30.567351f,33.741992f,36.993181f,40.317474f,43.711787f,47.173345f,50.699631f,54.288352f,57.937408f,61.644865f,65.408941f,69.227979f,73.100443f,77.024898f,81.000000f,85.024491f,89.097188f,93.216975f,97.382800f,101.593667f,105.848633f,110.146801f,114.487321f,118.869381f,123.292209f,127.755065f,132.257246f,136.798076f,141.376907f,145.993119f,150.646117f,155.335327f,160.060199f,164.820202f,169.614826f,174.443577f,179.305980f,184.201575f,189.129918f,194.090580f,199.083145f,204.107210f,209.162385f,214.248292f,219.364564f,224.510845f,229.686789f,234.892058f,240.126328f,245.389280f,250.680604f,256.000000f,261.347174f,266.721841f,272.123723f,277.552547f,283.008049f,288.489971f,293.998060f,299.532071f,305.091761f,310.676898f,316.287249f,321.922592f,327.582707f,333.267377f,338.976394f,344.709550f,350.466646f,356.247482f,362.051866f,367.879608f,373.730522f,379.604427f,385.501143f,391.420496f,397.362314f,403.326427f,409.312672f,415.320884f,421.350905f,427.402579f,433.475750f,439.570269f,445.685987f,451.822757f,457.980436f,464.158883f,470.357960f,476.577530f,482.817459f,489.077615f,495.357868f,501.658090f,507.978156f,514.317941f,520.677324f,527.056184f,533.454404f,539.871867f,546.308458f,552.764065f,559.238575f,565.731879f,572.243870f,578.774440f,585.323483f,591.890898f,598.476581f,605.080431f,611.702349f,618.342238f,625.000000f,631.675540f,638.368763f,645.079578f
+};
+static float drmp3_L3_pow_43(int x)
+{
+ float frac;
+ int sign, mult = 256;
+ if (x < 129)
+ {
+ return g_drmp3_pow43[16 + x];
+ }
+ if (x < 1024)
+ {
+ mult = 16;
+ x <<= 3;
+ }
+ sign = 2*x & 64;
+ frac = (float)((x & 63) - sign) / ((x & ~63) + sign);
+ return g_drmp3_pow43[16 + ((x + sign) >> 6)]*(1.f + frac*((4.f/3) + frac*(2.f/9)))*mult;
+}
+static void drmp3_L3_huffman(float *dst, drmp3_bs *bs, const drmp3_L3_gr_info *gr_info, const float *scf, int layer3gr_limit)
+{
+ static const drmp3_int16 tabs[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 785,785,785,785,784,784,784,784,513,513,513,513,513,513,513,513,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,
+ -255,1313,1298,1282,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,290,288,
+ -255,1313,1298,1282,769,769,769,769,529,529,529,529,529,529,529,529,528,528,528,528,528,528,528,528,512,512,512,512,512,512,512,512,290,288,
+ -253,-318,-351,-367,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,819,818,547,547,275,275,275,275,561,560,515,546,289,274,288,258,
+ -254,-287,1329,1299,1314,1312,1057,1057,1042,1042,1026,1026,784,784,784,784,529,529,529,529,529,529,529,529,769,769,769,769,768,768,768,768,563,560,306,306,291,259,
+ -252,-413,-477,-542,1298,-575,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-383,-399,1107,1092,1106,1061,849,849,789,789,1104,1091,773,773,1076,1075,341,340,325,309,834,804,577,577,532,532,516,516,832,818,803,816,561,561,531,531,515,546,289,289,288,258,
+ -252,-429,-493,-559,1057,1057,1042,1042,529,529,529,529,529,529,529,529,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,-382,1077,-415,1106,1061,1104,849,849,789,789,1091,1076,1029,1075,834,834,597,581,340,340,339,324,804,833,532,532,832,772,818,803,817,787,816,771,290,290,290,290,288,258,
+ -253,-349,-414,-447,-463,1329,1299,-479,1314,1312,1057,1057,1042,1042,1026,1026,785,785,785,785,784,784,784,784,769,769,769,769,768,768,768,768,-319,851,821,-335,836,850,805,849,341,340,325,336,533,533,579,579,564,564,773,832,578,548,563,516,321,276,306,291,304,259,
+ -251,-572,-733,-830,-863,-879,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,1396,1351,1381,1366,1395,1335,1380,-559,1334,1138,1138,1063,1063,1350,1392,1031,1031,1062,1062,1364,1363,1120,1120,1333,1348,881,881,881,881,375,374,359,373,343,358,341,325,791,791,1123,1122,-703,1105,1045,-719,865,865,790,790,774,774,1104,1029,338,293,323,308,-799,-815,833,788,772,818,803,816,322,292,307,320,561,531,515,546,289,274,288,258,
+ -251,-525,-605,-685,-765,-831,-846,1298,1057,1057,1312,1282,785,785,785,785,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,1399,1398,1383,1367,1382,1396,1351,-511,1381,1366,1139,1139,1079,1079,1124,1124,1364,1349,1363,1333,882,882,882,882,807,807,807,807,1094,1094,1136,1136,373,341,535,535,881,775,867,822,774,-591,324,338,-671,849,550,550,866,864,609,609,293,336,534,534,789,835,773,-751,834,804,308,307,833,788,832,772,562,562,547,547,305,275,560,515,290,290,
+ -252,-397,-477,-557,-622,-653,-719,-735,-750,1329,1299,1314,1057,1057,1042,1042,1312,1282,1024,1024,785,785,785,785,784,784,784,784,769,769,769,769,-383,1127,1141,1111,1126,1140,1095,1110,869,869,883,883,1079,1109,882,882,375,374,807,868,838,881,791,-463,867,822,368,263,852,837,836,-543,610,610,550,550,352,336,534,534,865,774,851,821,850,805,593,533,579,564,773,832,578,578,548,548,577,577,307,276,306,291,516,560,259,259,
+ -250,-2107,-2507,-2764,-2909,-2974,-3007,-3023,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-767,-1052,-1213,-1277,-1358,-1405,-1469,-1535,-1550,-1582,-1614,-1647,-1662,-1694,-1726,-1759,-1774,-1807,-1822,-1854,-1886,1565,-1919,-1935,-1951,-1967,1731,1730,1580,1717,-1983,1729,1564,-1999,1548,-2015,-2031,1715,1595,-2047,1714,-2063,1610,-2079,1609,-2095,1323,1323,1457,1457,1307,1307,1712,1547,1641,1700,1699,1594,1685,1625,1442,1442,1322,1322,-780,-973,-910,1279,1278,1277,1262,1276,1261,1275,1215,1260,1229,-959,974,974,989,989,-943,735,478,478,495,463,506,414,-1039,1003,958,1017,927,942,987,957,431,476,1272,1167,1228,-1183,1256,-1199,895,895,941,941,1242,1227,1212,1135,1014,1014,490,489,503,487,910,1013,985,925,863,894,970,955,1012,847,-1343,831,755,755,984,909,428,366,754,559,-1391,752,486,457,924,997,698,698,983,893,740,740,908,877,739,739,667,667,953,938,497,287,271,271,683,606,590,712,726,574,302,302,738,736,481,286,526,725,605,711,636,724,696,651,589,681,666,710,364,467,573,695,466,466,301,465,379,379,709,604,665,679,316,316,634,633,436,436,464,269,424,394,452,332,438,363,347,408,393,448,331,422,362,407,392,421,346,406,391,376,375,359,1441,1306,-2367,1290,-2383,1337,-2399,-2415,1426,1321,-2431,1411,1336,-2447,-2463,-2479,1169,1169,1049,1049,1424,1289,1412,1352,1319,-2495,1154,1154,1064,1064,1153,1153,416,390,360,404,403,389,344,374,373,343,358,372,327,357,342,311,356,326,1395,1394,1137,1137,1047,1047,1365,1392,1287,1379,1334,1364,1349,1378,1318,1363,792,792,792,792,1152,1152,1032,1032,1121,1121,1046,1046,1120,1120,1030,1030,-2895,1106,1061,1104,849,849,789,789,1091,1076,1029,1090,1060,1075,833,833,309,324,532,532,832,772,818,803,561,561,531,560,515,546,289,274,288,258,
+ -250,-1179,-1579,-1836,-1996,-2124,-2253,-2333,-2413,-2477,-2542,-2574,-2607,-2622,-2655,1314,1313,1298,1312,1282,785,785,785,785,1040,1040,1025,1025,768,768,768,768,-766,-798,-830,-862,-895,-911,-927,-943,-959,-975,-991,-1007,-1023,-1039,-1055,-1070,1724,1647,-1103,-1119,1631,1767,1662,1738,1708,1723,-1135,1780,1615,1779,1599,1677,1646,1778,1583,-1151,1777,1567,1737,1692,1765,1722,1707,1630,1751,1661,1764,1614,1736,1676,1763,1750,1645,1598,1721,1691,1762,1706,1582,1761,1566,-1167,1749,1629,767,766,751,765,494,494,735,764,719,749,734,763,447,447,748,718,477,506,431,491,446,476,461,505,415,430,475,445,504,399,460,489,414,503,383,474,429,459,502,502,746,752,488,398,501,473,413,472,486,271,480,270,-1439,-1455,1357,-1471,-1487,-1503,1341,1325,-1519,1489,1463,1403,1309,-1535,1372,1448,1418,1476,1356,1462,1387,-1551,1475,1340,1447,1402,1386,-1567,1068,1068,1474,1461,455,380,468,440,395,425,410,454,364,467,466,464,453,269,409,448,268,432,1371,1473,1432,1417,1308,1460,1355,1446,1459,1431,1083,1083,1401,1416,1458,1445,1067,1067,1370,1457,1051,1051,1291,1430,1385,1444,1354,1415,1400,1443,1082,1082,1173,1113,1186,1066,1185,1050,-1967,1158,1128,1172,1097,1171,1081,-1983,1157,1112,416,266,375,400,1170,1142,1127,1065,793,793,1169,1033,1156,1096,1141,1111,1155,1080,1126,1140,898,898,808,808,897,897,792,792,1095,1152,1032,1125,1110,1139,1079,1124,882,807,838,881,853,791,-2319,867,368,263,822,852,837,866,806,865,-2399,851,352,262,534,534,821,836,594,594,549,549,593,593,533,533,848,773,579,579,564,578,548,563,276,276,577,576,306,291,516,560,305,305,275,259,
+ -251,-892,-2058,-2620,-2828,-2957,-3023,-3039,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,-559,1530,-575,-591,1528,1527,1407,1526,1391,1023,1023,1023,1023,1525,1375,1268,1268,1103,1103,1087,1087,1039,1039,1523,-604,815,815,815,815,510,495,509,479,508,463,507,447,431,505,415,399,-734,-782,1262,-815,1259,1244,-831,1258,1228,-847,-863,1196,-879,1253,987,987,748,-767,493,493,462,477,414,414,686,669,478,446,461,445,474,429,487,458,412,471,1266,1264,1009,1009,799,799,-1019,-1276,-1452,-1581,-1677,-1757,-1821,-1886,-1933,-1997,1257,1257,1483,1468,1512,1422,1497,1406,1467,1496,1421,1510,1134,1134,1225,1225,1466,1451,1374,1405,1252,1252,1358,1480,1164,1164,1251,1251,1238,1238,1389,1465,-1407,1054,1101,-1423,1207,-1439,830,830,1248,1038,1237,1117,1223,1148,1236,1208,411,426,395,410,379,269,1193,1222,1132,1235,1221,1116,976,976,1192,1162,1177,1220,1131,1191,963,963,-1647,961,780,-1663,558,558,994,993,437,408,393,407,829,978,813,797,947,-1743,721,721,377,392,844,950,828,890,706,706,812,859,796,960,948,843,934,874,571,571,-1919,690,555,689,421,346,539,539,944,779,918,873,932,842,903,888,570,570,931,917,674,674,-2575,1562,-2591,1609,-2607,1654,1322,1322,1441,1441,1696,1546,1683,1593,1669,1624,1426,1426,1321,1321,1639,1680,1425,1425,1305,1305,1545,1668,1608,1623,1667,1592,1638,1666,1320,1320,1652,1607,1409,1409,1304,1304,1288,1288,1664,1637,1395,1395,1335,1335,1622,1636,1394,1394,1319,1319,1606,1621,1392,1392,1137,1137,1137,1137,345,390,360,375,404,373,1047,-2751,-2767,-2783,1062,1121,1046,-2799,1077,-2815,1106,1061,789,789,1105,1104,263,355,310,340,325,354,352,262,339,324,1091,1076,1029,1090,1060,1075,833,833,788,788,1088,1028,818,818,803,803,561,561,531,531,816,771,546,546,289,274,288,258,
+ -253,-317,-381,-446,-478,-509,1279,1279,-811,-1179,-1451,-1756,-1900,-2028,-2189,-2253,-2333,-2414,-2445,-2511,-2526,1313,1298,-2559,1041,1041,1040,1040,1025,1025,1024,1024,1022,1007,1021,991,1020,975,1019,959,687,687,1018,1017,671,671,655,655,1016,1015,639,639,758,758,623,623,757,607,756,591,755,575,754,559,543,543,1009,783,-575,-621,-685,-749,496,-590,750,749,734,748,974,989,1003,958,988,973,1002,942,987,957,972,1001,926,986,941,971,956,1000,910,985,925,999,894,970,-1071,-1087,-1102,1390,-1135,1436,1509,1451,1374,-1151,1405,1358,1480,1420,-1167,1507,1494,1389,1342,1465,1435,1450,1326,1505,1310,1493,1373,1479,1404,1492,1464,1419,428,443,472,397,736,526,464,464,486,457,442,471,484,482,1357,1449,1434,1478,1388,1491,1341,1490,1325,1489,1463,1403,1309,1477,1372,1448,1418,1433,1476,1356,1462,1387,-1439,1475,1340,1447,1402,1474,1324,1461,1371,1473,269,448,1432,1417,1308,1460,-1711,1459,-1727,1441,1099,1099,1446,1386,1431,1401,-1743,1289,1083,1083,1160,1160,1458,1445,1067,1067,1370,1457,1307,1430,1129,1129,1098,1098,268,432,267,416,266,400,-1887,1144,1187,1082,1173,1113,1186,1066,1050,1158,1128,1143,1172,1097,1171,1081,420,391,1157,1112,1170,1142,1127,1065,1169,1049,1156,1096,1141,1111,1155,1080,1126,1154,1064,1153,1140,1095,1048,-2159,1125,1110,1137,-2175,823,823,1139,1138,807,807,384,264,368,263,868,838,853,791,867,822,852,837,866,806,865,790,-2319,851,821,836,352,262,850,805,849,-2399,533,533,835,820,336,261,578,548,563,577,532,532,832,772,562,562,547,547,305,275,560,515,290,290,288,258 };
+ static const drmp3_uint8 tab32[] = { 130,162,193,209,44,28,76,140,9,9,9,9,9,9,9,9,190,254,222,238,126,94,157,157,109,61,173,205};
+ static const drmp3_uint8 tab33[] = { 252,236,220,204,188,172,156,140,124,108,92,76,60,44,28,12 };
+ static const drmp3_int16 tabindex[2*16] = { 0,32,64,98,0,132,180,218,292,364,426,538,648,746,0,1126,1460,1460,1460,1460,1460,1460,1460,1460,1842,1842,1842,1842,1842,1842,1842,1842 };
+ static const drmp3_uint8 g_linbits[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,6,8,10,13,4,5,6,7,8,9,11,13 };
+#define DRMP3_PEEK_BITS(n) (bs_cache >> (32 - n))
+#define DRMP3_FLUSH_BITS(n) { bs_cache <<= (n); bs_sh += (n); }
+#define DRMP3_CHECK_BITS while (bs_sh >= 0) { bs_cache |= (drmp3_uint32)*bs_next_ptr++ << bs_sh; bs_sh -= 8; }
+#define DRMP3_BSPOS ((bs_next_ptr - bs->buf)*8 - 24 + bs_sh)
+ float one = 0.0f;
+ int ireg = 0, big_val_cnt = gr_info->big_values;
+ const drmp3_uint8 *sfb = gr_info->sfbtab;
+ const drmp3_uint8 *bs_next_ptr = bs->buf + bs->pos/8;
+ drmp3_uint32 bs_cache = (((bs_next_ptr[0]*256u + bs_next_ptr[1])*256u + bs_next_ptr[2])*256u + bs_next_ptr[3]) << (bs->pos & 7);
+ int pairs_to_decode, np, bs_sh = (bs->pos & 7) - 8;
+ bs_next_ptr += 4;
+ while (big_val_cnt > 0)
+ {
+ int tab_num = gr_info->table_select[ireg];
+ int sfb_cnt = gr_info->region_count[ireg++];
+ const drmp3_int16 *codebook = tabs + tabindex[tab_num];
+ int linbits = g_linbits[tab_num];
+ if (linbits)
+ {
+ do
+ {
+ np = *sfb++ / 2;
+ pairs_to_decode = DRMP3_MIN(big_val_cnt, np);
+ one = *scf++;
+ do
+ {
+ int j, w = 5;
+ int leaf = codebook[DRMP3_PEEK_BITS(w)];
+ while (leaf < 0)
+ {
+ DRMP3_FLUSH_BITS(w);
+ w = leaf & 7;
+ leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)];
+ }
+ DRMP3_FLUSH_BITS(leaf >> 8);
+ for (j = 0; j < 2; j++, dst++, leaf >>= 4)
+ {
+ int lsb = leaf & 0x0F;
+ if (lsb == 15)
+ {
+ lsb += DRMP3_PEEK_BITS(linbits);
+ DRMP3_FLUSH_BITS(linbits);
+ DRMP3_CHECK_BITS;
+ *dst = one*drmp3_L3_pow_43(lsb)*((drmp3_int32)bs_cache < 0 ? -1: 1);
+ } else
+ {
+ *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
+ }
+ DRMP3_FLUSH_BITS(lsb ? 1 : 0);
+ }
+ DRMP3_CHECK_BITS;
+ } while (--pairs_to_decode);
+ } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
+ } else
+ {
+ do
+ {
+ np = *sfb++ / 2;
+ pairs_to_decode = DRMP3_MIN(big_val_cnt, np);
+ one = *scf++;
+ do
+ {
+ int j, w = 5;
+ int leaf = codebook[DRMP3_PEEK_BITS(w)];
+ while (leaf < 0)
+ {
+ DRMP3_FLUSH_BITS(w);
+ w = leaf & 7;
+ leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)];
+ }
+ DRMP3_FLUSH_BITS(leaf >> 8);
+ for (j = 0; j < 2; j++, dst++, leaf >>= 4)
+ {
+ int lsb = leaf & 0x0F;
+ *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
+ DRMP3_FLUSH_BITS(lsb ? 1 : 0);
+ }
+ DRMP3_CHECK_BITS;
+ } while (--pairs_to_decode);
+ } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
+ }
+ }
+ for (np = 1 - big_val_cnt;; dst += 4)
+ {
+ const drmp3_uint8 *codebook_count1 = (gr_info->count1_table) ? tab33 : tab32;
+ int leaf = codebook_count1[DRMP3_PEEK_BITS(4)];
+ if (!(leaf & 8))
+ {
+ leaf = codebook_count1[(leaf >> 3) + (bs_cache << 4 >> (32 - (leaf & 3)))];
+ }
+ DRMP3_FLUSH_BITS(leaf & 7);
+ if (DRMP3_BSPOS > layer3gr_limit)
+ {
+ break;
+ }
+#define DRMP3_RELOAD_SCALEFACTOR if (!--np) { np = *sfb++/2; if (!np) break; one = *scf++; }
+#define DRMP3_DEQ_COUNT1(s) if (leaf & (128 >> s)) { dst[s] = ((drmp3_int32)bs_cache < 0) ? -one : one; DRMP3_FLUSH_BITS(1) }
+ DRMP3_RELOAD_SCALEFACTOR;
+ DRMP3_DEQ_COUNT1(0);
+ DRMP3_DEQ_COUNT1(1);
+ DRMP3_RELOAD_SCALEFACTOR;
+ DRMP3_DEQ_COUNT1(2);
+ DRMP3_DEQ_COUNT1(3);
+ DRMP3_CHECK_BITS;
+ }
+ bs->pos = layer3gr_limit;
+}
+static void drmp3_L3_midside_stereo(float *left, int n)
+{
+ int i = 0;
+ float *right = left + 576;
+#if DRMP3_HAVE_SIMD
+ if (drmp3_have_simd()) for (; i < n - 3; i += 4)
+ {
+ drmp3_f4 vl = DRMP3_VLD(left + i);
+ drmp3_f4 vr = DRMP3_VLD(right + i);
+ DRMP3_VSTORE(left + i, DRMP3_VADD(vl, vr));
+ DRMP3_VSTORE(right + i, DRMP3_VSUB(vl, vr));
+ }
+#endif
+ for (; i < n; i++)
+ {
+ float a = left[i];
+ float b = right[i];
+ left[i] = a + b;
+ right[i] = a - b;
+ }
+}
+static void drmp3_L3_intensity_stereo_band(float *left, int n, float kl, float kr)
+{
+ int i;
+ for (i = 0; i < n; i++)
+ {
+ left[i + 576] = left[i]*kr;
+ left[i] = left[i]*kl;
+ }
+}
+static void drmp3_L3_stereo_top_band(const float *right, const drmp3_uint8 *sfb, int nbands, int max_band[3])
+{
+ int i, k;
+ max_band[0] = max_band[1] = max_band[2] = -1;
+ for (i = 0; i < nbands; i++)
+ {
+ for (k = 0; k < sfb[i]; k += 2)
+ {
+ if (right[k] != 0 || right[k + 1] != 0)
+ {
+ max_band[i % 3] = i;
+ break;
+ }
+ }
+ right += sfb[i];
+ }
+}
+static void drmp3_L3_stereo_process(float *left, const drmp3_uint8 *ist_pos, const drmp3_uint8 *sfb, const drmp3_uint8 *hdr, int max_band[3], int mpeg2_sh)
+{
+ static const float g_pan[7*2] = { 0,1,0.21132487f,0.78867513f,0.36602540f,0.63397460f,0.5f,0.5f,0.63397460f,0.36602540f,0.78867513f,0.21132487f,1,0 };
+ unsigned i, max_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 7 : 64;
+ for (i = 0; sfb[i]; i++)
+ {
+ unsigned ipos = ist_pos[i];
+ if ((int)i > max_band[i % 3] && ipos < max_pos)
+ {
+ float kl, kr, s = DRMP3_HDR_TEST_MS_STEREO(hdr) ? 1.41421356f : 1;
+ if (DRMP3_HDR_TEST_MPEG1(hdr))
+ {
+ kl = g_pan[2*ipos];
+ kr = g_pan[2*ipos + 1];
+ } else
+ {
+ kl = 1;
+ kr = drmp3_L3_ldexp_q2(1, (ipos + 1) >> 1 << mpeg2_sh);
+ if (ipos & 1)
+ {
+ kl = kr;
+ kr = 1;
+ }
+ }
+ drmp3_L3_intensity_stereo_band(left, sfb[i], kl*s, kr*s);
+ } else if (DRMP3_HDR_TEST_MS_STEREO(hdr))
+ {
+ drmp3_L3_midside_stereo(left, sfb[i]);
+ }
+ left += sfb[i];
+ }
+}
+static void drmp3_L3_intensity_stereo(float *left, drmp3_uint8 *ist_pos, const drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr)
+{
+ int max_band[3], n_sfb = gr->n_long_sfb + gr->n_short_sfb;
+ int i, max_blocks = gr->n_short_sfb ? 3 : 1;
+ drmp3_L3_stereo_top_band(left + 576, gr->sfbtab, n_sfb, max_band);
+ if (gr->n_long_sfb)
+ {
+ max_band[0] = max_band[1] = max_band[2] = DRMP3_MAX(DRMP3_MAX(max_band[0], max_band[1]), max_band[2]);
+ }
+ for (i = 0; i < max_blocks; i++)
+ {
+ int default_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 3 : 0;
+ int itop = n_sfb - max_blocks + i;
+ int prev = itop - max_blocks;
+ ist_pos[itop] = (drmp3_uint8)(max_band[i] >= prev ? default_pos : ist_pos[prev]);
+ }
+ drmp3_L3_stereo_process(left, ist_pos, gr->sfbtab, hdr, max_band, gr[1].scalefac_compress & 1);
+}
+static void drmp3_L3_reorder(float *grbuf, float *scratch, const drmp3_uint8 *sfb)
+{
+ int i, len;
+ float *src = grbuf, *dst = scratch;
+ for (;0 != (len = *sfb); sfb += 3, src += 2*len)
+ {
+ for (i = 0; i < len; i++, src++)
+ {
+ *dst++ = src[0*len];
+ *dst++ = src[1*len];
+ *dst++ = src[2*len];
+ }
+ }
+ memcpy(grbuf, scratch, (dst - scratch)*sizeof(float));
+}
+static void drmp3_L3_antialias(float *grbuf, int nbands)
+{
+ static const float g_aa[2][8] = {
+ {0.85749293f,0.88174200f,0.94962865f,0.98331459f,0.99551782f,0.99916056f,0.99989920f,0.99999316f},
+ {0.51449576f,0.47173197f,0.31337745f,0.18191320f,0.09457419f,0.04096558f,0.01419856f,0.00369997f}
+ };
+ for (; nbands > 0; nbands--, grbuf += 18)
+ {
+ int i = 0;
+#if DRMP3_HAVE_SIMD
+ if (drmp3_have_simd()) for (; i < 8; i += 4)
+ {
+ drmp3_f4 vu = DRMP3_VLD(grbuf + 18 + i);
+ drmp3_f4 vd = DRMP3_VLD(grbuf + 14 - i);
+ drmp3_f4 vc0 = DRMP3_VLD(g_aa[0] + i);
+ drmp3_f4 vc1 = DRMP3_VLD(g_aa[1] + i);
+ vd = DRMP3_VREV(vd);
+ DRMP3_VSTORE(grbuf + 18 + i, DRMP3_VSUB(DRMP3_VMUL(vu, vc0), DRMP3_VMUL(vd, vc1)));
+ vd = DRMP3_VADD(DRMP3_VMUL(vu, vc1), DRMP3_VMUL(vd, vc0));
+ DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vd));
+ }
+#endif
+#ifndef DR_MP3_ONLY_SIMD
+ for(; i < 8; i++)
+ {
+ float u = grbuf[18 + i];
+ float d = grbuf[17 - i];
+ grbuf[18 + i] = u*g_aa[0][i] - d*g_aa[1][i];
+ grbuf[17 - i] = u*g_aa[1][i] + d*g_aa[0][i];
+ }
+#endif
+ }
+}
+static void drmp3_L3_dct3_9(float *y)
+{
+ float s0, s1, s2, s3, s4, s5, s6, s7, s8, t0, t2, t4;
+ s0 = y[0]; s2 = y[2]; s4 = y[4]; s6 = y[6]; s8 = y[8];
+ t0 = s0 + s6*0.5f;
+ s0 -= s6;
+ t4 = (s4 + s2)*0.93969262f;
+ t2 = (s8 + s2)*0.76604444f;
+ s6 = (s4 - s8)*0.17364818f;
+ s4 += s8 - s2;
+ s2 = s0 - s4*0.5f;
+ y[4] = s4 + s0;
+ s8 = t0 - t2 + s6;
+ s0 = t0 - t4 + t2;
+ s4 = t0 + t4 - s6;
+ s1 = y[1]; s3 = y[3]; s5 = y[5]; s7 = y[7];
+ s3 *= 0.86602540f;
+ t0 = (s5 + s1)*0.98480775f;
+ t4 = (s5 - s7)*0.34202014f;
+ t2 = (s1 + s7)*0.64278761f;
+ s1 = (s1 - s5 - s7)*0.86602540f;
+ s5 = t0 - s3 - t2;
+ s7 = t4 - s3 - t0;
+ s3 = t4 + s3 - t2;
+ y[0] = s4 - s7;
+ y[1] = s2 + s1;
+ y[2] = s0 - s3;
+ y[3] = s8 + s5;
+ y[5] = s8 - s5;
+ y[6] = s0 + s3;
+ y[7] = s2 - s1;
+ y[8] = s4 + s7;
+}
+static void drmp3_L3_imdct36(float *grbuf, float *overlap, const float *window, int nbands)
+{
+ int i, j;
+ static const float g_twid9[18] = {
+ 0.73727734f,0.79335334f,0.84339145f,0.88701083f,0.92387953f,0.95371695f,0.97629601f,0.99144486f,0.99904822f,0.67559021f,0.60876143f,0.53729961f,0.46174861f,0.38268343f,0.30070580f,0.21643961f,0.13052619f,0.04361938f
+ };
+ for (j = 0; j < nbands; j++, grbuf += 18, overlap += 9)
+ {
+ float co[9], si[9];
+ co[0] = -grbuf[0];
+ si[0] = grbuf[17];
+ for (i = 0; i < 4; i++)
+ {
+ si[8 - 2*i] = grbuf[4*i + 1] - grbuf[4*i + 2];
+ co[1 + 2*i] = grbuf[4*i + 1] + grbuf[4*i + 2];
+ si[7 - 2*i] = grbuf[4*i + 4] - grbuf[4*i + 3];
+ co[2 + 2*i] = -(grbuf[4*i + 3] + grbuf[4*i + 4]);
+ }
+ drmp3_L3_dct3_9(co);
+ drmp3_L3_dct3_9(si);
+ si[1] = -si[1];
+ si[3] = -si[3];
+ si[5] = -si[5];
+ si[7] = -si[7];
+ i = 0;
+#if DRMP3_HAVE_SIMD
+ if (drmp3_have_simd()) for (; i < 8; i += 4)
+ {
+ drmp3_f4 vovl = DRMP3_VLD(overlap + i);
+ drmp3_f4 vc = DRMP3_VLD(co + i);
+ drmp3_f4 vs = DRMP3_VLD(si + i);
+ drmp3_f4 vr0 = DRMP3_VLD(g_twid9 + i);
+ drmp3_f4 vr1 = DRMP3_VLD(g_twid9 + 9 + i);
+ drmp3_f4 vw0 = DRMP3_VLD(window + i);
+ drmp3_f4 vw1 = DRMP3_VLD(window + 9 + i);
+ drmp3_f4 vsum = DRMP3_VADD(DRMP3_VMUL(vc, vr1), DRMP3_VMUL(vs, vr0));
+ DRMP3_VSTORE(overlap + i, DRMP3_VSUB(DRMP3_VMUL(vc, vr0), DRMP3_VMUL(vs, vr1)));
+ DRMP3_VSTORE(grbuf + i, DRMP3_VSUB(DRMP3_VMUL(vovl, vw0), DRMP3_VMUL(vsum, vw1)));
+ vsum = DRMP3_VADD(DRMP3_VMUL(vovl, vw1), DRMP3_VMUL(vsum, vw0));
+ DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vsum));
+ }
+#endif
+ for (; i < 9; i++)
+ {
+ float ovl = overlap[i];
+ float sum = co[i]*g_twid9[9 + i] + si[i]*g_twid9[0 + i];
+ overlap[i] = co[i]*g_twid9[0 + i] - si[i]*g_twid9[9 + i];
+ grbuf[i] = ovl*window[0 + i] - sum*window[9 + i];
+ grbuf[17 - i] = ovl*window[9 + i] + sum*window[0 + i];
+ }
+ }
+}
+static void drmp3_L3_idct3(float x0, float x1, float x2, float *dst)
+{
+ float m1 = x1*0.86602540f;
+ float a1 = x0 - x2*0.5f;
+ dst[1] = x0 + x2;
+ dst[0] = a1 + m1;
+ dst[2] = a1 - m1;
+}
+static void drmp3_L3_imdct12(float *x, float *dst, float *overlap)
+{
+ static const float g_twid3[6] = { 0.79335334f,0.92387953f,0.99144486f, 0.60876143f,0.38268343f,0.13052619f };
+ float co[3], si[3];
+ int i;
+ drmp3_L3_idct3(-x[0], x[6] + x[3], x[12] + x[9], co);
+ drmp3_L3_idct3(x[15], x[12] - x[9], x[6] - x[3], si);
+ si[1] = -si[1];
+ for (i = 0; i < 3; i++)
+ {
+ float ovl = overlap[i];
+ float sum = co[i]*g_twid3[3 + i] + si[i]*g_twid3[0 + i];
+ overlap[i] = co[i]*g_twid3[0 + i] - si[i]*g_twid3[3 + i];
+ dst[i] = ovl*g_twid3[2 - i] - sum*g_twid3[5 - i];
+ dst[5 - i] = ovl*g_twid3[5 - i] + sum*g_twid3[2 - i];
+ }
+}
+static void drmp3_L3_imdct_short(float *grbuf, float *overlap, int nbands)
+{
+ for (;nbands > 0; nbands--, overlap += 9, grbuf += 18)
+ {
+ float tmp[18];
+ memcpy(tmp, grbuf, sizeof(tmp));
+ memcpy(grbuf, overlap, 6*sizeof(float));
+ drmp3_L3_imdct12(tmp, grbuf + 6, overlap + 6);
+ drmp3_L3_imdct12(tmp + 1, grbuf + 12, overlap + 6);
+ drmp3_L3_imdct12(tmp + 2, overlap, overlap + 6);
+ }
+}
+static void drmp3_L3_change_sign(float *grbuf)
+{
+ int b, i;
+ for (b = 0, grbuf += 18; b < 32; b += 2, grbuf += 36)
+ for (i = 1; i < 18; i += 2)
+ grbuf[i] = -grbuf[i];
+}
+static void drmp3_L3_imdct_gr(float *grbuf, float *overlap, unsigned block_type, unsigned n_long_bands)
+{
+ static const float g_mdct_window[2][18] = {
+ { 0.99904822f,0.99144486f,0.97629601f,0.95371695f,0.92387953f,0.88701083f,0.84339145f,0.79335334f,0.73727734f,0.04361938f,0.13052619f,0.21643961f,0.30070580f,0.38268343f,0.46174861f,0.53729961f,0.60876143f,0.67559021f },
+ { 1,1,1,1,1,1,0.99144486f,0.92387953f,0.79335334f,0,0,0,0,0,0,0.13052619f,0.38268343f,0.60876143f }
+ };
+ if (n_long_bands)
+ {
+ drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[0], n_long_bands);
+ grbuf += 18*n_long_bands;
+ overlap += 9*n_long_bands;
+ }
+ if (block_type == DRMP3_SHORT_BLOCK_TYPE)
+ drmp3_L3_imdct_short(grbuf, overlap, 32 - n_long_bands);
+ else
+ drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[block_type == DRMP3_STOP_BLOCK_TYPE], 32 - n_long_bands);
+}
+static void drmp3_L3_save_reservoir(drmp3dec *h, drmp3dec_scratch *s)
+{
+ int pos = (s->bs.pos + 7)/8u;
+ int remains = s->bs.limit/8u - pos;
+ if (remains > DRMP3_MAX_BITRESERVOIR_BYTES)
+ {
+ pos += remains - DRMP3_MAX_BITRESERVOIR_BYTES;
+ remains = DRMP3_MAX_BITRESERVOIR_BYTES;
+ }
+ if (remains > 0)
+ {
+ memmove(h->reserv_buf, s->maindata + pos, remains);
+ }
+ h->reserv = remains;
+}
+static int drmp3_L3_restore_reservoir(drmp3dec *h, drmp3_bs *bs, drmp3dec_scratch *s, int main_data_begin)
+{
+ int frame_bytes = (bs->limit - bs->pos)/8;
+ int bytes_have = DRMP3_MIN(h->reserv, main_data_begin);
+ memcpy(s->maindata, h->reserv_buf + DRMP3_MAX(0, h->reserv - main_data_begin), DRMP3_MIN(h->reserv, main_data_begin));
+ memcpy(s->maindata + bytes_have, bs->buf + bs->pos/8, frame_bytes);
+ drmp3_bs_init(&s->bs, s->maindata, bytes_have + frame_bytes);
+ return h->reserv >= main_data_begin;
+}
+static void drmp3_L3_decode(drmp3dec *h, drmp3dec_scratch *s, drmp3_L3_gr_info *gr_info, int nch)
+{
+ int ch;
+ for (ch = 0; ch < nch; ch++)
+ {
+ int layer3gr_limit = s->bs.pos + gr_info[ch].part_23_length;
+ drmp3_L3_decode_scalefactors(h->header, s->ist_pos[ch], &s->bs, gr_info + ch, s->scf, ch);
+ drmp3_L3_huffman(s->grbuf[ch], &s->bs, gr_info + ch, s->scf, layer3gr_limit);
+ }
+ if (DRMP3_HDR_TEST_I_STEREO(h->header))
+ {
+ drmp3_L3_intensity_stereo(s->grbuf[0], s->ist_pos[1], gr_info, h->header);
+ } else if (DRMP3_HDR_IS_MS_STEREO(h->header))
+ {
+ drmp3_L3_midside_stereo(s->grbuf[0], 576);
+ }
+ for (ch = 0; ch < nch; ch++, gr_info++)
+ {
+ int aa_bands = 31;
+ int n_long_bands = (gr_info->mixed_block_flag ? 2 : 0) << (int)(DRMP3_HDR_GET_MY_SAMPLE_RATE(h->header) == 2);
+ if (gr_info->n_short_sfb)
+ {
+ aa_bands = n_long_bands - 1;
+ drmp3_L3_reorder(s->grbuf[ch] + n_long_bands*18, s->syn[0], gr_info->sfbtab + gr_info->n_long_sfb);
+ }
+ drmp3_L3_antialias(s->grbuf[ch], aa_bands);
+ drmp3_L3_imdct_gr(s->grbuf[ch], h->mdct_overlap[ch], gr_info->block_type, n_long_bands);
+ drmp3_L3_change_sign(s->grbuf[ch]);
+ }
+}
+static void drmp3d_DCT_II(float *grbuf, int n)
+{
+ static const float g_sec[24] = {
+ 10.19000816f,0.50060302f,0.50241929f,3.40760851f,0.50547093f,0.52249861f,2.05778098f,0.51544732f,0.56694406f,1.48416460f,0.53104258f,0.64682180f,1.16943991f,0.55310392f,0.78815460f,0.97256821f,0.58293498f,1.06067765f,0.83934963f,0.62250412f,1.72244716f,0.74453628f,0.67480832f,5.10114861f
+ };
+ int i, k = 0;
+#if DRMP3_HAVE_SIMD
+ if (drmp3_have_simd()) for (; k < n; k += 4)
+ {
+ drmp3_f4 t[4][8], *x;
+ float *y = grbuf + k;
+ for (x = t[0], i = 0; i < 8; i++, x++)
+ {
+ drmp3_f4 x0 = DRMP3_VLD(&y[i*18]);
+ drmp3_f4 x1 = DRMP3_VLD(&y[(15 - i)*18]);
+ drmp3_f4 x2 = DRMP3_VLD(&y[(16 + i)*18]);
+ drmp3_f4 x3 = DRMP3_VLD(&y[(31 - i)*18]);
+ drmp3_f4 t0 = DRMP3_VADD(x0, x3);
+ drmp3_f4 t1 = DRMP3_VADD(x1, x2);
+ drmp3_f4 t2 = DRMP3_VMUL_S(DRMP3_VSUB(x1, x2), g_sec[3*i + 0]);
+ drmp3_f4 t3 = DRMP3_VMUL_S(DRMP3_VSUB(x0, x3), g_sec[3*i + 1]);
+ x[0] = DRMP3_VADD(t0, t1);
+ x[8] = DRMP3_VMUL_S(DRMP3_VSUB(t0, t1), g_sec[3*i + 2]);
+ x[16] = DRMP3_VADD(t3, t2);
+ x[24] = DRMP3_VMUL_S(DRMP3_VSUB(t3, t2), g_sec[3*i + 2]);
+ }
+ for (x = t[0], i = 0; i < 4; i++, x += 8)
+ {
+ drmp3_f4 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
+ xt = DRMP3_VSUB(x0, x7); x0 = DRMP3_VADD(x0, x7);
+ x7 = DRMP3_VSUB(x1, x6); x1 = DRMP3_VADD(x1, x6);
+ x6 = DRMP3_VSUB(x2, x5); x2 = DRMP3_VADD(x2, x5);
+ x5 = DRMP3_VSUB(x3, x4); x3 = DRMP3_VADD(x3, x4);
+ x4 = DRMP3_VSUB(x0, x3); x0 = DRMP3_VADD(x0, x3);
+ x3 = DRMP3_VSUB(x1, x2); x1 = DRMP3_VADD(x1, x2);
+ x[0] = DRMP3_VADD(x0, x1);
+ x[4] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x1), 0.70710677f);
+ x5 = DRMP3_VADD(x5, x6);
+ x6 = DRMP3_VMUL_S(DRMP3_VADD(x6, x7), 0.70710677f);
+ x7 = DRMP3_VADD(x7, xt);
+ x3 = DRMP3_VMUL_S(DRMP3_VADD(x3, x4), 0.70710677f);
+ x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f));
+ x7 = DRMP3_VADD(x7, DRMP3_VMUL_S(x5, 0.382683432f));
+ x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f));
+ x0 = DRMP3_VSUB(xt, x6); xt = DRMP3_VADD(xt, x6);
+ x[1] = DRMP3_VMUL_S(DRMP3_VADD(xt, x7), 0.50979561f);
+ x[2] = DRMP3_VMUL_S(DRMP3_VADD(x4, x3), 0.54119611f);
+ x[3] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x5), 0.60134488f);
+ x[5] = DRMP3_VMUL_S(DRMP3_VADD(x0, x5), 0.89997619f);
+ x[6] = DRMP3_VMUL_S(DRMP3_VSUB(x4, x3), 1.30656302f);
+ x[7] = DRMP3_VMUL_S(DRMP3_VSUB(xt, x7), 2.56291556f);
+ }
+ if (k > n - 3)
+ {
+#if DRMP3_HAVE_SSE
+#define DRMP3_VSAVE2(i, v) _mm_storel_pi((__m64 *)(void*)&y[i*18], v)
+#else
+#define DRMP3_VSAVE2(i, v) vst1_f32((float32_t *)&y[i*18], vget_low_f32(v))
+#endif
+ for (i = 0; i < 7; i++, y += 4*18)
+ {
+ drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]);
+ DRMP3_VSAVE2(0, t[0][i]);
+ DRMP3_VSAVE2(1, DRMP3_VADD(t[2][i], s));
+ DRMP3_VSAVE2(2, DRMP3_VADD(t[1][i], t[1][i + 1]));
+ DRMP3_VSAVE2(3, DRMP3_VADD(t[2][1 + i], s));
+ }
+ DRMP3_VSAVE2(0, t[0][7]);
+ DRMP3_VSAVE2(1, DRMP3_VADD(t[2][7], t[3][7]));
+ DRMP3_VSAVE2(2, t[1][7]);
+ DRMP3_VSAVE2(3, t[3][7]);
+ } else
+ {
+#define DRMP3_VSAVE4(i, v) DRMP3_VSTORE(&y[i*18], v)
+ for (i = 0; i < 7; i++, y += 4*18)
+ {
+ drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]);
+ DRMP3_VSAVE4(0, t[0][i]);
+ DRMP3_VSAVE4(1, DRMP3_VADD(t[2][i], s));
+ DRMP3_VSAVE4(2, DRMP3_VADD(t[1][i], t[1][i + 1]));
+ DRMP3_VSAVE4(3, DRMP3_VADD(t[2][1 + i], s));
+ }
+ DRMP3_VSAVE4(0, t[0][7]);
+ DRMP3_VSAVE4(1, DRMP3_VADD(t[2][7], t[3][7]));
+ DRMP3_VSAVE4(2, t[1][7]);
+ DRMP3_VSAVE4(3, t[3][7]);
+ }
+ } else
+#endif
+#ifdef DR_MP3_ONLY_SIMD
+ {}
+#else
+ for (; k < n; k++)
+ {
+ float t[4][8], *x, *y = grbuf + k;
+ for (x = t[0], i = 0; i < 8; i++, x++)
+ {
+ float x0 = y[i*18];
+ float x1 = y[(15 - i)*18];
+ float x2 = y[(16 + i)*18];
+ float x3 = y[(31 - i)*18];
+ float t0 = x0 + x3;
+ float t1 = x1 + x2;
+ float t2 = (x1 - x2)*g_sec[3*i + 0];
+ float t3 = (x0 - x3)*g_sec[3*i + 1];
+ x[0] = t0 + t1;
+ x[8] = (t0 - t1)*g_sec[3*i + 2];
+ x[16] = t3 + t2;
+ x[24] = (t3 - t2)*g_sec[3*i + 2];
+ }
+ for (x = t[0], i = 0; i < 4; i++, x += 8)
+ {
+ float x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
+ xt = x0 - x7; x0 += x7;
+ x7 = x1 - x6; x1 += x6;
+ x6 = x2 - x5; x2 += x5;
+ x5 = x3 - x4; x3 += x4;
+ x4 = x0 - x3; x0 += x3;
+ x3 = x1 - x2; x1 += x2;
+ x[0] = x0 + x1;
+ x[4] = (x0 - x1)*0.70710677f;
+ x5 = x5 + x6;
+ x6 = (x6 + x7)*0.70710677f;
+ x7 = x7 + xt;
+ x3 = (x3 + x4)*0.70710677f;
+ x5 -= x7*0.198912367f;
+ x7 += x5*0.382683432f;
+ x5 -= x7*0.198912367f;
+ x0 = xt - x6; xt += x6;
+ x[1] = (xt + x7)*0.50979561f;
+ x[2] = (x4 + x3)*0.54119611f;
+ x[3] = (x0 - x5)*0.60134488f;
+ x[5] = (x0 + x5)*0.89997619f;
+ x[6] = (x4 - x3)*1.30656302f;
+ x[7] = (xt - x7)*2.56291556f;
+ }
+ for (i = 0; i < 7; i++, y += 4*18)
+ {
+ y[0*18] = t[0][i];
+ y[1*18] = t[2][i] + t[3][i] + t[3][i + 1];
+ y[2*18] = t[1][i] + t[1][i + 1];
+ y[3*18] = t[2][i + 1] + t[3][i] + t[3][i + 1];
+ }
+ y[0*18] = t[0][7];
+ y[1*18] = t[2][7] + t[3][7];
+ y[2*18] = t[1][7];
+ y[3*18] = t[3][7];
+ }
+#endif
+}
+#ifndef DR_MP3_FLOAT_OUTPUT
+typedef drmp3_int16 drmp3d_sample_t;
+static drmp3_int16 drmp3d_scale_pcm(float sample)
+{
+ drmp3_int16 s;
+#if DRMP3_HAVE_ARMV6
+ drmp3_int32 s32 = (drmp3_int32)(sample + .5f);
+ s32 -= (s32 < 0);
+ s = (drmp3_int16)drmp3_clip_int16_arm(s32);
+#else
+ if (sample >= 32766.5) return (drmp3_int16) 32767;
+ if (sample <= -32767.5) return (drmp3_int16)-32768;
+ s = (drmp3_int16)(sample + .5f);
+ s -= (s < 0);
+#endif
+ return s;
+}
+#else
+typedef float drmp3d_sample_t;
+static float drmp3d_scale_pcm(float sample)
+{
+ return sample*(1.f/32768.f);
+}
+#endif
+static void drmp3d_synth_pair(drmp3d_sample_t *pcm, int nch, const float *z)
+{
+ float a;
+ a = (z[14*64] - z[ 0]) * 29;
+ a += (z[ 1*64] + z[13*64]) * 213;
+ a += (z[12*64] - z[ 2*64]) * 459;
+ a += (z[ 3*64] + z[11*64]) * 2037;
+ a += (z[10*64] - z[ 4*64]) * 5153;
+ a += (z[ 5*64] + z[ 9*64]) * 6574;
+ a += (z[ 8*64] - z[ 6*64]) * 37489;
+ a += z[ 7*64] * 75038;
+ pcm[0] = drmp3d_scale_pcm(a);
+ z += 2;
+ a = z[14*64] * 104;
+ a += z[12*64] * 1567;
+ a += z[10*64] * 9727;
+ a += z[ 8*64] * 64019;
+ a += z[ 6*64] * -9975;
+ a += z[ 4*64] * -45;
+ a += z[ 2*64] * 146;
+ a += z[ 0*64] * -5;
+ pcm[16*nch] = drmp3d_scale_pcm(a);
+}
+static void drmp3d_synth(float *xl, drmp3d_sample_t *dstl, int nch, float *lins)
+{
+ int i;
+ float *xr = xl + 576*(nch - 1);
+ drmp3d_sample_t *dstr = dstl + (nch - 1);
+ static const float g_win[] = {
+ -1,26,-31,208,218,401,-519,2063,2000,4788,-5517,7134,5959,35640,-39336,74992,
+ -1,24,-35,202,222,347,-581,2080,1952,4425,-5879,7640,5288,33791,-41176,74856,
+ -1,21,-38,196,225,294,-645,2087,1893,4063,-6237,8092,4561,31947,-43006,74630,
+ -1,19,-41,190,227,244,-711,2085,1822,3705,-6589,8492,3776,30112,-44821,74313,
+ -1,17,-45,183,228,197,-779,2075,1739,3351,-6935,8840,2935,28289,-46617,73908,
+ -1,16,-49,176,228,153,-848,2057,1644,3004,-7271,9139,2037,26482,-48390,73415,
+ -2,14,-53,169,227,111,-919,2032,1535,2663,-7597,9389,1082,24694,-50137,72835,
+ -2,13,-58,161,224,72,-991,2001,1414,2330,-7910,9592,70,22929,-51853,72169,
+ -2,11,-63,154,221,36,-1064,1962,1280,2006,-8209,9750,-998,21189,-53534,71420,
+ -2,10,-68,147,215,2,-1137,1919,1131,1692,-8491,9863,-2122,19478,-55178,70590,
+ -3,9,-73,139,208,-29,-1210,1870,970,1388,-8755,9935,-3300,17799,-56778,69679,
+ -3,8,-79,132,200,-57,-1283,1817,794,1095,-8998,9966,-4533,16155,-58333,68692,
+ -4,7,-85,125,189,-83,-1356,1759,605,814,-9219,9959,-5818,14548,-59838,67629,
+ -4,7,-91,117,177,-106,-1428,1698,402,545,-9416,9916,-7154,12980,-61289,66494,
+ -5,6,-97,111,163,-127,-1498,1634,185,288,-9585,9838,-8540,11455,-62684,65290
+ };
+ float *zlin = lins + 15*64;
+ const float *w = g_win;
+ zlin[4*15] = xl[18*16];
+ zlin[4*15 + 1] = xr[18*16];
+ zlin[4*15 + 2] = xl[0];
+ zlin[4*15 + 3] = xr[0];
+ zlin[4*31] = xl[1 + 18*16];
+ zlin[4*31 + 1] = xr[1 + 18*16];
+ zlin[4*31 + 2] = xl[1];
+ zlin[4*31 + 3] = xr[1];
+ drmp3d_synth_pair(dstr, nch, lins + 4*15 + 1);
+ drmp3d_synth_pair(dstr + 32*nch, nch, lins + 4*15 + 64 + 1);
+ drmp3d_synth_pair(dstl, nch, lins + 4*15);
+ drmp3d_synth_pair(dstl + 32*nch, nch, lins + 4*15 + 64);
+#if DRMP3_HAVE_SIMD
+ if (drmp3_have_simd()) for (i = 14; i >= 0; i--)
+ {
+#define DRMP3_VLOAD(k) drmp3_f4 w0 = DRMP3_VSET(*w++); drmp3_f4 w1 = DRMP3_VSET(*w++); drmp3_f4 vz = DRMP3_VLD(&zlin[4*i - 64*k]); drmp3_f4 vy = DRMP3_VLD(&zlin[4*i - 64*(15 - k)]);
+#define DRMP3_V0(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0)) ; a = DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1)); }
+#define DRMP3_V1(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1))); }
+#define DRMP3_V2(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vy, w1), DRMP3_VMUL(vz, w0))); }
+ drmp3_f4 a, b;
+ zlin[4*i] = xl[18*(31 - i)];
+ zlin[4*i + 1] = xr[18*(31 - i)];
+ zlin[4*i + 2] = xl[1 + 18*(31 - i)];
+ zlin[4*i + 3] = xr[1 + 18*(31 - i)];
+ zlin[4*i + 64] = xl[1 + 18*(1 + i)];
+ zlin[4*i + 64 + 1] = xr[1 + 18*(1 + i)];
+ zlin[4*i - 64 + 2] = xl[18*(1 + i)];
+ zlin[4*i - 64 + 3] = xr[18*(1 + i)];
+ DRMP3_V0(0) DRMP3_V2(1) DRMP3_V1(2) DRMP3_V2(3) DRMP3_V1(4) DRMP3_V2(5) DRMP3_V1(6) DRMP3_V2(7)
+ {
+#ifndef DR_MP3_FLOAT_OUTPUT
+#if DRMP3_HAVE_SSE
+ static const drmp3_f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f };
+ static const drmp3_f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f };
+ __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)),
+ _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min)));
+ dstr[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 1);
+ dstr[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 5);
+ dstl[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 0);
+ dstl[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 4);
+ dstr[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 3);
+ dstr[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 7);
+ dstl[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 2);
+ dstl[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 6);
+#else
+ int16x4_t pcma, pcmb;
+ a = DRMP3_VADD(a, DRMP3_VSET(0.5f));
+ b = DRMP3_VADD(b, DRMP3_VSET(0.5f));
+ pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0)))));
+ pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0)))));
+ vst1_lane_s16(dstr + (15 - i)*nch, pcma, 1);
+ vst1_lane_s16(dstr + (17 + i)*nch, pcmb, 1);
+ vst1_lane_s16(dstl + (15 - i)*nch, pcma, 0);
+ vst1_lane_s16(dstl + (17 + i)*nch, pcmb, 0);
+ vst1_lane_s16(dstr + (47 - i)*nch, pcma, 3);
+ vst1_lane_s16(dstr + (49 + i)*nch, pcmb, 3);
+ vst1_lane_s16(dstl + (47 - i)*nch, pcma, 2);
+ vst1_lane_s16(dstl + (49 + i)*nch, pcmb, 2);
+#endif
+#else
+ static const drmp3_f4 g_scale = { 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f };
+ a = DRMP3_VMUL(a, g_scale);
+ b = DRMP3_VMUL(b, g_scale);
+#if DRMP3_HAVE_SSE
+ _mm_store_ss(dstr + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)));
+ _mm_store_ss(dstr + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(1, 1, 1, 1)));
+ _mm_store_ss(dstl + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)));
+ _mm_store_ss(dstl + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(0, 0, 0, 0)));
+ _mm_store_ss(dstr + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3)));
+ _mm_store_ss(dstr + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 3, 3)));
+ _mm_store_ss(dstl + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)));
+ _mm_store_ss(dstl + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 2, 2)));
+#else
+ vst1q_lane_f32(dstr + (15 - i)*nch, a, 1);
+ vst1q_lane_f32(dstr + (17 + i)*nch, b, 1);
+ vst1q_lane_f32(dstl + (15 - i)*nch, a, 0);
+ vst1q_lane_f32(dstl + (17 + i)*nch, b, 0);
+ vst1q_lane_f32(dstr + (47 - i)*nch, a, 3);
+ vst1q_lane_f32(dstr + (49 + i)*nch, b, 3);
+ vst1q_lane_f32(dstl + (47 - i)*nch, a, 2);
+ vst1q_lane_f32(dstl + (49 + i)*nch, b, 2);
+#endif
+#endif
+ }
+ } else
+#endif
+#ifdef DR_MP3_ONLY_SIMD
+ {}
+#else
+ for (i = 14; i >= 0; i--)
+ {
+#define DRMP3_LOAD(k) float w0 = *w++; float w1 = *w++; float *vz = &zlin[4*i - k*64]; float *vy = &zlin[4*i - (15 - k)*64];
+#define DRMP3_S0(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] = vz[j]*w1 + vy[j]*w0, a[j] = vz[j]*w0 - vy[j]*w1; }
+#define DRMP3_S1(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vz[j]*w0 - vy[j]*w1; }
+#define DRMP3_S2(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vy[j]*w1 - vz[j]*w0; }
+ float a[4], b[4];
+ zlin[4*i] = xl[18*(31 - i)];
+ zlin[4*i + 1] = xr[18*(31 - i)];
+ zlin[4*i + 2] = xl[1 + 18*(31 - i)];
+ zlin[4*i + 3] = xr[1 + 18*(31 - i)];
+ zlin[4*(i + 16)] = xl[1 + 18*(1 + i)];
+ zlin[4*(i + 16) + 1] = xr[1 + 18*(1 + i)];
+ zlin[4*(i - 16) + 2] = xl[18*(1 + i)];
+ zlin[4*(i - 16) + 3] = xr[18*(1 + i)];
+ DRMP3_S0(0) DRMP3_S2(1) DRMP3_S1(2) DRMP3_S2(3) DRMP3_S1(4) DRMP3_S2(5) DRMP3_S1(6) DRMP3_S2(7)
+ dstr[(15 - i)*nch] = drmp3d_scale_pcm(a[1]);
+ dstr[(17 + i)*nch] = drmp3d_scale_pcm(b[1]);
+ dstl[(15 - i)*nch] = drmp3d_scale_pcm(a[0]);
+ dstl[(17 + i)*nch] = drmp3d_scale_pcm(b[0]);
+ dstr[(47 - i)*nch] = drmp3d_scale_pcm(a[3]);
+ dstr[(49 + i)*nch] = drmp3d_scale_pcm(b[3]);
+ dstl[(47 - i)*nch] = drmp3d_scale_pcm(a[2]);
+ dstl[(49 + i)*nch] = drmp3d_scale_pcm(b[2]);
+ }
+#endif
+}
+static void drmp3d_synth_granule(float *qmf_state, float *grbuf, int nbands, int nch, drmp3d_sample_t *pcm, float *lins)
+{
+ int i;
+ for (i = 0; i < nch; i++)
+ {
+ drmp3d_DCT_II(grbuf + 576*i, nbands);
+ }
+ memcpy(lins, qmf_state, sizeof(float)*15*64);
+ for (i = 0; i < nbands; i += 2)
+ {
+ drmp3d_synth(grbuf + i, pcm + 32*nch*i, nch, lins + i*64);
+ }
+#ifndef DR_MP3_NONSTANDARD_BUT_LOGICAL
+ if (nch == 1)
+ {
+ for (i = 0; i < 15*64; i += 2)
+ {
+ qmf_state[i] = lins[nbands*64 + i];
+ }
+ } else
+#endif
+ {
+ memcpy(qmf_state, lins + nbands*64, sizeof(float)*15*64);
+ }
+}
+static int drmp3d_match_frame(const drmp3_uint8 *hdr, int mp3_bytes, int frame_bytes)
+{
+ int i, nmatch;
+ for (i = 0, nmatch = 0; nmatch < DRMP3_MAX_FRAME_SYNC_MATCHES; nmatch++)
+ {
+ i += drmp3_hdr_frame_bytes(hdr + i, frame_bytes) + drmp3_hdr_padding(hdr + i);
+ if (i + DRMP3_HDR_SIZE > mp3_bytes)
+ return nmatch > 0;
+ if (!drmp3_hdr_compare(hdr, hdr + i))
+ return 0;
+ }
+ return 1;
+}
+static int drmp3d_find_frame(const drmp3_uint8 *mp3, int mp3_bytes, int *free_format_bytes, int *ptr_frame_bytes)
+{
+ int i, k;
+ for (i = 0; i < mp3_bytes - DRMP3_HDR_SIZE; i++, mp3++)
+ {
+ if (drmp3_hdr_valid(mp3))
+ {
+ int frame_bytes = drmp3_hdr_frame_bytes(mp3, *free_format_bytes);
+ int frame_and_padding = frame_bytes + drmp3_hdr_padding(mp3);
+ for (k = DRMP3_HDR_SIZE; !frame_bytes && k < DRMP3_MAX_FREE_FORMAT_FRAME_SIZE && i + 2*k < mp3_bytes - DRMP3_HDR_SIZE; k++)
+ {
+ if (drmp3_hdr_compare(mp3, mp3 + k))
+ {
+ int fb = k - drmp3_hdr_padding(mp3);
+ int nextfb = fb + drmp3_hdr_padding(mp3 + k);
+ if (i + k + nextfb + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + k + nextfb))
+ continue;
+ frame_and_padding = k;
+ frame_bytes = fb;
+ *free_format_bytes = fb;
+ }
+ }
+ if ((frame_bytes && i + frame_and_padding <= mp3_bytes &&
