BIG UPDATE: New models functions for animations!

Multiple functions added and some reviewed to adapt to the new multi-mesh, multi-material and animated models.
This commit is contained in:
Ray 2019-04-05 13:15:56 +02:00
parent 38a13b76d1
commit 92733d6695
8 changed files with 547 additions and 936 deletions

View file

@ -697,6 +697,18 @@ void UnloadModel(Model model)
TraceLog(LOG_INFO, "Unloaded model data from RAM and VRAM");
}
// Load meshes from model file
Mesh *LoadMeshes(const char *fileName, int *meshCount)
{
Mesh *meshes = NULL;
int count = 0;
// TODO: Load meshes from file (OBJ, IQM, GLTF)
*meshCount = count;
return meshes;
}
// Unload mesh from memory (RAM and/or VRAM)
void UnloadMesh(Mesh *mesh)
{
@ -759,6 +771,386 @@ void ExportMesh(Mesh mesh, const char *fileName)
else TraceLog(LOG_WARNING, "Mesh could not be exported.");
}
// Load materials from model file
Material *LoadMaterials(const char *fileName, int *materialCount)
{
Material *materials = NULL;
unsigned int count = 0;
// TODO: Support IQM and GLTF for materials parsing
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl"))
{
tinyobj_material_t *mats;
int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
// TODO: Process materials to return
tinyobj_materials_free(mats, count);
}
#else
TraceLog(LOG_WARNING, "[%s] Materials file not supported", fileName);
#endif
// Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
for (int i = 0; i < count; i++) materials[i].shader = GetShaderDefault();
*materialCount = count;
return materials;
}
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
Material LoadMaterialDefault(void)
{
Material material = { 0 };
material.shader = GetShaderDefault();
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
//material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
//material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
material.maps[MAP_SPECULAR].color = WHITE; // Specular color
return material;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
// Unload material shader (avoid unloading default shader, managed by raylib)
if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
}
}
// Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
// NOTE: Previous texture should be manually unloaded
void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
{
material->maps[mapType].texture = texture;
}
// Set the material for a mesh
void SetModelMeshMaterial(Model *model, int meshId, int materialId)
{
if (meshId >= model->meshCount) TraceLog(LOG_WARNING, "Mesh id greater than mesh count");
else if (materialId >= model->materialCount) TraceLog(LOG_WARNING,"Material id greater than material count");
else model->meshMaterial[meshId] = materialId;
}
// Load model animations from file
ModelAnimation *LoadModelAnimations(const char *filename, int *animCount)
{
ModelAnimation *animations = (ModelAnimation *)malloc(1*sizeof(ModelAnimation));
int count = 1;
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int filesize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
ModelAnimation animation = { 0 };
FILE *iqmFile;
IQMHeader iqm;
iqmFile = fopen(filename,"rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
}
// header
fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
}
if (iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
}
// header
if (iqm.num_anims > 1) TraceLog(LOG_WARNING, "More than 1 animation in file, only the first one will be loaded");
// bones
IQMPose *poses;
poses = malloc(sizeof(IQMPose)*iqm.num_poses);
fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
fread(poses, sizeof(IQMPose)*iqm.num_poses, 1, iqmFile);
animation.boneCount = iqm.num_poses;
animation.bones = malloc(sizeof(BoneInfo)*iqm.num_poses);
for (int j = 0; j < iqm.num_poses; j++)
{
strcpy(animation.bones[j].name, "ANIMJOINTNAME");
animation.bones[j].parent = poses[j].parent;
}
// animations
IQMAnim anim = {0};
fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
fread(&anim, sizeof(IQMAnim), 1, iqmFile);
animation.frameCount = anim.num_frames;
//animation.framerate = anim.framerate;
// frameposes
unsigned short *framedata = malloc(sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels);
fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
fread(framedata, sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels, 1, iqmFile);
animation.framePoses = malloc(sizeof(Transform*)*anim.num_frames);
for (int j = 0; j < anim.num_frames; j++) animation.framePoses[j] = malloc(sizeof(Transform)*iqm.num_poses);
int dcounter = anim.first_frame*iqm.num_framechannels;
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < iqm.num_poses; i++)
{
