Reviewed function GenImagePerlinNoise()

Added support for noise image offset
This commit is contained in:
Ray 2018-01-17 00:43:30 +01:00
parent dd3b3dbadb
commit c8e97df233
3 changed files with 18 additions and 9 deletions

View file

@ -24,10 +24,10 @@ int main()
Image verticalGradient = GenImageGradientV(screenWidth, screenHeight, RED, BLUE); Image verticalGradient = GenImageGradientV(screenWidth, screenHeight, RED, BLUE);
Image horizontalGradient = GenImageGradientH(screenWidth, screenHeight, RED, BLUE); Image horizontalGradient = GenImageGradientH(screenWidth, screenHeight, RED, BLUE);
Image radialGradient = GenImageGradientRadial(screenWidth, screenHeight, 0.f, WHITE, BLACK); Image radialGradient = GenImageGradientRadial(screenWidth, screenHeight, 0.0f, WHITE, BLACK);
Image checked = GenImageChecked(screenWidth, screenHeight, 32, 32, RED, BLUE); Image checked = GenImageChecked(screenWidth, screenHeight, 32, 32, RED, BLUE);
Image whiteNoise = GenImageWhiteNoise(screenWidth, screenHeight, 0.5f); Image whiteNoise = GenImageWhiteNoise(screenWidth, screenHeight, 0.5f);
Image perlinNoise = GenImagePerlinNoise(screenWidth, screenHeight, 8.f); Image perlinNoise = GenImagePerlinNoise(screenWidth, screenHeight, 50, 50, 4.0f);
Image cellular = GenImageCellular(screenWidth, screenHeight, 32); Image cellular = GenImageCellular(screenWidth, screenHeight, 32);
Texture2D textures[NUM_TEXTURES]; Texture2D textures[NUM_TEXTURES];

View file

@ -908,7 +908,7 @@ RLAPI Image GenImageGradientH(int width, int height, Color left, Color right);
RLAPI Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer); // Generate image: radial gradient RLAPI Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer); // Generate image: radial gradient
RLAPI Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2); // Generate image: checked RLAPI Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2); // Generate image: checked
RLAPI Image GenImageWhiteNoise(int width, int height, float factor); // Generate image: white noise RLAPI Image GenImageWhiteNoise(int width, int height, float factor); // Generate image: white noise
RLAPI Image GenImagePerlinNoise(int width, int height, float scale); // Generate image: perlin noise RLAPI Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale); // Generate image: perlin noise
RLAPI Image GenImageCellular(int width, int height, int tileSize); // Generate image: cellular algorithm. Bigger tileSize means bigger cells RLAPI Image GenImageCellular(int width, int height, int tileSize); // Generate image: cellular algorithm. Bigger tileSize means bigger cells
// Texture2D configuration functions // Texture2D configuration functions

View file

@ -611,6 +611,8 @@ Image ImageCopy(Image image)
newImage.height = image.height; newImage.height = image.height;
newImage.mipmaps = image.mipmaps; newImage.mipmaps = image.mipmaps;
newImage.format = image.format; newImage.format = image.format;
//if (image.mipmaps > 1) ImageMipmaps(&newImage);
} }
return newImage; return newImage;
@ -823,6 +825,8 @@ void ImageFormat(Image *image, int newFormat)
} }
free(pixels); free(pixels);
//if (image->mipmaps > 1) ImageMipmaps(image);
} }
else TraceLog(LOG_WARNING, "Image data format is compressed, can not be converted"); else TraceLog(LOG_WARNING, "Image data format is compressed, can not be converted");
} }
@ -1688,7 +1692,7 @@ Image GenImageWhiteNoise(int width, int height, float factor)
} }
// Generate image: perlin noise // Generate image: perlin noise
Image GenImagePerlinNoise(int width, int height, float scale) Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale)
{ {
Color *pixels = (Color *)malloc(width*height*sizeof(Color)); Color *pixels = (Color *)malloc(width*height*sizeof(Color));
@ -1696,13 +1700,18 @@ Image GenImagePerlinNoise(int width, int height, float scale)
{ {
for (int x = 0; x < width; x++) for (int x = 0; x < width; x++)
{ {
float nx = (float)x*scale/(float)width; float nx = (float)(x + offsetX)*scale/(float)width;
float ny = (float)y*scale/(float)height; float ny = (float)(y + offsetY)*scale/(float)height;
// we need to translate the data from [-1; 1] to [0; 1] // Typical values to start playing with:
float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6, 0, 0, 0) + 1.0f) / 2.0f; // lacunarity = ~2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output)
// gain = 0.5 -- relative weighting applied to each successive octave
// octaves = 6 -- number of "octaves" of noise3() to sum
int intensity = (int)(p * 255.0f); // NOTE: We need to translate the data from [-1..1] to [0..1]
float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6, 0, 0, 0) + 1.0f)/2.0f;
int intensity = (int)(p*255.0f);
pixels[y*width + x] = (Color){intensity, intensity, intensity, 255}; pixels[y*width + x] = (Color){intensity, intensity, intensity, 255};
} }
} }