+ drmp3d_match_frame(mp3, mp3_bytes - i, frame_bytes)) ||
+ (!i && frame_and_padding == mp3_bytes))
+ {
+ *ptr_frame_bytes = frame_and_padding;
+ return i;
+ }
+ *free_format_bytes = 0;
+ }
+ }
+ *ptr_frame_bytes = 0;
+ return mp3_bytes;
+}
+DRMP3_API void drmp3dec_init(drmp3dec *dec)
+{
+ dec->header[0] = 0;
+}
+DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info)
+{
+ int i = 0, igr, frame_size = 0, success = 1;
+ const drmp3_uint8 *hdr;
+ drmp3_bs bs_frame[1];
+ drmp3dec_scratch scratch;
+ if (mp3_bytes > 4 && dec->header[0] == 0xff && drmp3_hdr_compare(dec->header, mp3))
+ {
+ frame_size = drmp3_hdr_frame_bytes(mp3, dec->free_format_bytes) + drmp3_hdr_padding(mp3);
+ if (frame_size != mp3_bytes && (frame_size + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + frame_size)))
+ {
+ frame_size = 0;
+ }
+ }
+ if (!frame_size)
+ {
+ memset(dec, 0, sizeof(drmp3dec));
+ i = drmp3d_find_frame(mp3, mp3_bytes, &dec->free_format_bytes, &frame_size);
+ if (!frame_size || i + frame_size > mp3_bytes)
+ {
+ info->frame_bytes = i;
+ return 0;
+ }
+ }
+ hdr = mp3 + i;
+ memcpy(dec->header, hdr, DRMP3_HDR_SIZE);
+ info->frame_bytes = i + frame_size;
+ info->channels = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2;
+ info->hz = drmp3_hdr_sample_rate_hz(hdr);
+ info->layer = 4 - DRMP3_HDR_GET_LAYER(hdr);
+ info->bitrate_kbps = drmp3_hdr_bitrate_kbps(hdr);
+ drmp3_bs_init(bs_frame, hdr + DRMP3_HDR_SIZE, frame_size - DRMP3_HDR_SIZE);
+ if (DRMP3_HDR_IS_CRC(hdr))
+ {
+ drmp3_bs_get_bits(bs_frame, 16);
+ }
+ if (info->layer == 3)
+ {
+ int main_data_begin = drmp3_L3_read_side_info(bs_frame, scratch.gr_info, hdr);
+ if (main_data_begin < 0 || bs_frame->pos > bs_frame->limit)
+ {
+ drmp3dec_init(dec);
+ return 0;
+ }
+ success = drmp3_L3_restore_reservoir(dec, bs_frame, &scratch, main_data_begin);
+ if (success && pcm != NULL)
+ {
+ for (igr = 0; igr < (DRMP3_HDR_TEST_MPEG1(hdr) ? 2 : 1); igr++, pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*576*info->channels))
+ {
+ memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
+ drmp3_L3_decode(dec, &scratch, scratch.gr_info + igr*info->channels, info->channels);
+ drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 18, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]);
+ }
+ }
+ drmp3_L3_save_reservoir(dec, &scratch);
+ } else
+ {
+#ifdef DR_MP3_ONLY_MP3
+ return 0;
+#else
+ drmp3_L12_scale_info sci[1];
+ if (pcm == NULL) {
+ return drmp3_hdr_frame_samples(hdr);
+ }
+ drmp3_L12_read_scale_info(hdr, bs_frame, sci);
+ memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
+ for (i = 0, igr = 0; igr < 3; igr++)
+ {
+ if (12 == (i += drmp3_L12_dequantize_granule(scratch.grbuf[0] + i, bs_frame, sci, info->layer | 1)))
+ {
+ i = 0;
+ drmp3_L12_apply_scf_384(sci, sci->scf + igr, scratch.grbuf[0]);
+ drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 12, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]);
+ memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
+ pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*384*info->channels);
+ }
+ if (bs_frame->pos > bs_frame->limit)
+ {
+ drmp3dec_init(dec);
+ return 0;
+ }
+ }
+#endif
+ }
+ return success*drmp3_hdr_frame_samples(dec->header);
+}
+DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples)
+{
+ size_t i = 0;
+#if DRMP3_HAVE_SIMD
+ size_t aligned_count = num_samples & ~7;
+ for(; i < aligned_count; i+=8)
+ {
+ drmp3_f4 scale = DRMP3_VSET(32768.0f);
+ drmp3_f4 a = DRMP3_VMUL(DRMP3_VLD(&in[i ]), scale);
+ drmp3_f4 b = DRMP3_VMUL(DRMP3_VLD(&in[i+4]), scale);
+#if DRMP3_HAVE_SSE
+ drmp3_f4 s16max = DRMP3_VSET( 32767.0f);
+ drmp3_f4 s16min = DRMP3_VSET(-32768.0f);
+ __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, s16max), s16min)),
+ _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, s16max), s16min)));
+ out[i ] = (drmp3_int16)_mm_extract_epi16(pcm8, 0);
+ out[i+1] = (drmp3_int16)_mm_extract_epi16(pcm8, 1);
+ out[i+2] = (drmp3_int16)_mm_extract_epi16(pcm8, 2);
+ out[i+3] = (drmp3_int16)_mm_extract_epi16(pcm8, 3);
+ out[i+4] = (drmp3_int16)_mm_extract_epi16(pcm8, 4);
+ out[i+5] = (drmp3_int16)_mm_extract_epi16(pcm8, 5);
+ out[i+6] = (drmp3_int16)_mm_extract_epi16(pcm8, 6);
+ out[i+7] = (drmp3_int16)_mm_extract_epi16(pcm8, 7);
+#else
+ int16x4_t pcma, pcmb;
+ a = DRMP3_VADD(a, DRMP3_VSET(0.5f));
+ b = DRMP3_VADD(b, DRMP3_VSET(0.5f));
+ pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0)))));
+ pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0)))));
+ vst1_lane_s16(out+i , pcma, 0);
+ vst1_lane_s16(out+i+1, pcma, 1);
+ vst1_lane_s16(out+i+2, pcma, 2);
+ vst1_lane_s16(out+i+3, pcma, 3);
+ vst1_lane_s16(out+i+4, pcmb, 0);
+ vst1_lane_s16(out+i+5, pcmb, 1);
+ vst1_lane_s16(out+i+6, pcmb, 2);
+ vst1_lane_s16(out+i+7, pcmb, 3);
+#endif
+ }
+#endif
+ for(; i < num_samples; i++)
+ {
+ float sample = in[i] * 32768.0f;
+ if (sample >= 32766.5)
+ out[i] = (drmp3_int16) 32767;
+ else if (sample <= -32767.5)
+ out[i] = (drmp3_int16)-32768;
+ else
+ {
+ short s = (drmp3_int16)(sample + .5f);
+ s -= (s < 0);
+ out[i] = s;
+ }
+ }
+}
+#include
+#if defined(SIZE_MAX)
+ #define DRMP3_SIZE_MAX SIZE_MAX
+#else
+ #if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
+ #define DRMP3_SIZE_MAX ((drmp3_uint64)0xFFFFFFFFFFFFFFFF)
+ #else
+ #define DRMP3_SIZE_MAX 0xFFFFFFFF
+ #endif
+#endif
+#ifndef DRMP3_SEEK_LEADING_MP3_FRAMES
+#define DRMP3_SEEK_LEADING_MP3_FRAMES 2
+#endif
+#define DRMP3_MIN_DATA_CHUNK_SIZE 16384
+#ifndef DRMP3_DATA_CHUNK_SIZE
+#define DRMP3_DATA_CHUNK_SIZE DRMP3_MIN_DATA_CHUNK_SIZE*4
+#endif
+#ifndef DRMP3_ASSERT
+#include
+#define DRMP3_ASSERT(expression) assert(expression)
+#endif
+#ifndef DRMP3_COPY_MEMORY
+#define DRMP3_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
+#endif
+#ifndef DRMP3_ZERO_MEMORY
+#define DRMP3_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
+#endif
+#define DRMP3_ZERO_OBJECT(p) DRMP3_ZERO_MEMORY((p), sizeof(*(p)))
+#ifndef DRMP3_MALLOC
+#define DRMP3_MALLOC(sz) malloc((sz))
+#endif
+#ifndef DRMP3_REALLOC
+#define DRMP3_REALLOC(p, sz) realloc((p), (sz))
+#endif
+#ifndef DRMP3_FREE
+#define DRMP3_FREE(p) free((p))
+#endif
+#define DRMP3_COUNTOF(x) (sizeof(x) / sizeof(x[0]))
+#define DRMP3_CLAMP(x, lo, hi) (DRMP3_MAX(lo, DRMP3_MIN(x, hi)))
+#ifndef DRMP3_PI_D
+#define DRMP3_PI_D 3.14159265358979323846264
+#endif
+#define DRMP3_DEFAULT_RESAMPLER_LPF_ORDER 2
+static DRMP3_INLINE float drmp3_mix_f32(float x, float y, float a)
+{
+ return x*(1-a) + y*a;
+}
+static DRMP3_INLINE float drmp3_mix_f32_fast(float x, float y, float a)
+{
+ float r0 = (y - x);
+ float r1 = r0*a;
+ return x + r1;
+}
+static DRMP3_INLINE drmp3_uint32 drmp3_gcf_u32(drmp3_uint32 a, drmp3_uint32 b)
+{
+ for (;;) {
+ if (b == 0) {
+ break;
+ } else {
+ drmp3_uint32 t = a;
+ a = b;
+ b = t % a;
+ }
+ }
+ return a;
+}
+static DRMP3_INLINE double drmp3_sin(double x)
+{
+ return sin(x);
+}
+static DRMP3_INLINE double drmp3_exp(double x)
+{
+ return exp(x);
+}
+static DRMP3_INLINE double drmp3_cos(double x)
+{
+ return drmp3_sin((DRMP3_PI_D*0.5) - x);
+}
+static void* drmp3__malloc_default(size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRMP3_MALLOC(sz);
+}
+static void* drmp3__realloc_default(void* p, size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRMP3_REALLOC(p, sz);
+}
+static void drmp3__free_default(void* p, void* pUserData)
+{
+ (void)pUserData;
+ DRMP3_FREE(p);
+}
+static void* drmp3__malloc_from_callbacks(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onMalloc != NULL) {
+ return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+ }
+ return NULL;
+}
+static void* drmp3__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+ }
+ if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+ void* p2;
+ p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+ if (p2 == NULL) {
+ return NULL;
+ }
+ if (p != NULL) {
+ DRMP3_COPY_MEMORY(p2, p, szOld);
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+ return p2;
+ }
+ return NULL;
+}
+static void drmp3__free_from_callbacks(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (p == NULL || pAllocationCallbacks == NULL) {
+ return;
+ }
+ if (pAllocationCallbacks->onFree != NULL) {
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+}
+static drmp3_allocation_callbacks drmp3_copy_allocation_callbacks_or_defaults(const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ return *pAllocationCallbacks;
+ } else {
+ drmp3_allocation_callbacks allocationCallbacks;
+ allocationCallbacks.pUserData = NULL;
+ allocationCallbacks.onMalloc = drmp3__malloc_default;
+ allocationCallbacks.onRealloc = drmp3__realloc_default;
+ allocationCallbacks.onFree = drmp3__free_default;
+ return allocationCallbacks;
+ }
+}
+static size_t drmp3__on_read(drmp3* pMP3, void* pBufferOut, size_t bytesToRead)
+{
+ size_t bytesRead = pMP3->onRead(pMP3->pUserData, pBufferOut, bytesToRead);
+ pMP3->streamCursor += bytesRead;
+ return bytesRead;
+}
+static drmp3_bool32 drmp3__on_seek(drmp3* pMP3, int offset, drmp3_seek_origin origin)
+{
+ DRMP3_ASSERT(offset >= 0);
+ if (!pMP3->onSeek(pMP3->pUserData, offset, origin)) {
+ return DRMP3_FALSE;
+ }
+ if (origin == drmp3_seek_origin_start) {
+ pMP3->streamCursor = (drmp3_uint64)offset;
+ } else {
+ pMP3->streamCursor += offset;
+ }
+ return DRMP3_TRUE;
+}
+static drmp3_bool32 drmp3__on_seek_64(drmp3* pMP3, drmp3_uint64 offset, drmp3_seek_origin origin)
+{
+ if (offset <= 0x7FFFFFFF) {
+ return drmp3__on_seek(pMP3, (int)offset, origin);
+ }
+ if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_start)) {
+ return DRMP3_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+ while (offset > 0) {
+ if (offset <= 0x7FFFFFFF) {
+ if (!drmp3__on_seek(pMP3, (int)offset, drmp3_seek_origin_current)) {
+ return DRMP3_FALSE;
+ }
+ offset = 0;
+ } else {
+ if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_current)) {
+ return DRMP3_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+ }
+ }
+ return DRMP3_TRUE;
+}
+static drmp3_uint32 drmp3_decode_next_frame_ex__callbacks(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
+{
+ drmp3_uint32 pcmFramesRead = 0;
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->onRead != NULL);
+ if (pMP3->atEnd) {
+ return 0;
+ }
+ for (;;) {
+ drmp3dec_frame_info info;
+ if (pMP3->dataSize < DRMP3_MIN_DATA_CHUNK_SIZE) {
+ size_t bytesRead;
+ memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize);
+ pMP3->dataConsumed = 0;
+ if (pMP3->dataCapacity < DRMP3_DATA_CHUNK_SIZE) {
+ drmp3_uint8* pNewData;
+ size_t newDataCap;
+ newDataCap = DRMP3_DATA_CHUNK_SIZE;
+ pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks);
+ if (pNewData == NULL) {
+ return 0;
+ }
+ pMP3->pData = pNewData;
+ pMP3->dataCapacity = newDataCap;
+ }
+ bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize));
+ if (bytesRead == 0) {
+ if (pMP3->dataSize == 0) {
+ pMP3->atEnd = DRMP3_TRUE;
+ return 0;
+ }
+ }
+ pMP3->dataSize += bytesRead;
+ }
+ if (pMP3->dataSize > INT_MAX) {
+ pMP3->atEnd = DRMP3_TRUE;
+ return 0;
+ }
+ pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->pData + pMP3->dataConsumed, (int)pMP3->dataSize, pPCMFrames, &info);
+ if (info.frame_bytes > 0) {
+ pMP3->dataConsumed += (size_t)info.frame_bytes;
+ pMP3->dataSize -= (size_t)info.frame_bytes;
+ }
+ if (pcmFramesRead > 0) {
+ pcmFramesRead = drmp3_hdr_frame_samples(pMP3->decoder.header);
+ pMP3->pcmFramesConsumedInMP3Frame = 0;
+ pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead;
+ pMP3->mp3FrameChannels = info.channels;
+ pMP3->mp3FrameSampleRate = info.hz;
+ break;
+ } else if (info.frame_bytes == 0) {
+ size_t bytesRead;
+ memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize);
+ pMP3->dataConsumed = 0;
+ if (pMP3->dataCapacity == pMP3->dataSize) {
+ drmp3_uint8* pNewData;
+ size_t newDataCap;
+ newDataCap = pMP3->dataCapacity + DRMP3_DATA_CHUNK_SIZE;
+ pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks);
+ if (pNewData == NULL) {
+ return 0;
+ }
+ pMP3->pData = pNewData;
+ pMP3->dataCapacity = newDataCap;
+ }
+ bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize));
+ if (bytesRead == 0) {
+ pMP3->atEnd = DRMP3_TRUE;
+ return 0;
+ }
+ pMP3->dataSize += bytesRead;
+ }
+ };
+ return pcmFramesRead;
+}
+static drmp3_uint32 drmp3_decode_next_frame_ex__memory(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
+{
+ drmp3_uint32 pcmFramesRead = 0;
+ drmp3dec_frame_info info;
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->memory.pData != NULL);
+ if (pMP3->atEnd) {
+ return 0;
+ }
+ pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->memory.pData + pMP3->memory.currentReadPos, (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos), pPCMFrames, &info);
+ if (pcmFramesRead > 0) {
+ pMP3->pcmFramesConsumedInMP3Frame = 0;
+ pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead;
+ pMP3->mp3FrameChannels = info.channels;
+ pMP3->mp3FrameSampleRate = info.hz;
+ }
+ pMP3->memory.currentReadPos += (size_t)info.frame_bytes;
+ return pcmFramesRead;
+}
+static drmp3_uint32 drmp3_decode_next_frame_ex(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
+{
+ if (pMP3->memory.pData != NULL && pMP3->memory.dataSize > 0) {
+ return drmp3_decode_next_frame_ex__memory(pMP3, pPCMFrames);
+ } else {
+ return drmp3_decode_next_frame_ex__callbacks(pMP3, pPCMFrames);
+ }
+}
+static drmp3_uint32 drmp3_decode_next_frame(drmp3* pMP3)
+{
+ DRMP3_ASSERT(pMP3 != NULL);
+ return drmp3_decode_next_frame_ex(pMP3, (drmp3d_sample_t*)pMP3->pcmFrames);
+}
+#if 0
+static drmp3_uint32 drmp3_seek_next_frame(drmp3* pMP3)
+{
+ drmp3_uint32 pcmFrameCount;
+ DRMP3_ASSERT(pMP3 != NULL);
+ pcmFrameCount = drmp3_decode_next_frame_ex(pMP3, NULL);
+ if (pcmFrameCount == 0) {
+ return 0;
+ }
+ pMP3->currentPCMFrame += pcmFrameCount;