animation.framePoses[frame][i].translation.x = poses[i].channeloffset[0];
if (poses[i].mask & 0x01)
{
animation.framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
dcounter++;
}
animation.framePoses[frame][i].translation.y = poses[i].channeloffset[1];
if (poses[i].mask & 0x02)
{
animation.framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
dcounter++;
}
animation.framePoses[frame][i].translation.z = poses[i].channeloffset[2];
if (poses[i].mask & 0x04)
{
animation.framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
dcounter++;
}
animation.framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
if (poses[i].mask & 0x08)
{
animation.framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
dcounter++;
}
animation.framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
if (poses[i].mask & 0x10)
{
animation.framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
dcounter++;
}
animation.framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
if (poses[i].mask & 0x20)
{
animation.framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
dcounter++;
}
animation.framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
if (poses[i].mask & 0x40)
{
animation.framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
dcounter++;
}
animation.framePoses[frame][i].scale.x = poses[i].channeloffset[7];
if (poses[i].mask & 0x80)
{
animation.framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
dcounter++;
}
animation.framePoses[frame][i].scale.y = poses[i].channeloffset[8];
if (poses[i].mask & 0x100)
{
animation.framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
dcounter++;
}
animation.framePoses[frame][i].scale.z = poses[i].channeloffset[9];
if (poses[i].mask & 0x200)
{
animation.framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
dcounter++;
}
animation.framePoses[frame][i].rotation = QuaternionNormalize(animation.framePoses[frame][i].rotation);
}
}
// Build frameposes
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < animation.boneCount; i++)
{
if (animation.bones[i].parent >= 0)
{
animation.framePoses[frame][i].rotation = QuaternionMultiply(animation.framePoses[frame][animation.bones[i].parent].rotation, animation.framePoses[frame][i].rotation);
animation.framePoses[frame][i].translation = Vector3RotateByQuaternion(animation.framePoses[frame][i].translation, animation.framePoses[frame][animation.bones[i].parent].rotation);
animation.framePoses[frame][i].translation = Vector3Add(animation.framePoses[frame][i].translation, animation.framePoses[frame][animation.bones[i].parent].translation);
animation.framePoses[frame][i].scale = Vector3MultiplyV(animation.framePoses[frame][i].scale, animation.framePoses[frame][animation.bones[i].parent].scale);
}
}
}
free(framedata);
free(poses);
fclose(iqmFile);
animations[0] = animation;
*animCount = count;
return animations;
}
// Update model animated vertex data (positions and normals) for a given frame
// NOTE: Updated data is uploaded to GPU
void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
{
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
for (int m = 0; m < model.meshCount; m++)
{
Vector3 animVertex = { 0 };
Vector3 animNormal = { 0 };
Vector3 inTranslation = { 0 };
Quaternion inRotation = { 0 };
Vector3 inScale = { 0 };
Vector3 outTranslation = { 0 };
Quaternion outRotation = { 0 };
Vector3 outScale = { 0 };
int vCounter = 0;
int boneCounter = 0;
int boneId = 0;
for (int i = 0; i < model.meshes[m].vertexCount; i++)
{
boneId = model.meshes[m].boneIds[boneCounter];
inTranslation = model.bindPose[boneId].translation;
inRotation = model.bindPose[boneId].rotation;
inScale = model.bindPose[boneId].scale;
outTranslation = anim.framePoses[frame][boneId].translation;
outRotation = anim.framePoses[frame][boneId].rotation;
outScale = anim.framePoses[frame][boneId].scale;
// Vertices processing
// NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
animVertex = Vector3MultiplyV(animVertex, outScale);
animVertex = Vector3Subtract(animVertex, inTranslation);
animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
animVertex = Vector3Add(animVertex, outTranslation);
model.meshes[m].animVertices[vCounter] = animVertex.x;
model.meshes[m].animVertices[vCounter + 1] = animVertex.y;
model.meshes[m].animVertices[vCounter + 2] = animVertex.z;
// Normals processing
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
model.meshes[m].animNormals[vCounter] = animNormal.x;
model.meshes[m].animNormals[vCounter + 1] = animNormal.y;
model.meshes[m].animNormals[vCounter + 2] = animNormal.z;
vCounter += 3;
boneCounter += 4;
}
// Upload new vertex data to GPU for model drawing
rlUpdateBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex position
