Fix the Julia set shader example (#3467)

* Simplify POI selection

* Improve mouse logic

* Add colour cycles to the shader to show finer details. Works well with high iteration numbers

* Testing things...

* Actually fix zoom. Also allow user to reset camera with 'R'

* Reset max iterations

* Tidying & comments

* Revert to original if statement

* Make mouse logic more readable

* Style conventions

* Coding conventions - f postifx on floating points

* Missed a few f postfixes
This commit is contained in:
Josh Colclough 2023-10-29 15:41:02 +00:00 committed by GitHub
parent b4865588f8
commit 975d4154e6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 89 additions and 79 deletions

View file

@ -6,30 +6,30 @@ precision mediump float;
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec2 screenDims; // Dimensions of the screen
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
uniform vec2 offset; // Offset of the scale.
uniform float zoom; // Zoom of the scale.
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
// for example, on RasperryPi for this examply only supports up to 60
const int MAX_ITERATIONS = 48; // Max iterations to do
const int maxIterations = 48; // Max iterations to do.
const float colorCycles = 1.0f; // Number of times the color palette repeats.
// Square a complex number
vec2 ComplexSquare(vec2 z)
{
return vec2(
z.x * z.x - z.y * z.y,
z.x * z.y * 2.0
z.x*z.x - z.y*z.y,
z.x*z.y*2.0f
);
}
// Convert Hue Saturation Value (HSV) color into RGB
vec3 Hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
vec4 K = vec4(1.0f, 2.0f/3.0f, 1.0f/3.0f, 3.0f);
vec3 p = abs(fract(c.xxx + K.xyz)*6.0f - K.www);
return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0f, 1.0f), c.y);
}
void main()
@ -45,8 +45,8 @@ void main()
If the number is below 2, we keep iterating.
But when do we stop iterating if the number is always below 2 (it converges)?
That is what MAX_ITERATIONS is for.
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
That is what maxIterations is for.
Then we can divide the iterations by the maxIterations value to get a normalized value that we can
then map to a color.
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
@ -55,13 +55,15 @@ void main()
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 z = vec2((fragTexCoord.x + offset.x/screenDims.x)*2.5/zoom, (fragTexCoord.y + offset.y/screenDims.y)*1.5/zoom);
vec2 z = vec2((fragTexCoord.x - 0.5f)*2.5f, (fragTexCoord.y - 0.5f)*1.5f)/zoom;
z.x += offset.x;
z.y += offset.y;
int iter = 0;
for (int iterations = 0; iterations < 60; iterations++)
{
z = ComplexSquare(z) + c; // Iterate function
if (dot(z, z) > 4.0) break;
if (dot(z, z) > 4.0f) break;
iter = iterations;
}
@ -72,12 +74,12 @@ void main()
z = ComplexSquare(z) + c;
// This last part smooths the color (again see link above).
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
float smoothVal = float(iter) + 1.0f - (log(log(length(z)))/log(2.0f));
// Normalize the value so it is between 0 and 1.
float norm = smoothVal/float(MAX_ITERATIONS);
float norm = smoothVal/float(maxIterations);
// If in set, color black. 0.999 allows for some float accuracy error.
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
else gl_FragColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
if (norm > 0.999f) gl_FragColor = vec4(0.0f, 0.0f, 0.0f, 1.0f);
else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0f, 1.0f)), 1.0f);
}

View file

@ -7,28 +7,28 @@ in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
uniform vec2 screenDims; // Dimensions of the screen
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
uniform vec2 offset; // Offset of the scale.
uniform float zoom; // Zoom of the scale.
const int MAX_ITERATIONS = 255; // Max iterations to do.
const int maxIterations = 255; // Max iterations to do.
const float colorCycles = 2.0f; // Number of times the color palette repeats. Can show higher detail for higher iteration numbers.
// Square a complex number
vec2 ComplexSquare(vec2 z)
{
return vec2(
z.x * z.x - z.y * z.y,
z.x * z.y * 2.0
z.x*z.x - z.y*z.y,
z.x*z.y*2.0f
);
}
// Convert Hue Saturation Value (HSV) color into RGB
vec3 Hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
vec4 K = vec4(1.0f, 2.0f/3.0f, 1.0f/3.0f, 3.0f);
vec3 p = abs(fract(c.xxx + K.xyz)*6.0f - K.www);
return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0f, 1.0f), c.y);
}
void main()
@ -44,8 +44,8 @@ void main()
If the number is below 2, we keep iterating.
But when do we stop iterating if the number is always below 2 (it converges)?
That is what MAX_ITERATIONS is for.
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
That is what maxIterations is for.
Then we can divide the iterations by the maxIterations value to get a normalized value that we can
then map to a color.
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
@ -54,14 +54,16 @@ void main()
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 z = vec2((fragTexCoord.x + offset.x/screenDims.x)*2.5/zoom, (fragTexCoord.y + offset.y/screenDims.y)*1.5/zoom);
vec2 z = vec2((fragTexCoord.x - 0.5f)*2.5f, (fragTexCoord.y - 0.5f)*1.5f)/zoom;
z.x += offset.x;
z.y += offset.y;
int iterations = 0;
for (iterations = 0; iterations < MAX_ITERATIONS; iterations++)
for (iterations = 0; iterations < maxIterations; iterations++)
{
z = ComplexSquare(z) + c; // Iterate function
if (dot(z, z) > 4.0) break;
if (dot(z, z) > 4.0f) break;
}
// Another few iterations decreases errors in the smoothing calculation.
@ -70,12 +72,12 @@ void main()
z = ComplexSquare(z) + c;
// This last part smooths the color (again see link above).
float smoothVal = float(iterations) + 1.0 - (log(log(length(z)))/log(2.0));
float smoothVal = float(iterations) + 1.0f - (log(log(length(z)))/log(2.0f));
// Normalize the value so it is between 0 and 1.
float norm = smoothVal/float(MAX_ITERATIONS);
float norm = smoothVal/float(maxIterations);
// If in set, color black. 0.999 allows for some float accuracy error.
if (norm > 0.999) finalColor = vec4(0.0, 0.0, 0.0, 1.0);
else finalColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
if (norm > 0.999f) finalColor = vec4(0.0f, 0.0f, 0.0f, 1.0f);
else finalColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0f, 1.0f)), 1.0f);
}