+ pMP3->pcmFramesConsumedInMP3Frame = pcmFrameCount;
+ pMP3->pcmFramesRemainingInMP3Frame = 0;
+ return pcmFrameCount;
+}
+#endif
+static drmp3_bool32 drmp3_init_internal(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(onRead != NULL);
+ drmp3dec_init(&pMP3->decoder);
+ pMP3->onRead = onRead;
+ pMP3->onSeek = onSeek;
+ pMP3->pUserData = pUserData;
+ pMP3->allocationCallbacks = drmp3_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+ if (pMP3->allocationCallbacks.onFree == NULL || (pMP3->allocationCallbacks.onMalloc == NULL && pMP3->allocationCallbacks.onRealloc == NULL)) {
+ return DRMP3_FALSE;
+ }
+ if (!drmp3_decode_next_frame(pMP3)) {
+ drmp3_uninit(pMP3);
+ return DRMP3_FALSE;
+ }
+ pMP3->channels = pMP3->mp3FrameChannels;
+ pMP3->sampleRate = pMP3->mp3FrameSampleRate;
+ return DRMP3_TRUE;
+}
+DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pMP3 == NULL || onRead == NULL) {
+ return DRMP3_FALSE;
+ }
+ DRMP3_ZERO_OBJECT(pMP3);
+ return drmp3_init_internal(pMP3, onRead, onSeek, pUserData, pAllocationCallbacks);
+}
+static size_t drmp3__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ drmp3* pMP3 = (drmp3*)pUserData;
+ size_t bytesRemaining;
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->memory.dataSize >= pMP3->memory.currentReadPos);
+ bytesRemaining = pMP3->memory.dataSize - pMP3->memory.currentReadPos;
+ if (bytesToRead > bytesRemaining) {
+ bytesToRead = bytesRemaining;
+ }
+ if (bytesToRead > 0) {
+ DRMP3_COPY_MEMORY(pBufferOut, pMP3->memory.pData + pMP3->memory.currentReadPos, bytesToRead);
+ pMP3->memory.currentReadPos += bytesToRead;
+ }
+ return bytesToRead;
+}
+static drmp3_bool32 drmp3__on_seek_memory(void* pUserData, int byteOffset, drmp3_seek_origin origin)
+{
+ drmp3* pMP3 = (drmp3*)pUserData;
+ DRMP3_ASSERT(pMP3 != NULL);
+ if (origin == drmp3_seek_origin_current) {
+ if (byteOffset > 0) {
+ if (pMP3->memory.currentReadPos + byteOffset > pMP3->memory.dataSize) {
+ byteOffset = (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos);
+ }
+ } else {
+ if (pMP3->memory.currentReadPos < (size_t)-byteOffset) {
+ byteOffset = -(int)pMP3->memory.currentReadPos;
+ }
+ }
+ pMP3->memory.currentReadPos += byteOffset;
+ } else {
+ if ((drmp3_uint32)byteOffset <= pMP3->memory.dataSize) {
+ pMP3->memory.currentReadPos = byteOffset;
+ } else {
+ pMP3->memory.currentReadPos = pMP3->memory.dataSize;
+ }
+ }
+ return DRMP3_TRUE;
+}
+DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pMP3 == NULL) {
+ return DRMP3_FALSE;
+ }
+ DRMP3_ZERO_OBJECT(pMP3);
+ if (pData == NULL || dataSize == 0) {
+ return DRMP3_FALSE;
+ }
+ pMP3->memory.pData = (const drmp3_uint8*)pData;
+ pMP3->memory.dataSize = dataSize;
+ pMP3->memory.currentReadPos = 0;
+ return drmp3_init_internal(pMP3, drmp3__on_read_memory, drmp3__on_seek_memory, pMP3, pAllocationCallbacks);
+}
+#ifndef DR_MP3_NO_STDIO
+#include
+#include
+#include
+static drmp3_result drmp3_result_from_errno(int e)
+{
+ switch (e)
+ {
+ case 0: return DRMP3_SUCCESS;
+ #ifdef EPERM
+ case EPERM: return DRMP3_INVALID_OPERATION;
+ #endif
+ #ifdef ENOENT
+ case ENOENT: return DRMP3_DOES_NOT_EXIST;
+ #endif
+ #ifdef ESRCH
+ case ESRCH: return DRMP3_DOES_NOT_EXIST;
+ #endif
+ #ifdef EINTR
+ case EINTR: return DRMP3_INTERRUPT;
+ #endif
+ #ifdef EIO
+ case EIO: return DRMP3_IO_ERROR;
+ #endif
+ #ifdef ENXIO
+ case ENXIO: return DRMP3_DOES_NOT_EXIST;
+ #endif
+ #ifdef E2BIG
+ case E2BIG: return DRMP3_INVALID_ARGS;
+ #endif
+ #ifdef ENOEXEC
+ case ENOEXEC: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef EBADF
+ case EBADF: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef ECHILD
+ case ECHILD: return DRMP3_ERROR;
+ #endif
+ #ifdef EAGAIN
+ case EAGAIN: return DRMP3_UNAVAILABLE;
+ #endif
+ #ifdef ENOMEM
+ case ENOMEM: return DRMP3_OUT_OF_MEMORY;
+ #endif
+ #ifdef EACCES
+ case EACCES: return DRMP3_ACCESS_DENIED;
+ #endif
+ #ifdef EFAULT
+ case EFAULT: return DRMP3_BAD_ADDRESS;
+ #endif
+ #ifdef ENOTBLK
+ case ENOTBLK: return DRMP3_ERROR;
+ #endif
+ #ifdef EBUSY
+ case EBUSY: return DRMP3_BUSY;
+ #endif
+ #ifdef EEXIST
+ case EEXIST: return DRMP3_ALREADY_EXISTS;
+ #endif
+ #ifdef EXDEV
+ case EXDEV: return DRMP3_ERROR;
+ #endif
+ #ifdef ENODEV
+ case ENODEV: return DRMP3_DOES_NOT_EXIST;
+ #endif
+ #ifdef ENOTDIR
+ case ENOTDIR: return DRMP3_NOT_DIRECTORY;
+ #endif
+ #ifdef EISDIR
+ case EISDIR: return DRMP3_IS_DIRECTORY;
+ #endif
+ #ifdef EINVAL
+ case EINVAL: return DRMP3_INVALID_ARGS;
+ #endif
+ #ifdef ENFILE
+ case ENFILE: return DRMP3_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef EMFILE
+ case EMFILE: return DRMP3_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef ENOTTY
+ case ENOTTY: return DRMP3_INVALID_OPERATION;
+ #endif
+ #ifdef ETXTBSY
+ case ETXTBSY: return DRMP3_BUSY;
+ #endif
+ #ifdef EFBIG
+ case EFBIG: return DRMP3_TOO_BIG;
+ #endif
+ #ifdef ENOSPC
+ case ENOSPC: return DRMP3_NO_SPACE;
+ #endif
+ #ifdef ESPIPE
+ case ESPIPE: return DRMP3_BAD_SEEK;
+ #endif
+ #ifdef EROFS
+ case EROFS: return DRMP3_ACCESS_DENIED;
+ #endif
+ #ifdef EMLINK
+ case EMLINK: return DRMP3_TOO_MANY_LINKS;
+ #endif
+ #ifdef EPIPE
+ case EPIPE: return DRMP3_BAD_PIPE;
+ #endif
+ #ifdef EDOM
+ case EDOM: return DRMP3_OUT_OF_RANGE;
+ #endif
+ #ifdef ERANGE
+ case ERANGE: return DRMP3_OUT_OF_RANGE;
+ #endif
+ #ifdef EDEADLK
+ case EDEADLK: return DRMP3_DEADLOCK;
+ #endif
+ #ifdef ENAMETOOLONG
+ case ENAMETOOLONG: return DRMP3_PATH_TOO_LONG;
+ #endif
+ #ifdef ENOLCK
+ case ENOLCK: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOSYS
+ case ENOSYS: return DRMP3_NOT_IMPLEMENTED;
+ #endif
+ #ifdef ENOTEMPTY
+ case ENOTEMPTY: return DRMP3_DIRECTORY_NOT_EMPTY;
+ #endif
+ #ifdef ELOOP
+ case ELOOP: return DRMP3_TOO_MANY_LINKS;
+ #endif
+ #ifdef ENOMSG
+ case ENOMSG: return DRMP3_NO_MESSAGE;
+ #endif
+ #ifdef EIDRM
+ case EIDRM: return DRMP3_ERROR;
+ #endif
+ #ifdef ECHRNG
+ case ECHRNG: return DRMP3_ERROR;
+ #endif
+ #ifdef EL2NSYNC
+ case EL2NSYNC: return DRMP3_ERROR;
+ #endif
+ #ifdef EL3HLT
+ case EL3HLT: return DRMP3_ERROR;
+ #endif
+ #ifdef EL3RST
+ case EL3RST: return DRMP3_ERROR;
+ #endif
+ #ifdef ELNRNG
+ case ELNRNG: return DRMP3_OUT_OF_RANGE;
+ #endif
+ #ifdef EUNATCH
+ case EUNATCH: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOCSI
+ case ENOCSI: return DRMP3_ERROR;
+ #endif
+ #ifdef EL2HLT
+ case EL2HLT: return DRMP3_ERROR;
+ #endif
+ #ifdef EBADE
+ case EBADE: return DRMP3_ERROR;
+ #endif
+ #ifdef EBADR
+ case EBADR: return DRMP3_ERROR;
+ #endif
+ #ifdef EXFULL
+ case EXFULL: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOANO
+ case ENOANO: return DRMP3_ERROR;
+ #endif
+ #ifdef EBADRQC
+ case EBADRQC: return DRMP3_ERROR;
+ #endif
+ #ifdef EBADSLT
+ case EBADSLT: return DRMP3_ERROR;
+ #endif
+ #ifdef EBFONT
+ case EBFONT: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef ENOSTR
+ case ENOSTR: return DRMP3_ERROR;
+ #endif
+ #ifdef ENODATA
+ case ENODATA: return DRMP3_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ETIME
+ case ETIME: return DRMP3_TIMEOUT;
+ #endif
+ #ifdef ENOSR
+ case ENOSR: return DRMP3_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ENONET
+ case ENONET: return DRMP3_NO_NETWORK;
+ #endif
+ #ifdef ENOPKG
+ case ENOPKG: return DRMP3_ERROR;
+ #endif
+ #ifdef EREMOTE
+ case EREMOTE: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOLINK
+ case ENOLINK: return DRMP3_ERROR;
+ #endif
+ #ifdef EADV
+ case EADV: return DRMP3_ERROR;
+ #endif
+ #ifdef ESRMNT
+ case ESRMNT: return DRMP3_ERROR;
+ #endif
+ #ifdef ECOMM
+ case ECOMM: return DRMP3_ERROR;
+ #endif
+ #ifdef EPROTO
+ case EPROTO: return DRMP3_ERROR;
+ #endif
+ #ifdef EMULTIHOP
+ case EMULTIHOP: return DRMP3_ERROR;
+ #endif
+ #ifdef EDOTDOT
+ case EDOTDOT: return DRMP3_ERROR;
+ #endif
+ #ifdef EBADMSG
+ case EBADMSG: return DRMP3_BAD_MESSAGE;
+ #endif
+ #ifdef EOVERFLOW
+ case EOVERFLOW: return DRMP3_TOO_BIG;
+ #endif
+ #ifdef ENOTUNIQ
+ case ENOTUNIQ: return DRMP3_NOT_UNIQUE;
+ #endif
+ #ifdef EBADFD
+ case EBADFD: return DRMP3_ERROR;
+ #endif
+ #ifdef EREMCHG
+ case EREMCHG: return DRMP3_ERROR;
+ #endif
+ #ifdef ELIBACC
+ case ELIBACC: return DRMP3_ACCESS_DENIED;
+ #endif
+ #ifdef ELIBBAD
+ case ELIBBAD: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef ELIBSCN
+ case ELIBSCN: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef ELIBMAX
+ case ELIBMAX: return DRMP3_ERROR;
+ #endif
+ #ifdef ELIBEXEC
+ case ELIBEXEC: return DRMP3_ERROR;
+ #endif
+ #ifdef EILSEQ
+ case EILSEQ: return DRMP3_INVALID_DATA;
+ #endif
+ #ifdef ERESTART
+ case ERESTART: return DRMP3_ERROR;
+ #endif
+ #ifdef ESTRPIPE
+ case ESTRPIPE: return DRMP3_ERROR;
+ #endif
+ #ifdef EUSERS
+ case EUSERS: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOTSOCK
+ case ENOTSOCK: return DRMP3_NOT_SOCKET;
+ #endif
+ #ifdef EDESTADDRREQ
+ case EDESTADDRREQ: return DRMP3_NO_ADDRESS;
+ #endif
+ #ifdef EMSGSIZE
+ case EMSGSIZE: return DRMP3_TOO_BIG;
+ #endif
+ #ifdef EPROTOTYPE
+ case EPROTOTYPE: return DRMP3_BAD_PROTOCOL;
+ #endif
+ #ifdef ENOPROTOOPT
+ case ENOPROTOOPT: return DRMP3_PROTOCOL_UNAVAILABLE;
+ #endif
+ #ifdef EPROTONOSUPPORT
+ case EPROTONOSUPPORT: return DRMP3_PROTOCOL_NOT_SUPPORTED;
+ #endif
+ #ifdef ESOCKTNOSUPPORT
+ case ESOCKTNOSUPPORT: return DRMP3_SOCKET_NOT_SUPPORTED;
+ #endif
+ #ifdef EOPNOTSUPP
+ case EOPNOTSUPP: return DRMP3_INVALID_OPERATION;
+ #endif
+ #ifdef EPFNOSUPPORT
+ case EPFNOSUPPORT: return DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EAFNOSUPPORT
+ case EAFNOSUPPORT: return DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EADDRINUSE
+ case EADDRINUSE: return DRMP3_ALREADY_IN_USE;
+ #endif
+ #ifdef EADDRNOTAVAIL
+ case EADDRNOTAVAIL: return DRMP3_ERROR;
+ #endif
+ #ifdef ENETDOWN
+ case ENETDOWN: return DRMP3_NO_NETWORK;
+ #endif
+ #ifdef ENETUNREACH
+ case ENETUNREACH: return DRMP3_NO_NETWORK;
+ #endif
+ #ifdef ENETRESET
+ case ENETRESET: return DRMP3_NO_NETWORK;
+ #endif
+ #ifdef ECONNABORTED
+ case ECONNABORTED: return DRMP3_NO_NETWORK;
+ #endif
+ #ifdef ECONNRESET
+ case ECONNRESET: return DRMP3_CONNECTION_RESET;
+ #endif
+ #ifdef ENOBUFS
+ case ENOBUFS: return DRMP3_NO_SPACE;
+ #endif
+ #ifdef EISCONN
+ case EISCONN: return DRMP3_ALREADY_CONNECTED;
+ #endif
+ #ifdef ENOTCONN
+ case ENOTCONN: return DRMP3_NOT_CONNECTED;
+ #endif
+ #ifdef ESHUTDOWN
+ case ESHUTDOWN: return DRMP3_ERROR;
+ #endif
+ #ifdef ETOOMANYREFS
+ case ETOOMANYREFS: return DRMP3_ERROR;
+ #endif
+ #ifdef ETIMEDOUT
+ case ETIMEDOUT: return DRMP3_TIMEOUT;
+ #endif
+ #ifdef ECONNREFUSED
+ case ECONNREFUSED: return DRMP3_CONNECTION_REFUSED;
+ #endif
+ #ifdef EHOSTDOWN
+ case EHOSTDOWN: return DRMP3_NO_HOST;
+ #endif
+ #ifdef EHOSTUNREACH
+ case EHOSTUNREACH: return DRMP3_NO_HOST;
+ #endif
+ #ifdef EALREADY
+ case EALREADY: return DRMP3_IN_PROGRESS;
+ #endif
+ #ifdef EINPROGRESS
+ case EINPROGRESS: return DRMP3_IN_PROGRESS;
+ #endif
+ #ifdef ESTALE
+ case ESTALE: return DRMP3_INVALID_FILE;
+ #endif
+ #ifdef EUCLEAN
+ case EUCLEAN: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOTNAM
+ case ENOTNAM: return DRMP3_ERROR;
+ #endif
+ #ifdef ENAVAIL
+ case ENAVAIL: return DRMP3_ERROR;
+ #endif
+ #ifdef EISNAM
+ case EISNAM: return DRMP3_ERROR;
+ #endif
+ #ifdef EREMOTEIO
+ case EREMOTEIO: return DRMP3_IO_ERROR;
+ #endif
+ #ifdef EDQUOT
+ case EDQUOT: return DRMP3_NO_SPACE;
+ #endif
+ #ifdef ENOMEDIUM
+ case ENOMEDIUM: return DRMP3_DOES_NOT_EXIST;
+ #endif
+ #ifdef EMEDIUMTYPE
+ case EMEDIUMTYPE: return DRMP3_ERROR;
+ #endif
+ #ifdef ECANCELED
+ case ECANCELED: return DRMP3_CANCELLED;
+ #endif
+ #ifdef ENOKEY
+ case ENOKEY: return DRMP3_ERROR;
+ #endif
+ #ifdef EKEYEXPIRED
+ case EKEYEXPIRED: return DRMP3_ERROR;
+ #endif
+ #ifdef EKEYREVOKED
+ case EKEYREVOKED: return DRMP3_ERROR;
+ #endif
+ #ifdef EKEYREJECTED
+ case EKEYREJECTED: return DRMP3_ERROR;
+ #endif
+ #ifdef EOWNERDEAD
+ case EOWNERDEAD: return DRMP3_ERROR;
+ #endif
+ #ifdef ENOTRECOVERABLE
+ case ENOTRECOVERABLE: return DRMP3_ERROR;
+ #endif
+ #ifdef ERFKILL
+ case ERFKILL: return DRMP3_ERROR;
+ #endif
+ #ifdef EHWPOISON
+ case EHWPOISON: return DRMP3_ERROR;
+ #endif
+ default: return DRMP3_ERROR;
+ }
+}
+static drmp3_result drmp3_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+ errno_t err;
+#endif
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRMP3_INVALID_ARGS;
+ }
+#if _MSC_VER && _MSC_VER >= 1400
+ err = fopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drmp3_result_from_errno(err);
+ }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+ *ppFile = fopen(pFilePath, pOpenMode);
+#else
+ #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+ *ppFile = fopen64(pFilePath, pOpenMode);
+ #else
+ *ppFile = fopen(pFilePath, pOpenMode);
+ #endif
+#endif
+ if (*ppFile == NULL) {
+ drmp3_result result = drmp3_result_from_errno(errno);
+ if (result == DRMP3_SUCCESS) {
+ result = DRMP3_ERROR;
+ }
+ return result;
+ }
+#endif
+ return DRMP3_SUCCESS;
+}
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
+ #define DRMP3_HAS_WFOPEN
+ #endif
+#endif
+static drmp3_result drmp3_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppFile != NULL) {
+ *ppFile = NULL;
+ }
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRMP3_INVALID_ARGS;
+ }
+#if defined(DRMP3_HAS_WFOPEN)
+ {
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
+ errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drmp3_result_from_errno(err);
+ }
+ #else
+ *ppFile = _wfopen(pFilePath, pOpenMode);
+ if (*ppFile == NULL) {
+ return drmp3_result_from_errno(errno);
+ }
+ #endif
+ (void)pAllocationCallbacks;
+ }
+#else
+ {
+ mbstate_t mbs;
+ size_t lenMB;
+ const wchar_t* pFilePathTemp = pFilePath;
+ char* pFilePathMB = NULL;
+ char pOpenModeMB[32] = {0};
+ DRMP3_ZERO_OBJECT(&mbs);
+ lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+ if (lenMB == (size_t)-1) {