rlUpdateBuffer(model.meshes[m].vboId[2], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex normals
}
}
// Unload animation data
void UnloadModelAnimation(ModelAnimation anim)
{
for (int i = 0; i < anim.frameCount; i++) free(anim.framePoses[i]);
free(anim.bones);
free(anim.framePoses);
}
// Check model animation skeleton match
// NOTE: Only number of bones and parent connections are checked
bool IsModelAnimationValid(Model model, ModelAnimation anim)
{
int result = true;
if (model.boneCount != anim.boneCount) result = false;
else
{
for (int i = 0; i < model.boneCount; i++)
{
if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
}
}
return result;
}
#if defined(SUPPORT_MESH_GENERATION)
// Generate polygonal mesh
Mesh GenMeshPoly(int sides, float radius)
@ -1807,59 +2199,124 @@ Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
}
#endif // SUPPORT_MESH_GENERATION
// Load material data (from file)
Material LoadMaterial(const char *fileName)
// Compute mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
BoundingBox MeshBoundingBox(Mesh mesh)
{
Material material = { 0 };
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl"))
if (mesh.vertices != NULL)
{
tinyobj_material_t *materials;
unsigned int materialCount = 0;
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
int result = tinyobj_parse_mtl_file(&materials, &materialCount, fileName);
// TODO: Process materials to return
tinyobj_materials_free(materials, materialCount);
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
#else
TraceLog(LOG_WARNING, "[%s] Material fileformat not supported, it can't be loaded", fileName);
#endif
// Our material uses the default shader (DIFFUSE, SPECULAR, NORMAL)
material.shader = GetShaderDefault();
// Create the bounding box
BoundingBox box = { 0 };
box.min = minVertex;
box.max = maxVertex;
return material;
return box;
}
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
Material LoadMaterialDefault(void)
// Compute mesh tangents
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
void MeshTangents(Mesh *mesh)
{
Material material = { 0 };
if (mesh->tangents == NULL) mesh->tangents = (float *)malloc(mesh->vertexCount*4*sizeof(float));
else TraceLog(LOG_WARNING, "Mesh tangents already exist");
material.shader = GetShaderDefault();
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
//material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
//material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
Vector3 *tan1 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
Vector3 *tan2 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
material.maps[MAP_SPECULAR].color = WHITE; // Specular color
return material;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
// Unload material shader (avoid unloading default shader, managed by raylib)
if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
for (int i = 0; i < mesh->vertexCount; i += 3)
{
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
// Get triangle vertices
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
// Get triangle texcoords
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
float x1 = v2.x - v1.x;
float y1 = v2.y - v1.y;
float z1 = v2.z - v1.z;
float x2 = v3.x - v1.x;
float y2 = v3.y - v1.y;
float z2 = v3.z - v1.z;
float s1 = uv2.x - uv1.x;
float t1 = uv2.y - uv1.y;
float s2 = uv3.x - uv1.x;
float t2 = uv3.y - uv1.y;
float div = s1*t2 - s2*t1;
float r = (div == 0.0f)? 0.0f : 1.0f/div;
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
tan1[i + 0] = sdir;
tan1[i + 1] = sdir;
tan1[i + 2] = sdir;
tan2[i + 0] = tdir;
tan2[i + 1] = tdir;
tan2[i + 2] = tdir;
}
// Compute tangents considering normals
for (int i = 0; i < mesh->vertexCount; ++i)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = tan1[i];
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
#if defined(COMPUTE_TANGENTS_METHOD_01)
Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
tmp = Vector3Normalize(tmp);
mesh->tangents[i*4 + 0] = tmp.x;
mesh->tangents[i*4 + 1] = tmp.y;
mesh->tangents[i*4 + 2] = tmp.z;
mesh->tangents[i*4 + 3] = 1.0f;
#else
Vector3OrthoNormalize(&normal, &tangent);
mesh->tangents[i*4 + 0] = tangent.x;
mesh->tangents[i*4 + 1] = tangent.y;
mesh->tangents[i*4 + 2] = tangent.z;
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
#endif
}
free(tan1);
free(tan2);
TraceLog(LOG_INFO, "Tangents computed for mesh");
}
// Compute mesh binormals (aka bitangent)
void MeshBinormals(Mesh *mesh)
{
for (int i = 0; i < mesh->vertexCount; i++)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
float tangentW = mesh->tangents[i*4 + 3];
// TODO: Register computed binormal in mesh->binormal?
// Vector3 binormal = Vector3Multiply(Vector3CrossProduct(normal, tangent), tangentW);
}
}
@ -2239,129 +2696,6 @@ RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
return result;
}
// Compute mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
BoundingBox MeshBoundingBox(Mesh mesh)
{
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
printf("Mesh vertex count: %i\n", mesh.vertexCount);
if (mesh.vertices != NULL)
{
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
// Create the bounding box
BoundingBox box = { 0 };
box.min = minVertex;
box.max = maxVertex;
return box;
}
// Compute mesh tangents
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
void MeshTangents(Mesh *mesh)
{
if (mesh->tangents == NULL) mesh->tangents = (float *)malloc(mesh->vertexCount*4*sizeof(float));
else TraceLog(LOG_WARNING, "Mesh tangents already exist");
Vector3 *tan1 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
Vector3 *tan2 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
for (int i = 0; i < mesh->vertexCount; i += 3)
{
// Get triangle vertices
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
// Get triangle texcoords
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
float x1 = v2.x - v1.x;
float y1 = v2.y - v1.y;
float z1 = v2.z - v1.z;
float x2 = v3.x - v1.x;
float y2 = v3.y - v1.y;
float z2 = v3.z - v1.z;
float s1 = uv2.x - uv1.x;
float t1 = uv2.y - uv1.y;
float s2 = uv3.x - uv1.x;
float t2 = uv3.y - uv1.y;
float div = s1*t2 - s2*t1;
float r = (div == 0.0f)? 0.0f : 1.0f/div;
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
tan1[i + 0] = sdir;
tan1[i + 1] = sdir;
tan1[i + 2] = sdir;
tan2[i + 0] = tdir;
tan2[i + 1] = tdir;
tan2[i + 2] = tdir;
}
// Compute tangents considering normals
for (int i = 0; i < mesh->vertexCount; ++i)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = tan1[i];
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
#if defined(COMPUTE_TANGENTS_METHOD_01)
Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
tmp = Vector3Normalize(tmp);
mesh->tangents[i*4 + 0] = tmp.x;
mesh->tangents[i*4 + 1] = tmp.y;
mesh->tangents[i*4 + 2] = tmp.z;
mesh->tangents[i*4 + 3] = 1.0f;
#else
Vector3OrthoNormalize(&normal, &tangent);
mesh->tangents[i*4 + 0] = tangent.x;
mesh->tangents[i*4 + 1] = tangent.y;
mesh->tangents[i*4 + 2] = tangent.z;
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
#endif
}
free(tan1);
free(tan2);
TraceLog(LOG_INFO, "Tangents computed for mesh");
}
// Compute mesh binormals (aka bitangent)
void MeshBinormals(Mesh *mesh)
{
for (int i = 0; i < mesh->vertexCount; i++)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
float tangentW = mesh->tangents[i*4 + 3];
// TODO: Register computed binormal in mesh->binormal?
// Vector3 binormal = Vector3Multiply(Vector3CrossProduct(normal, tangent), tangentW);
}
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------