Implemented some changes
This commit is contained in:
parent
a766e2c480
commit
f57367e786
1 changed files with 67 additions and 11 deletions
|
@ -184,11 +184,15 @@ RMDEF float *MatrixToFloat(Matrix mat); // Returns float
|
|||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration to work with Quaternions
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF Quaternion QuaternionIdentity(void); // Returns identity quaternion
|
||||
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
|
||||
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
|
||||
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
|
||||
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
|
||||
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount); // Calculate linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount); // Calculates spherical linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount); // Calculate slerp-optimized interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to); // Calculate quaternion based on the rotation from one vector to another
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
|
||||
RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
|
||||
RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle); // Returns rotation quaternion for an angle and axis
|
||||
|
@ -991,6 +995,12 @@ RMDEF float *MatrixToFloat(Matrix mat)
|
|||
// Module Functions Definition - Quaternion math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Returns identity quaternion
|
||||
RMDEF Quaternion QuaternionIdentity(void)
|
||||
{
|
||||
return (Quaternion){ 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
}
|
||||
|
||||
// Computes the length of a quaternion
|
||||
RMDEF float QuaternionLength(Quaternion quat)
|
||||
{
|
||||
|
@ -1047,6 +1057,19 @@ RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
Quaternion result;
|
||||
|
||||
result.x = q1.x + amount*(q2.x - q1.x);
|
||||
result.y = q1.y + amount*(q2.y - q1.y);
|
||||
result.z = q1.z + amount*(q2.z - q1.z);
|
||||
result.w = q1.w + amount*(q2.w - q1.w);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculates spherical linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
|
@ -1055,6 +1078,7 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
|||
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
|
||||
|
||||
if (fabs(cosHalfTheta) >= 1.0f) result = q1;
|
||||
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
|
||||
else
|
||||
{
|
||||
float halfTheta = acos(cosHalfTheta);
|
||||
|
@ -1082,6 +1106,35 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Calculate slerp-optimized interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
Quaternion result = QuaternionLerp(q1, q2, amount);
|
||||
QuaternionNormalize(&result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate quaternion based on the rotation from one vector to another
|
||||
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
||||
{
|
||||
Quaternion q = { 0 };
|
||||
|
||||
float cos2Theta = Vector3DotProduct(from, to);
|
||||
Vector3 cross = Vector3CrossProduct(from, to);
|
||||
|
||||
q.x = cross.x;
|
||||
q.y = cross.y;
|
||||
q.z = cross.y;
|
||||
q.w = 1.0f + cos2Theta;
|
||||
|
||||
QuaternionNormalize(&q);
|
||||
|
||||
Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns a quaternion for a given rotation matrix
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
||||
{
|
||||
|
@ -1149,17 +1202,20 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|||
float y2 = y + y;
|
||||
float z2 = z + z;
|
||||
|
||||
float xx = x*x2;
|
||||
float xy = x*y2;
|
||||
float xz = x*z2;
|
||||
float length = QuaternionLength(q);
|
||||
float lenghtSquared = length*length;
|
||||
|
||||
float yy = y*y2;
|
||||
float yz = y*z2;
|
||||
float zz = z*z2;
|
||||
float xx = x*x2/lenghtSquared;
|
||||
float xy = x*y2/lenghtSquared;
|
||||
float xz = x*z2/lenghtSquared;
|
||||
|
||||
float wx = w*x2;
|
||||
float wy = w*y2;
|
||||
float wz = w*z2;
|
||||
float yy = y*y2/lenghtSquared;
|
||||
float yz = y*z2/lenghtSquared;
|
||||
float zz = z*z2/lenghtSquared;
|
||||
|
||||
float wx = w*x2/lenghtSquared;
|
||||
float wy = w*y2/lenghtSquared;
|
||||
float wz = w*z2/lenghtSquared;
|
||||
|
||||
result.m0 = 1.0f - (yy + zz);
|
||||
result.m1 = xy - wz;
|
||||
|
@ -1255,7 +1311,7 @@ RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
|
|||
}
|
||||
|
||||
// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
|
||||
// NOTE: Angles are returned in a Vector3 struct and in degrees
|
||||
// NOTE: Angles are returned in a Vector3 struct in degrees
|
||||
RMDEF Vector3 QuaternionToEuler(Quaternion q)
|
||||
{
|
||||
Vector3 v = { 0 };
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue