From d919d457d396f41a01ff5ea0ea13fa802688be1f Mon Sep 17 00:00:00 2001 From: Bowserinator Date: Mon, 26 Feb 2024 04:41:21 -0500 Subject: [PATCH] Add Vector4 math functions & Vector2 variants of some Vector3 functions (#3828) --- src/raymath.h | 295 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 295 insertions(+) diff --git a/src/raymath.h b/src/raymath.h index 15e403cbb..52c11b21c 100644 --- a/src/raymath.h +++ b/src/raymath.h @@ -431,6 +431,28 @@ RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) return result; } +// Get min value for each pair of components +RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) +{ + Vector2 result = { 0 }; + + result.x = fminf(v1.x, v2.x); + result.y = fminf(v1.y, v2.y); + + return result; +} + +// Get max value for each pair of components +RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) +{ + Vector2 result = { 0 }; + + result.x = fmaxf(v1.x, v2.x); + result.y = fmaxf(v1.y, v2.y); + + return result; +} + // Rotate vector by angle RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) { @@ -524,6 +546,31 @@ RMAPI int Vector2Equals(Vector2 p, Vector2 q) return result; } +// Compute the direction of a refracted ray +// v: normalized direction of the incoming ray +// n: normalized normal vector of the interface of two optical media +// r: ratio of the refractive index of the medium from where the ray comes +// to the refractive index of the medium on the other side of the surface +RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r) +{ + Vector2 result = { 0 }; + + float dot = v.x*n.x + v.y*n.y; + float d = 1.0f - r*r*(1.0f - dot*dot); + + if (d >= 0.0f) + { + d = sqrtf(d); + v.x = r*v.x - (r*dot + d)*n.x; + v.y = r*v.y - (r*dot + d)*n.y; + + result = v; + } + + return result; +} + + //---------------------------------------------------------------------------------- // Module Functions Definition - Vector3 math //---------------------------------------------------------------------------------- @@ -875,6 +922,27 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) return result; } +// Move Vector towards target +RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) +{ + Vector3 result = { 0 }; + + float dx = target.x - v.x; + float dy = target.y - v.y; + float dz = target.z - v.z; + float value = (dx*dx) + (dy*dy) + (dz*dz); + + if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; + + float dist = sqrtf(value); + + result.x = v.x + dx/dist*maxDistance; + result.y = v.y + dy/dist*maxDistance; + result.z = v.z + dz/dist*maxDistance; + + return result; +} + // Calculate linear interpolation between two vectors RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) { @@ -1137,6 +1205,233 @@ RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) return result; } + +//---------------------------------------------------------------------------------- +// Module Functions Definition - Vector4 math +//---------------------------------------------------------------------------------- + +RMAPI Vector4 Vector4Zero(void) +{ + Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f }; + return result; +} + +RMAPI Vector4 Vector4One(void) +{ + Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f }; + return result; +} + +RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2) +{ + Vector4 result = { + v1.x + v2.x, + v1.y + v2.y, + v1.z + v2.z, + v1.w + v2.w + }; + return result; +} + +RMAPI Vector4 Vector4AddValue(Vector4 v, float add) +{ + Vector4 result = { + v.x + add, + v.y + add, + v.z + add, + v.w + add + }; + return result; +} + +RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2) +{ + Vector4 result = { + v1.x - v2.x, + v1.y - v2.y, + v1.z - v2.z, + v1.w - v2.w + }; + return result; +} + +RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add) +{ + Vector4 result = { + v.x - add, + v.y - add, + v.z - add, + v.w - add + }; + return result; +} + +RMAPI float Vector4Length(Vector4 v) +{ + float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); + return result; +} + +RMAPI float Vector4LengthSqr(Vector4 v) +{ + float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w); + return result; +} + +RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2) +{ + float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w); + return result; +} + +// Calculate distance between two vectors +RMAPI float Vector4Distance(Vector4 v1, Vector4 v2) +{ + float result = sqrtf( + (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) + + (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w)); + return result; +} + +// Calculate square distance between two vectors +RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2) +{ + float result = + (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) + + (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w); + + return result; +} + +RMAPI Vector4 Vector4Scale(Vector4 v, float scale) +{ + Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale }; + return result; +} + +// Multiply vector by vector +RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2) +{ + Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w }; + return result; +} + +// Negate vector +RMAPI Vector4 Vector4Negate(Vector4 v) +{ + Vector4 result = { -v.x, -v.y, -v.z, -v.w }; + return result; +} + +// Divide vector by vector +RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2) +{ + Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w }; + return result; +} + +// Normalize provided vector +RMAPI Vector4 Vector4Normalize(Vector4 v) +{ + Vector4 result = { 0 }; + float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); + + if (length > 0) + { + float ilength = 1.0f/length; + result.x = v.x*ilength; + result.y = v.y*ilength; + result.z = v.z*ilength; + result.w = v.w*ilength; + } + + return result; +} + +// Get min value for each pair of components +RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) +{ + Vector4 result = { 0 }; + + result.x = fminf(v1.x, v2.x); + result.y = fminf(v1.y, v2.y); + result.z = fminf(v1.z, v2.z); + result.w = fminf(v1.w, v2.w); + + return result; +} + +// Get max value for each pair of components +RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) +{ + Vector4 result = { 0 }; + + result.x = fmaxf(v1.x, v2.x); + result.y = fmaxf(v1.y, v2.y); + result.z = fmaxf(v1.z, v2.z); + result.w = fmaxf(v1.w, v2.w); + + return result; +} + +// Calculate linear interpolation between two vectors +RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) +{ + Vector4 result = { 0 }; + + result.x = v1.x + amount*(v2.x - v1.x); + result.y = v1.y + amount*(v2.y - v1.y); + result.z = v1.z + amount*(v2.z - v1.z); + result.w = v1.w + amount*(v2.w - v1.w); + + return result; +} + +// Move Vector towards target +RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance) +{ + Vector4 result = { 0 }; + + float dx = target.x - v.x; + float dy = target.y - v.y; + float dz = target.z - v.z; + float dw = target.w - v.w; + float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw); + + if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; + + float dist = sqrtf(value); + + result.x = v.x + dx/dist*maxDistance; + result.y = v.y + dy/dist*maxDistance; + result.z = v.z + dz/dist*maxDistance; + result.w = v.w + dw/dist*maxDistance; + + return result; +} + +// Invert the given vector +RMAPI Vector4 Vector4Invert(Vector4 v) +{ + Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w }; + return result; +} + +// Check whether two given vectors are almost equal +RMAPI int Vector4Equals(Vector4 p, Vector4 q) +{ +#if !defined(EPSILON) + #define EPSILON 0.000001f +#endif + + int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && + ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && + ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && + ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))); + return result; +} + + //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix math //----------------------------------------------------------------------------------