+ return drmp3_result_from_errno(errno);
+ }
+ pFilePathMB = (char*)drmp3__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
+ if (pFilePathMB == NULL) {
+ return DRMP3_OUT_OF_MEMORY;
+ }
+ pFilePathTemp = pFilePath;
+ DRMP3_ZERO_OBJECT(&mbs);
+ wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+ {
+ size_t i = 0;
+ for (;;) {
+ if (pOpenMode[i] == 0) {
+ pOpenModeMB[i] = '\0';
+ break;
+ }
+ pOpenModeMB[i] = (char)pOpenMode[i];
+ i += 1;
+ }
+ }
+ *ppFile = fopen(pFilePathMB, pOpenModeMB);
+ drmp3__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
+ }
+ if (*ppFile == NULL) {
+ return DRMP3_ERROR;
+ }
+#endif
+ return DRMP3_SUCCESS;
+}
+static size_t drmp3__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
+}
+static drmp3_bool32 drmp3__on_seek_stdio(void* pUserData, int offset, drmp3_seek_origin origin)
+{
+ return fseek((FILE*)pUserData, offset, (origin == drmp3_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drmp3_fopen(&pFile, pFilePath, "rb") != DRMP3_SUCCESS) {
+ return DRMP3_FALSE;
+ }
+ return drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+}
+DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drmp3_wfopen(&pFile, pFilePath, L"rb", pAllocationCallbacks) != DRMP3_SUCCESS) {
+ return DRMP3_FALSE;
+ }
+ return drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+}
+#endif
+DRMP3_API void drmp3_uninit(drmp3* pMP3)
+{
+ if (pMP3 == NULL) {
+ return;
+ }
+#ifndef DR_MP3_NO_STDIO
+ if (pMP3->onRead == drmp3__on_read_stdio) {
+ fclose((FILE*)pMP3->pUserData);
+ }
+#endif
+ drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks);
+}
+#if defined(DR_MP3_FLOAT_OUTPUT)
+static void drmp3_f32_to_s16(drmp3_int16* dst, const float* src, drmp3_uint64 sampleCount)
+{
+ drmp3_uint64 i;
+ drmp3_uint64 i4;
+ drmp3_uint64 sampleCount4;
+ i = 0;
+ sampleCount4 = sampleCount >> 2;
+ for (i4 = 0; i4 < sampleCount4; i4 += 1) {
+ float x0 = src[i+0];
+ float x1 = src[i+1];
+ float x2 = src[i+2];
+ float x3 = src[i+3];
+ x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0));
+ x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1));
+ x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2));
+ x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3));
+ x0 = x0 * 32767.0f;
+ x1 = x1 * 32767.0f;
+ x2 = x2 * 32767.0f;
+ x3 = x3 * 32767.0f;
+ dst[i+0] = (drmp3_int16)x0;
+ dst[i+1] = (drmp3_int16)x1;
+ dst[i+2] = (drmp3_int16)x2;
+ dst[i+3] = (drmp3_int16)x3;
+ i += 4;
+ }
+ for (; i < sampleCount; i += 1) {
+ float x = src[i];
+ x = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+ x = x * 32767.0f;
+ dst[i] = (drmp3_int16)x;
+ }
+}
+#endif
+#if !defined(DR_MP3_FLOAT_OUTPUT)
+static void drmp3_s16_to_f32(float* dst, const drmp3_int16* src, drmp3_uint64 sampleCount)
+{
+ drmp3_uint64 i;
+ for (i = 0; i < sampleCount; i += 1) {
+ float x = (float)src[i];
+ x = x * 0.000030517578125f;
+ dst[i] = x;
+ }
+}
+#endif
+static drmp3_uint64 drmp3_read_pcm_frames_raw(drmp3* pMP3, drmp3_uint64 framesToRead, void* pBufferOut)
+{
+ drmp3_uint64 totalFramesRead = 0;
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->onRead != NULL);
+ while (framesToRead > 0) {
+ drmp3_uint32 framesToConsume = (drmp3_uint32)DRMP3_MIN(pMP3->pcmFramesRemainingInMP3Frame, framesToRead);
+ if (pBufferOut != NULL) {
+ #if defined(DR_MP3_FLOAT_OUTPUT)
+ float* pFramesOutF32 = (float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalFramesRead * pMP3->channels);
+ float* pFramesInF32 = (float*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(float) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels);
+ DRMP3_COPY_MEMORY(pFramesOutF32, pFramesInF32, sizeof(float) * framesToConsume * pMP3->channels);
+ #else
+ drmp3_int16* pFramesOutS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalFramesRead * pMP3->channels);
+ drmp3_int16* pFramesInS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(drmp3_int16) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels);
+ DRMP3_COPY_MEMORY(pFramesOutS16, pFramesInS16, sizeof(drmp3_int16) * framesToConsume * pMP3->channels);
+ #endif
+ }
+ pMP3->currentPCMFrame += framesToConsume;
+ pMP3->pcmFramesConsumedInMP3Frame += framesToConsume;
+ pMP3->pcmFramesRemainingInMP3Frame -= framesToConsume;
+ totalFramesRead += framesToConsume;
+ framesToRead -= framesToConsume;
+ if (framesToRead == 0) {
+ break;
+ }
+ DRMP3_ASSERT(pMP3->pcmFramesRemainingInMP3Frame == 0);
+ if (drmp3_decode_next_frame(pMP3) == 0) {
+ break;
+ }
+ }
+ return totalFramesRead;
+}
+DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut)
+{
+ if (pMP3 == NULL || pMP3->onRead == NULL) {
+ return 0;
+ }
+#if defined(DR_MP3_FLOAT_OUTPUT)
+ return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut);
+#else
+ {
+ drmp3_int16 pTempS16[8192];
+ drmp3_uint64 totalPCMFramesRead = 0;
+ while (totalPCMFramesRead < framesToRead) {
+ drmp3_uint64 framesJustRead;
+ drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead;
+ drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempS16) / pMP3->channels;
+ if (framesToReadNow > framesRemaining) {
+ framesToReadNow = framesRemaining;
+ }
+ framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempS16);
+ if (framesJustRead == 0) {
+ break;
+ }
+ drmp3_s16_to_f32((float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempS16, framesJustRead * pMP3->channels);
+ totalPCMFramesRead += framesJustRead;
+ }
+ return totalPCMFramesRead;
+ }
+#endif
+}
+DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut)
+{
+ if (pMP3 == NULL || pMP3->onRead == NULL) {
+ return 0;
+ }
+#if !defined(DR_MP3_FLOAT_OUTPUT)
+ return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut);
+#else
+ {
+ float pTempF32[4096];
+ drmp3_uint64 totalPCMFramesRead = 0;
+ while (totalPCMFramesRead < framesToRead) {
+ drmp3_uint64 framesJustRead;
+ drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead;
+ drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempF32) / pMP3->channels;
+ if (framesToReadNow > framesRemaining) {
+ framesToReadNow = framesRemaining;
+ }
+ framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempF32);
+ if (framesJustRead == 0) {
+ break;
+ }
+ drmp3_f32_to_s16((drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempF32, framesJustRead * pMP3->channels);
+ totalPCMFramesRead += framesJustRead;
+ }
+ return totalPCMFramesRead;
+ }
+#endif
+}
+static void drmp3_reset(drmp3* pMP3)
+{
+ DRMP3_ASSERT(pMP3 != NULL);
+ pMP3->pcmFramesConsumedInMP3Frame = 0;
+ pMP3->pcmFramesRemainingInMP3Frame = 0;
+ pMP3->currentPCMFrame = 0;
+ pMP3->dataSize = 0;
+ pMP3->atEnd = DRMP3_FALSE;
+ drmp3dec_init(&pMP3->decoder);
+}
+static drmp3_bool32 drmp3_seek_to_start_of_stream(drmp3* pMP3)
+{
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->onSeek != NULL);
+ if (!drmp3__on_seek(pMP3, 0, drmp3_seek_origin_start)) {
+ return DRMP3_FALSE;
+ }
+ drmp3_reset(pMP3);
+ return DRMP3_TRUE;
+}
+static drmp3_bool32 drmp3_seek_forward_by_pcm_frames__brute_force(drmp3* pMP3, drmp3_uint64 frameOffset)
+{
+ drmp3_uint64 framesRead;
+#if defined(DR_MP3_FLOAT_OUTPUT)
+ framesRead = drmp3_read_pcm_frames_f32(pMP3, frameOffset, NULL);
+#else
+ framesRead = drmp3_read_pcm_frames_s16(pMP3, frameOffset, NULL);
+#endif
+ if (framesRead != frameOffset) {
+ return DRMP3_FALSE;
+ }
+ return DRMP3_TRUE;
+}
+static drmp3_bool32 drmp3_seek_to_pcm_frame__brute_force(drmp3* pMP3, drmp3_uint64 frameIndex)
+{
+ DRMP3_ASSERT(pMP3 != NULL);
+ if (frameIndex == pMP3->currentPCMFrame) {
+ return DRMP3_TRUE;
+ }
+ if (frameIndex < pMP3->currentPCMFrame) {
+ if (!drmp3_seek_to_start_of_stream(pMP3)) {
+ return DRMP3_FALSE;
+ }
+ }
+ DRMP3_ASSERT(frameIndex >= pMP3->currentPCMFrame);
+ return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, (frameIndex - pMP3->currentPCMFrame));
+}
+static drmp3_bool32 drmp3_find_closest_seek_point(drmp3* pMP3, drmp3_uint64 frameIndex, drmp3_uint32* pSeekPointIndex)
+{
+ drmp3_uint32 iSeekPoint;
+ DRMP3_ASSERT(pSeekPointIndex != NULL);
+ *pSeekPointIndex = 0;
+ if (frameIndex < pMP3->pSeekPoints[0].pcmFrameIndex) {
+ return DRMP3_FALSE;
+ }
+ for (iSeekPoint = 0; iSeekPoint < pMP3->seekPointCount; ++iSeekPoint) {
+ if (pMP3->pSeekPoints[iSeekPoint].pcmFrameIndex > frameIndex) {
+ break;
+ }
+ *pSeekPointIndex = iSeekPoint;
+ }
+ return DRMP3_TRUE;
+}
+static drmp3_bool32 drmp3_seek_to_pcm_frame__seek_table(drmp3* pMP3, drmp3_uint64 frameIndex)
+{
+ drmp3_seek_point seekPoint;
+ drmp3_uint32 priorSeekPointIndex;
+ drmp3_uint16 iMP3Frame;
+ drmp3_uint64 leftoverFrames;
+ DRMP3_ASSERT(pMP3 != NULL);
+ DRMP3_ASSERT(pMP3->pSeekPoints != NULL);
+ DRMP3_ASSERT(pMP3->seekPointCount > 0);
+ if (drmp3_find_closest_seek_point(pMP3, frameIndex, &priorSeekPointIndex)) {
+ seekPoint = pMP3->pSeekPoints[priorSeekPointIndex];
+ } else {
+ seekPoint.seekPosInBytes = 0;
+ seekPoint.pcmFrameIndex = 0;
+ seekPoint.mp3FramesToDiscard = 0;
+ seekPoint.pcmFramesToDiscard = 0;
+ }
+ if (!drmp3__on_seek_64(pMP3, seekPoint.seekPosInBytes, drmp3_seek_origin_start)) {
+ return DRMP3_FALSE;
+ }
+ drmp3_reset(pMP3);
+ for (iMP3Frame = 0; iMP3Frame < seekPoint.mp3FramesToDiscard; ++iMP3Frame) {
+ drmp3_uint32 pcmFramesRead;
+ drmp3d_sample_t* pPCMFrames;
+ pPCMFrames = NULL;
+ if (iMP3Frame == seekPoint.mp3FramesToDiscard-1) {
+ pPCMFrames = (drmp3d_sample_t*)pMP3->pcmFrames;
+ }
+ pcmFramesRead = drmp3_decode_next_frame_ex(pMP3, pPCMFrames);
+ if (pcmFramesRead == 0) {
+ return DRMP3_FALSE;
+ }
+ }
+ pMP3->currentPCMFrame = seekPoint.pcmFrameIndex - seekPoint.pcmFramesToDiscard;
+ leftoverFrames = frameIndex - pMP3->currentPCMFrame;
+ return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, leftoverFrames);
+}
+DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex)
+{
+ if (pMP3 == NULL || pMP3->onSeek == NULL) {
+ return DRMP3_FALSE;
+ }
+ if (frameIndex == 0) {
+ return drmp3_seek_to_start_of_stream(pMP3);
+ }
+ if (pMP3->pSeekPoints != NULL && pMP3->seekPointCount > 0) {
+ return drmp3_seek_to_pcm_frame__seek_table(pMP3, frameIndex);
+ } else {
+ return drmp3_seek_to_pcm_frame__brute_force(pMP3, frameIndex);
+ }
+}
+DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount)
+{
+ drmp3_uint64 currentPCMFrame;
+ drmp3_uint64 totalPCMFrameCount;
+ drmp3_uint64 totalMP3FrameCount;
+ if (pMP3 == NULL) {
+ return DRMP3_FALSE;
+ }
+ if (pMP3->onSeek == NULL) {
+ return DRMP3_FALSE;
+ }
+ currentPCMFrame = pMP3->currentPCMFrame;
+ if (!drmp3_seek_to_start_of_stream(pMP3)) {
+ return DRMP3_FALSE;
+ }
+ totalPCMFrameCount = 0;
+ totalMP3FrameCount = 0;
+ for (;;) {
+ drmp3_uint32 pcmFramesInCurrentMP3Frame;
+ pcmFramesInCurrentMP3Frame = drmp3_decode_next_frame_ex(pMP3, NULL);
+ if (pcmFramesInCurrentMP3Frame == 0) {
+ break;
+ }
+ totalPCMFrameCount += pcmFramesInCurrentMP3Frame;
+ totalMP3FrameCount += 1;
+ }
+ if (!drmp3_seek_to_start_of_stream(pMP3)) {
+ return DRMP3_FALSE;
+ }
+ if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) {
+ return DRMP3_FALSE;
+ }
+ if (pMP3FrameCount != NULL) {
+ *pMP3FrameCount = totalMP3FrameCount;
+ }
+ if (pPCMFrameCount != NULL) {
+ *pPCMFrameCount = totalPCMFrameCount;
+ }
+ return DRMP3_TRUE;
+}
+DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3)
+{
+ drmp3_uint64 totalPCMFrameCount;
+ if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, NULL, &totalPCMFrameCount)) {
+ return 0;
+ }
+ return totalPCMFrameCount;
+}
+DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3)
+{
+ drmp3_uint64 totalMP3FrameCount;
+ if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, NULL)) {
+ return 0;
+ }
+ return totalMP3FrameCount;
+}
+static void drmp3__accumulate_running_pcm_frame_count(drmp3* pMP3, drmp3_uint32 pcmFrameCountIn, drmp3_uint64* pRunningPCMFrameCount, float* pRunningPCMFrameCountFractionalPart)
+{
+ float srcRatio;
+ float pcmFrameCountOutF;
+ drmp3_uint32 pcmFrameCountOut;
+ srcRatio = (float)pMP3->mp3FrameSampleRate / (float)pMP3->sampleRate;
+ DRMP3_ASSERT(srcRatio > 0);
+ pcmFrameCountOutF = *pRunningPCMFrameCountFractionalPart + (pcmFrameCountIn / srcRatio);
+ pcmFrameCountOut = (drmp3_uint32)pcmFrameCountOutF;
+ *pRunningPCMFrameCountFractionalPart = pcmFrameCountOutF - pcmFrameCountOut;
+ *pRunningPCMFrameCount += pcmFrameCountOut;
+}
+typedef struct
+{
+ drmp3_uint64 bytePos;
+ drmp3_uint64 pcmFrameIndex;
+} drmp3__seeking_mp3_frame_info;
+DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints)
+{
+ drmp3_uint32 seekPointCount;
+ drmp3_uint64 currentPCMFrame;
+ drmp3_uint64 totalMP3FrameCount;
+ drmp3_uint64 totalPCMFrameCount;
+ if (pMP3 == NULL || pSeekPointCount == NULL || pSeekPoints == NULL) {
+ return DRMP3_FALSE;
+ }
+ seekPointCount = *pSeekPointCount;
+ if (seekPointCount == 0) {
+ return DRMP3_FALSE;
+ }
+ currentPCMFrame = pMP3->currentPCMFrame;
+ if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, &totalPCMFrameCount)) {
+ return DRMP3_FALSE;
+ }
+ if (totalMP3FrameCount < DRMP3_SEEK_LEADING_MP3_FRAMES+1) {
+ seekPointCount = 1;
+ pSeekPoints[0].seekPosInBytes = 0;
+ pSeekPoints[0].pcmFrameIndex = 0;
+ pSeekPoints[0].mp3FramesToDiscard = 0;
+ pSeekPoints[0].pcmFramesToDiscard = 0;
+ } else {
+ drmp3_uint64 pcmFramesBetweenSeekPoints;
+ drmp3__seeking_mp3_frame_info mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES+1];
+ drmp3_uint64 runningPCMFrameCount = 0;
+ float runningPCMFrameCountFractionalPart = 0;
+ drmp3_uint64 nextTargetPCMFrame;
+ drmp3_uint32 iMP3Frame;
+ drmp3_uint32 iSeekPoint;
+ if (seekPointCount > totalMP3FrameCount-1) {
+ seekPointCount = (drmp3_uint32)totalMP3FrameCount-1;
+ }
+ pcmFramesBetweenSeekPoints = totalPCMFrameCount / (seekPointCount+1);
+ if (!drmp3_seek_to_start_of_stream(pMP3)) {
+ return DRMP3_FALSE;
+ }
+ for (iMP3Frame = 0; iMP3Frame < DRMP3_SEEK_LEADING_MP3_FRAMES+1; ++iMP3Frame) {
+ drmp3_uint32 pcmFramesInCurrentMP3FrameIn;
+ DRMP3_ASSERT(pMP3->streamCursor >= pMP3->dataSize);
+ mp3FrameInfo[iMP3Frame].bytePos = pMP3->streamCursor - pMP3->dataSize;
+ mp3FrameInfo[iMP3Frame].pcmFrameIndex = runningPCMFrameCount;
+ pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL);
+ if (pcmFramesInCurrentMP3FrameIn == 0) {
+ return DRMP3_FALSE;
+ }
+ drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart);
+ }
+ nextTargetPCMFrame = 0;
+ for (iSeekPoint = 0; iSeekPoint < seekPointCount; ++iSeekPoint) {
+ nextTargetPCMFrame += pcmFramesBetweenSeekPoints;
+ for (;;) {
+ if (nextTargetPCMFrame < runningPCMFrameCount) {
+ pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos;
+ pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame;
+ pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES;
+ pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex);
+ break;
+ } else {
+ size_t i;
+ drmp3_uint32 pcmFramesInCurrentMP3FrameIn;
+ for (i = 0; i < DRMP3_COUNTOF(mp3FrameInfo)-1; ++i) {
+ mp3FrameInfo[i] = mp3FrameInfo[i+1];
+ }
+ mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].bytePos = pMP3->streamCursor - pMP3->dataSize;
+ mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].pcmFrameIndex = runningPCMFrameCount;
+ pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL);
+ if (pcmFramesInCurrentMP3FrameIn == 0) {
+ pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos;
+ pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame;
+ pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES;
+ pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex);
+ break;
+ }
+ drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart);
+ }
+ }
+ }
+ if (!drmp3_seek_to_start_of_stream(pMP3)) {
+ return DRMP3_FALSE;
+ }
+ if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) {
+ return DRMP3_FALSE;
+ }
+ }
+ *pSeekPointCount = seekPointCount;
+ return DRMP3_TRUE;
+}
+DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints)
+{
+ if (pMP3 == NULL) {
+ return DRMP3_FALSE;
+ }
+ if (seekPointCount == 0 || pSeekPoints == NULL) {
+ pMP3->seekPointCount = 0;
+ pMP3->pSeekPoints = NULL;
+ } else {
+ pMP3->seekPointCount = seekPointCount;
+ pMP3->pSeekPoints = pSeekPoints;
+ }
+ return DRMP3_TRUE;
+}
+static float* drmp3__full_read_and_close_f32(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount)
+{
+ drmp3_uint64 totalFramesRead = 0;
+ drmp3_uint64 framesCapacity = 0;
+ float* pFrames = NULL;
+ float temp[4096];
+ DRMP3_ASSERT(pMP3 != NULL);
+ for (;;) {
+ drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels;
+ drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_f32(pMP3, framesToReadRightNow, temp);
+ if (framesJustRead == 0) {
+ break;
+ }
+ if (framesCapacity < totalFramesRead + framesJustRead) {
+ drmp3_uint64 oldFramesBufferSize;
+ drmp3_uint64 newFramesBufferSize;
+ drmp3_uint64 newFramesCap;
+ float* pNewFrames;
+ newFramesCap = framesCapacity * 2;
+ if (newFramesCap < totalFramesRead + framesJustRead) {
+ newFramesCap = totalFramesRead + framesJustRead;
+ }
+ oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(float);
+ newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(float);
+ if (newFramesBufferSize > DRMP3_SIZE_MAX) {
+ break;
+ }
+ pNewFrames = (float*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks);
+ if (pNewFrames == NULL) {
+ drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks);
+ break;
+ }
+ pFrames = pNewFrames;
+ framesCapacity = newFramesCap;
+ }
+ DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(float)));
+ totalFramesRead += framesJustRead;
+ if (framesJustRead != framesToReadRightNow) {
+ break;
+ }
+ }
+ if (pConfig != NULL) {
+ pConfig->channels = pMP3->channels;
+ pConfig->sampleRate = pMP3->sampleRate;
+ }
+ drmp3_uninit(pMP3);
+ if (pTotalFrameCount) {
+ *pTotalFrameCount = totalFramesRead;
+ }
+ return pFrames;
+}
+static drmp3_int16* drmp3__full_read_and_close_s16(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount)
+{
+ drmp3_uint64 totalFramesRead = 0;
+ drmp3_uint64 framesCapacity = 0;
+ drmp3_int16* pFrames = NULL;
+ drmp3_int16 temp[4096];
+ DRMP3_ASSERT(pMP3 != NULL);
+ for (;;) {
+ drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels;
+ drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_s16(pMP3, framesToReadRightNow, temp);
+ if (framesJustRead == 0) {
+ break;
+ }
+ if (framesCapacity < totalFramesRead + framesJustRead) {
+ drmp3_uint64 newFramesBufferSize;
+ drmp3_uint64 oldFramesBufferSize;
+ drmp3_uint64 newFramesCap;
+ drmp3_int16* pNewFrames;
+ newFramesCap = framesCapacity * 2;
+ if (newFramesCap < totalFramesRead + framesJustRead) {
+ newFramesCap = totalFramesRead + framesJustRead;
+ }
+ oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(drmp3_int16);
+ newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(drmp3_int16);
+ if (newFramesBufferSize > DRMP3_SIZE_MAX) {
+ break;
+ }
+ pNewFrames = (drmp3_int16*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks);
+ if (pNewFrames == NULL) {
+ drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks);
+ break;
+ }
+ pFrames = pNewFrames;
+ framesCapacity = newFramesCap;
+ }
+ DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(drmp3_int16)));
+ totalFramesRead += framesJustRead;
+ if (framesJustRead != framesToReadRightNow) {
+ break;
+ }
+ }
+ if (pConfig != NULL) {
+ pConfig->channels = pMP3->channels;
+ pConfig->sampleRate = pMP3->sampleRate;
+ }
+ drmp3_uninit(pMP3);
+ if (pTotalFrameCount) {
+ *pTotalFrameCount = totalFramesRead;
+ }
+ return pFrames;
+}
+DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
+}
+DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
+}
+DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
+}
+DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
+}
+#ifndef DR_MP3_NO_STDIO
+DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
+}
+DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ drmp3 mp3;
+ if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) {
+ return NULL;
+ }
+ return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
+}
+#endif
+DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ return drmp3__malloc_from_callbacks(sz, pAllocationCallbacks);
+ } else {
+ return drmp3__malloc_default(sz, NULL);
+ }
+}
+DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ drmp3__free_from_callbacks(p, pAllocationCallbacks);
+ } else {
+ drmp3__free_default(p, NULL);
+ }
+}
+#endif
+/* dr_mp3_c end */
+#endif /* DRMP3_IMPLEMENTATION */
+#endif /* MA_NO_MP3 */
+
/* End globally disabled warnings. */
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
+#endif /* miniaudio_c */
#endif /* MINIAUDIO_IMPLEMENTATION */
/*
-MAJOR CHANGES IN VERSION 0.9
-============================
-Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into
-detail about the major changes I would like to apologize. I know it's annoying dealing with breaking API changes, but I think
-it's best to get these changes out of the way now while the library is still relatively young and unknown.
+RELEASE NOTES - VERSION 0.10.x
+==============================
+Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert
+audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies
+to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign.
-There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in
-advance for this. You may want to hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for
-you, and you don't need full-duplex support, you can avoid upgrading (though you won't be getting future bug fixes).
+
+Changes to Data Conversion
+--------------------------
+The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other
+situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a
+pointer to the input data directly rather than dealing with a callback.
+
+The following are the data conversion APIs that have been removed and their replacements:
+
+ - ma_format_converter -> ma_convert_pcm_frames_format()
+ - ma_channel_router -> ma_channel_converter
+ - ma_src -> ma_resampler
+ - ma_pcm_converter -> ma_data_converter
+
+The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the
+`*_process_pcm_frames()` function as a pointer to a buffer.
+
+The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel
+conversion is also simple which you can do with `ma_channel_converter` via `ma_channel_converter_process_pcm_frames()`.
+
+Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you
+call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to
+output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated.
+
+The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably
+makes it the best option if you need to do data conversion.
+
+In addition to changes to the API design, a few other changes have been made to the data conversion pipeline:
+
+ - The sinc resampler has been removed. This was completely broken and never actually worked properly.
+ - The linear resampler now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with the
+ `lpfOrder` option, which has a maximum value of MA_MAX_FILTER_ORDER.
+ - Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before
+ processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however
+ `ma_data_converter` will handle this for you.
+
+
+Custom Memory Allocators
+------------------------
+miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more
+flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the
+`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure.
+
+The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by
+`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same
+way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults.
+
+The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults.
+Otherwise they will use the relevant callback in the structure.
+
+ - ma_malloc()
+ - ma_realloc()
+ - ma_free()
+ - ma_aligned_malloc()
+ - ma_aligned_free()
+ - ma_rb_init() / ma_rb_init_ex()
+ - ma_pcm_rb_init() / ma_pcm_rb_init_ex()
+
+Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom
+allocation callbacks.
+
+
+Buffer and Period Configuration Changes
+---------------------------------------
+The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables
+`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by
+the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine
+latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called
+`periodSizeInFrames` and `periodSizeInMilliseconds`.
+
+These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is
+that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to
+configure latency.
+
+The following unused APIs have been removed:
+
+ ma_get_default_buffer_size_in_milliseconds()
+ ma_get_default_buffer_size_in_frames()
+
+The following macros have been removed:
+
+ MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
+ MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
+
+
+Other API Changes
+-----------------
+Other less major API changes have also been made in version 0.10.
+
+`ma_device_set_stop_callback()` has been removed. If you require a stop callback, you must now set it via the device config just like the data callback.
+
+The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including
+sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes a configuration
+object called `ma_waveform_config` which defines the properties of the waveform. Use `ma_waveform_config_init()` to initialize a `ma_waveform_config` object.
+Use `ma_waveform_read_pcm_frames()` in place of `ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`.
+
+`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies
+the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to
+take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it more flexible, to
+prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added.
+
+`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API.
+
+
+Filters
+-------
+The following filters have been added:
+
+ |-------------|-------------------------------------------------------------------|
+ | API | Description |
+ |-------------|-------------------------------------------------------------------|
+ | ma_biquad | Biquad filter (transposed direct form 2) |
+ | ma_lpf1 | First order low-pass filter |
+ | ma_lpf2 | Second order low-pass filter |
+ | ma_lpf | High order low-pass filter (Butterworth) |
+ | ma_hpf1 | First order high-pass filter |
+ | ma_hpf2 | Second order high-pass filter |
+ | ma_hpf | High order high-pass filter (Butterworth) |
+ | ma_bpf2 | Second order band-pass filter |
+ | ma_bpf | High order band-pass filter |
+ | ma_peak2 | Second order peaking filter |
+ | ma_notch2 | Second order notching filter |
+ | ma_loshelf2 | Second order low shelf filter |
+ | ma_hishelf2 | Second order high shelf filter |
+ |-------------|-------------------------------------------------------------------|
+
+These filters all support 32-bit floating point and 16-bit signed integer formats natively. Other formats need to be converted beforehand.
+
+
+Sine, Square, Triangle and Sawtooth Waveforms
+---------------------------------------------
+Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old
+`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_config_init()` to initialize a config object, and then pass it
+into `ma_waveform_init()`. Then use `ma_waveform_read_pcm_frames()` to read PCM data.
+
+
+Noise Generation
+----------------
+A noise generation API has been added. This is used via the `ma_noise` API. Currently white, pink and Brownian noise is supported. The `ma_noise` API is
+similar to the waveform API. Use `ma_noise_config_init()` to initialize a config object, and then pass it into `ma_noise_init()` to initialize a `ma_noise`
+object. Then use `ma_noise_read_pcm_frames()` to read PCM data.
+
+
+Miscellaneous Changes
+---------------------
+The MA_NO_STDIO option has been removed. This would disable file I/O APIs, however this has proven to be too hard to maintain for it's perceived value and was
+therefore removed.
+
+Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report.
+
+The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on
+the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it
+was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work,
+this has been removed from all structures.
+
+Results codes have been overhauled. Unnecessary result codes have been removed, and some have been renumbered for organisation purposes. If you are are binding
+maintainer you will need to update your result codes. Support has also been added for retrieving a human readable description of a given result code via the
+`ma_result_description()` API.
+
+ALSA: The automatic format conversion, channel conversion and resampling performed by ALSA is now disabled by default as they were causing some compatibility
+issues with certain devices and configurations. These can be individually enabled via the device config:
+
+ ```c
+ deviceConfig.alsa.noAutoFormat = MA_TRUE;
+ deviceConfig.alsa.noAutoChannels = MA_TRUE;
+ deviceConfig.alsa.noAutoResample = MA_TRUE;
+ ```
+*/
+
+/*
+RELEASE NOTES - VERSION 0.9.x
+=============================
+Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into detail about the major changes I
+would like to apologize. I know it's annoying dealing with breaking API changes, but I think it's best to get these changes out of the way now while the
+library is still relatively young and unknown.
+
+There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in advance for this. You may want to
+hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for you, and you don't need full-duplex support, you can avoid upgrading
+(though you won't be getting future bug fixes).
Rebranding to "miniaudio"
@@ -38410,39 +61725,36 @@ The decision was made to rename mini_al to miniaudio. Don't worry, it's the same
1) Having the word "audio" in the title makes it immediately clear that the library is related to audio; and
2) I don't like the look of the underscore.
-This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's
-better to get this out of the road now rather than later. Also, since there are necessary API changes for full-duplex support
-I think it's better to just get the namespace change over and done with at the same time as the full-duplex changes. I'm hoping
-this will be the last of the major API changes. Fingers crossed!
+This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's better to get this out of the road
+now rather than later. Also, since there are necessary API changes for full-duplex support I think it's better to just get the namespace change over and done
+with at the same time as the full-duplex changes. I'm hoping this will be the last of the major API changes. Fingers crossed!
-The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's
-your preference.
+The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's your preference.
Full-Duplex Support
-------------------
The major feature added to version 0.9 is full-duplex. This has necessitated a few API changes.
-1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted
- to avoid a third callback just for full-duplex so the decision was made to break this API and unify the callbacks. Now,
- there is just one callback which is the same for all three modes (playback, capture, duplex). The new callback looks like
- the following:
+1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted to avoid a third callback just
+ for full-duplex so the decision was made to break this API and unify the callbacks. Now, there is just one callback which is the same for all three modes
+ (playback, capture, duplex). The new callback looks like the following:
void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
- This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In
- playback-only mode, pInput will be null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer
- returned from the callback since it's not necessary for miniaudio anymore.
+ This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In playback-only mode, pInput will be
+ null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer returned from the callback since it's not necessary for miniaudio
+ anymore.
-2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client
- to choose a different PCM format for the playback and capture sides. The old ma_device_config object simply did not allow
- this and needed to change. With these changes you now specify the device ID, format, channels, channel map and share mode
- on a per-playback and per-capture basis (see example below). The sample rate must be the same for playback and capture.
+2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client to choose a different PCM format
+ for the playback and capture sides. The old ma_device_config object simply did not allow this and needed to change. With these changes you now specify the
+ device ID, format, channels, channel map and share mode on a per-playback and per-capture basis (see example below). The sample rate must be the same for
+ playback and capture.
- Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now,
- the device ID, device type and callback user data are set in the config. ma_device_init() is now simplified down to taking
- just the context, device config and a pointer to the device object being initialized. The rationale for this change is that
- it just makes more sense to me that these are set as part of the config like everything else.
+ Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now, the device ID, device type and
+ callback user data are set in the config. ma_device_init() is now simplified down to taking just the context, device config and a pointer to the device
+ object being initialized. The rationale for this change is that it just makes more sense to me that these are set as part of the config like everything
+ else.
Example device initialization:
@@ -38462,20 +61774,18 @@ The major feature added to version 0.9 is full-duplex. This has necessitated a f
... handle error ...
}
- Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has
- been renamed to "stopCallback".
+ Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has been renamed to "stopCallback".
-This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample
-rate conversion is required for the playback device:
+This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample rate conversion is required for
+the playback device:
- Core Audio
- JACK
- AAudio
- OpenSL
- WebAudio
-In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such
-thorough testing. If you experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample
-program that reproduces the issue if possible).
+In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such thorough testing. If you
+experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample program that reproduces the issue if possible).
Other API Changes
@@ -38498,37 +61808,211 @@ In addition to the above, the following API changes have been made:
- mal_src_set_input_sample_rate()
- mal_src_set_output_sample_rate()
- Error codes have been rearranged. If you're a binding maintainer you will need to update.
-- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection
- and to make it easier to see the priority. If you're a binding maintainer you will need to update.
-- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with
- some future planned high-level APIs.
-- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that
- the pointer comes before the count. The rationale for this is to keep it consistent with things like memcpy().
+- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection and to make it easier to see
+ the priority. If you're a binding maintainer you will need to update.
+- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with some future planned high-level
+ APIs.
+- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that the pointer comes before the
+ count. The rationale for this is to keep it consistent with things like memcpy().
Miscellaneous Changes
---------------------
The following miscellaneous changes have also been made.
-- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the
- record, this is one of the nicest audio APIs out there, just behind the BSD audio APIs).
+- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the record, this is one of the nicest
+ audio APIs out there, just behind the BSD audio APIs).
- The WebAudio backend has been added. This is based on ScriptProcessorNode. This removes the need for SDL.
-- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio
- was not explicitly supported. These are no longer needed and have therefore been removed.
-- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an
- exclusive mode device, or an error. The rationale for this change is to give the client more control over how to handle cases
- when the desired shared mode is unavailable.
-- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb"
- operates on PCM frames.
-- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but
- removes the attribution requirement. The rationale for this is to support countries that don't recognize public domain.
+- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio was not explicitly
+ supported. These are no longer needed and have therefore been removed.
+- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an exclusive mode device, or an
+ error. The rationale for this change is to give the client more control over how to handle cases when the desired shared mode is unavailable.
+- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb" operates on PCM frames.
+- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but removes the attribution
+ requirement. The rationale for this is to support countries that don't recognize public domain.
*/
/*
REVISION HISTORY
================
-v0.xx.xx - 2020-xx-xx
+v0.10.12 - 2020-07-04
+ - Fix compilation errors on the iOS build.
+
+v0.10.11 - 2020-06-28
+ - Fix some bugs with device tracking on Core Audio.
+ - Updates to documentation.
+
+v0.10.10 - 2020-06-26
+ - Add include guard for the implementation section.
+ - Mark ma_device_sink_info_callback() as static.
+ - Fix compilation errors with MA_NO_DECODING and MA_NO_ENCODING.
+ - Fix compilation errors with MA_NO_DEVICE_IO
+
+v0.10.9 - 2020-06-24
+ - Amalgamation of dr_wav, dr_flac and dr_mp3. With this change, including the header section of these libraries before the implementation of miniaudio is no
+ longer required. Decoding of WAV, FLAC and MP3 should be supported seamlessly without any additional libraries. Decoders can be excluded from the build
+ with the following options:
+ - MA_NO_WAV
+ - MA_NO_FLAC
+ - MA_NO_MP3
+ If you get errors about multiple definitions you need to either enable the options above, move the implementation of dr_wav, dr_flac and/or dr_mp3 to before
+ the implementation of miniaudio, or update dr_wav, dr_flac and/or dr_mp3.
+ - Changes to the internal atomics library. This has been replaced with c89atomic.h which is embedded within this file.
+ - Fix a bug when a decoding backend reports configurations outside the limits of miniaudio's decoder abstraction.
+ - Fix the UWP build.
+ - Fix the Core Audio build.
+ - Fix the -std=c89 build on GCC.
+
+v0.10.8 - 2020-06-22
+ - Remove dependency on ma_context from mutexes.
+ - Change ma_data_source_read_pcm_frames() to return a result code and output the frames read as an output parameter.
+ - Change ma_data_source_seek_pcm_frames() to return a result code and output the frames seeked as an output parameter.
+ - Change ma_audio_buffer_unmap() to return MA_AT_END when the end has been reached. This should be considered successful.
+ - Change playback.pDeviceID and capture.pDeviceID to constant pointers in ma_device_config.
+ - Add support for initializing decoders from a virtual file system object. This is achieved via the ma_vfs API and allows the application to customize file
+ IO for the loading and reading of raw audio data. Passing in NULL for the VFS will use defaults. New APIs:
+ - ma_decoder_init_vfs()
+ - ma_decoder_init_vfs_wav()
+ - ma_decoder_init_vfs_flac()
+ - ma_decoder_init_vfs_mp3()
+ - ma_decoder_init_vfs_vorbis()
+ - ma_decoder_init_vfs_w()
+ - ma_decoder_init_vfs_wav_w()
+ - ma_decoder_init_vfs_flac_w()
+ - ma_decoder_init_vfs_mp3_w()
+ - ma_decoder_init_vfs_vorbis_w()
+ - Add support for memory mapping to ma_data_source.
+ - ma_data_source_map()
+ - ma_data_source_unmap()
+ - Add ma_offset_pcm_frames_ptr() and ma_offset_pcm_frames_const_ptr() which can be used for offsetting a pointer by a specified number of PCM frames.
+ - Add initial implementation of ma_yield() which is useful for spin locks which will be used in some upcoming work.
+ - Add documentation for log levels.
+ - The ma_event API has been made public in preparation for some uncoming work.
+ - Fix a bug in ma_decoder_seek_to_pcm_frame() where the internal sample rate is not being taken into account for determining the seek location.
+ - Fix some bugs with the linear resampler when dynamically changing the sample rate.
+ - Fix compilation errors with MA_NO_DEVICE_IO.
+ - Fix some warnings with GCC and -std=c89.
+ - Fix some formatting warnings with GCC and -Wall and -Wpedantic.
+ - Fix some warnings with VC6.
+ - Minor optimization to ma_copy_pcm_frames(). This is now a no-op when the input and output buffers are the same.
+
+v0.10.7 - 2020-05-25
+ - Fix a compilation error in the C++ build.
+ - Silence a warning.
+
+v0.10.6 - 2020-05-24
+ - Change ma_clip_samples_f32() and ma_clip_pcm_frames_f32() to take a 64-bit sample/frame count.
+ - Change ma_zero_pcm_frames() to clear to 128 for ma_format_u8.
+ - Add ma_silence_pcm_frames() which replaces ma_zero_pcm_frames(). ma_zero_pcm_frames() will be removed in version 0.11.
+ - Add support for u8, s24 and s32 formats to ma_channel_converter.
+ - Add compile-time and run-time version querying.
+ - MA_VERSION_MINOR
+ - MA_VERSION_MAJOR
+ - MA_VERSION_REVISION
+ - MA_VERSION_STRING
+ - ma_version()
+ - ma_version_string()
+ - Add ma_audio_buffer for reading raw audio data directly from memory.
+ - Fix a bug in shuffle mode in ma_channel_converter.
+ - Fix compilation errors in certain configurations for ALSA and PulseAudio.
+ - The data callback now initializes the output buffer to 128 when the playback sample format is ma_format_u8.
+
+v0.10.5 - 2020-05-05
+ - Change ma_zero_pcm_frames() to take a 64-bit frame count.
+ - Add ma_copy_pcm_frames().
+ - Add MA_NO_GENERATION build option to exclude the `ma_waveform` and `ma_noise` APIs from the build.
+ - Add support for formatted logging to the VC6 build.
+ - Fix a crash in the linear resampler when LPF order is 0.
+ - Fix compilation errors and warnings with older versions of Visual Studio.
+ - Minor documentation updates.
+
+v0.10.4 - 2020-04-12
+ - Fix a data conversion bug when converting from the client format to the native device format.
+
+v0.10.3 - 2020-04-07
+ - Bring up to date with breaking changes to dr_mp3.
+ - Remove MA_NO_STDIO. This was causing compilation errors and the maintenance cost versus practical benefit is no longer worthwhile.
+ - Fix a bug with data conversion where it was unnecessarily converting to s16 or f32 and then straight back to the original format.
+ - Fix compilation errors and warnings with Visual Studio 2005.
+ - ALSA: Disable ALSA's automatic data conversion by default and add configuration options to the device config:
+ - alsa.noAutoFormat
+ - alsa.noAutoChannels
+ - alsa.noAutoResample
+ - WASAPI: Add some overrun recovery for ma_device_type_capture devices.
+
+v0.10.2 - 2020-03-22
+ - Decorate some APIs with MA_API which were missed in the previous version.
+ - Fix a bug in ma_linear_resampler_set_rate() and ma_linear_resampler_set_rate_ratio().
+
+v0.10.1 - 2020-03-17
+ - Add MA_API decoration. This can be customized by defining it before including miniaudio.h.
+ - Fix a bug where opening a file would return a success code when in fact it failed.
+ - Fix compilation errors with Visual Studio 6 and 2003.
+ - Fix warnings on macOS.
+
+v0.10.0 - 2020-03-07
+ - API CHANGE: Refactor data conversion APIs
+ - ma_format_converter has been removed. Use ma_convert_pcm_frames_format() instead.
+ - ma_channel_router has been replaced with ma_channel_converter.
+ - ma_src has been replaced with ma_resampler
+ - ma_pcm_converter has been replaced with ma_data_converter
+ - API CHANGE: Add support for custom memory allocation callbacks. The following APIs have been updated to take an extra parameter for the allocation
+ callbacks:
+ - ma_malloc()
+ - ma_realloc()
+ - ma_free()
+ - ma_aligned_malloc()
+ - ma_aligned_free()
+ - ma_rb_init() / ma_rb_init_ex()
+ - ma_pcm_rb_init() / ma_pcm_rb_init_ex()
+ - API CHANGE: Simplify latency specification in device configurations. The bufferSizeInFrames and bufferSizeInMilliseconds parameters have been replaced with
+ periodSizeInFrames and periodSizeInMilliseconds respectively. The previous variables defined the size of the entire buffer, whereas the new ones define the
+ size of a period. The following APIs have been removed since they are no longer relevant:
+ - ma_get_default_buffer_size_in_milliseconds()
+ - ma_get_default_buffer_size_in_frames()
+ - API CHANGE: ma_device_set_stop_callback() has been removed. If you require a stop callback, you must now set it via the device config just like the data
+ callback.
+ - API CHANGE: The ma_sine_wave API has been replaced with ma_waveform. The following APIs have been removed:
+ - ma_sine_wave_init()
+ - ma_sine_wave_read_f32()
+ - ma_sine_wave_read_f32_ex()
+ - API CHANGE: ma_convert_frames() has been updated to take an extra parameter which is the size of the output buffer in PCM frames. Parameters have also been
+ reordered.
+ - API CHANGE: ma_convert_frames_ex() has been changed to take a pointer to a ma_data_converter_config object to specify the input and output formats to
+ convert between.
+ - API CHANGE: ma_calculate_frame_count_after_src() has been renamed to ma_calculate_frame_count_after_resampling().
+ - Add support for the following filters:
+ - Biquad (ma_biquad)
+ - First order low-pass (ma_lpf1)
+ - Second order low-pass (ma_lpf2)
+ - Low-pass with configurable order (ma_lpf)
+ - First order high-pass (ma_hpf1)
+ - Second order high-pass (ma_hpf2)
+ - High-pass with configurable order (ma_hpf)
+ - Second order band-pass (ma_bpf2)
+ - Band-pass with configurable order (ma_bpf)
+ - Second order peaking EQ (ma_peak2)
+ - Second order notching (ma_notch2)
+ - Second order low shelf (ma_loshelf2)
+ - Second order high shelf (ma_hishelf2)
+ - Add waveform generation API (ma_waveform) with support for the following:
+ - Sine
+ - Square
+ - Triangle
+ - Sawtooth
+ - Add noise generation API (ma_noise) with support for the following:
+ - White
+ - Pink
+ - Brownian
+ - Add encoding API (ma_encoder). This only supports outputting to WAV files via dr_wav.
+ - Add ma_result_description() which is used to retrieve a human readable description of a given result code.
+ - Result codes have been changed. Binding maintainers will need to update their result code constants.
+ - More meaningful result codes are now returned when a file fails to open.
+ - Internal functions have all been made static where possible.
- Fix potential crash when ma_device object's are not aligned to MA_SIMD_ALIGNMENT.
+ - Fix a bug in ma_decoder_get_length_in_pcm_frames() where it was returning the length based on the internal sample rate rather than the output sample rate.
+ - Fix bugs in some backends where the device is not drained properly in ma_device_stop().
+ - Improvements to documentation.
v0.9.10 - 2020-01-15
- Fix compilation errors due to #if/#endif mismatches.
diff --git a/src/raudio.c b/src/raudio.c
index 81ccc854a..9f8d83173 100644
--- a/src/raudio.c
+++ b/src/raudio.c
@@ -159,6 +159,9 @@ typedef struct tagBITMAPINFOHEADER {
#define MA_FREE RL_FREE
#define MA_NO_JACK
+#define MA_NO_WAV
+#define MA_NO_FLAC
+#define MA_NO_MP3
#define MINIAUDIO_IMPLEMENTATION
#include "external/miniaudio.h" // miniaudio library
#undef PlaySound // Win32 API: windows.h > mmsystem.h defines PlaySound macro
@@ -444,7 +447,7 @@ void InitAudioDevice(void)
// Mixing happens on a seperate thread which means we need to synchronize. I'm using a mutex here to make things simple, but may
// want to look at something a bit smarter later on to keep everything real-time, if that's necessary.
- if (ma_mutex_init(&AUDIO.System.context, &AUDIO.System.lock) != MA_SUCCESS)
+ if (ma_mutex_init(&AUDIO.System.lock) != MA_SUCCESS)
{
TRACELOG(LOG_ERROR, "AUDIO: Failed to create mutex for mixing");
ma_device_uninit(&AUDIO.System.device);