physac module redesign (2/3)
physac module base almost finished. All collisions are now resolved properly and some force functions was added. COLLIDER_CAPSULE removed for now because in 2D everything is composed by rectangle and circle colliders... The last step is move physics update loop into another thread and update it in a fixed time step based on fps.
This commit is contained in:
parent
d728494099
commit
7128ef686d
2 changed files with 378 additions and 139 deletions
508
src/physac.c
508
src/physac.c
|
@ -36,10 +36,9 @@
|
|||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
#define MAX_PHYSIC_OBJECTS 256
|
||||
#define PHYSICS_GRAVITY -9.81f/2
|
||||
#define PHYSICS_STEPS 450
|
||||
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
|
||||
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
|
||||
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
|
||||
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Types and Structures Definition
|
||||
|
@ -52,53 +51,70 @@
|
|||
//----------------------------------------------------------------------------------
|
||||
static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
|
||||
static int physicObjectsCount; // Counts current enabled physic objects
|
||||
static Vector2 gravityForce; // Gravity force
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
|
||||
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Initializes pointers array (just pointers, fixed size)
|
||||
void InitPhysics()
|
||||
void InitPhysics(Vector2 gravity)
|
||||
{
|
||||
// Initialize physics variables
|
||||
physicObjectsCount = 0;
|
||||
gravityForce = gravity;
|
||||
}
|
||||
|
||||
// Update physic objects, calculating physic behaviours and collisions detection
|
||||
void UpdatePhysics()
|
||||
{
|
||||
// Reset all physic objects is grounded state
|
||||
for(int i = 0; i < physicObjectsCount; i++)
|
||||
for (int i = 0; i < physicObjectsCount; i++)
|
||||
{
|
||||
if(physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
|
||||
if (physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
|
||||
}
|
||||
|
||||
for(int steps = 0; steps < PHYSICS_STEPS; steps++)
|
||||
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
|
||||
{
|
||||
for(int i = 0; i < physicObjectsCount; i++)
|
||||
for (int i = 0; i < physicObjectsCount; i++)
|
||||
{
|
||||
if(physicObjects[i]->enabled)
|
||||
if (physicObjects[i]->enabled)
|
||||
{
|
||||
// Update physic behaviour
|
||||
if(physicObjects[i]->rigidbody.enabled)
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Apply friction to acceleration in X axis
|
||||
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
|
||||
|
||||
// Apply friction to acceleration in Y axis
|
||||
if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
|
||||
|
||||
// Apply friction to velocity in X axis
|
||||
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
|
||||
|
||||
// Apply friction to velocity in Y axis
|
||||
if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.velocity.y = 0.0f;
|
||||
|
||||
// Apply gravity to velocity
|
||||
if (physicObjects[i]->rigidbody.applyGravity) physicObjects[i]->rigidbody.velocity.y += PHYSICS_GRAVITY/PHYSICS_STEPS;
|
||||
if (physicObjects[i]->rigidbody.applyGravity)
|
||||
{
|
||||
physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
|
||||
physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
|
||||
}
|
||||
|
||||
// Apply acceleration to velocity
|
||||
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
|
||||
|
@ -120,142 +136,314 @@ void UpdatePhysics()
|
|||
{
|
||||
if (physicObjects[k]->collider.enabled && i != k)
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
|
||||
{
|
||||
// Resolve physic collision
|
||||
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
|
||||
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
|
||||
|
||||
// 1. Calculate collision normal
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Define collision ontact normal
|
||||
Vector2 contactNormal = { 0.0f, 0.0f };
|
||||
|
||||
// Calculate direction vector from i to k
|
||||
Vector2 direction;
|
||||
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
|
||||
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
|
||||
|
||||
// Define overlapping and penetration attributes
|
||||
Vector2 overlap;
|
||||
float penetrationDepth = 0.0f;
|
||||
|
||||
// Calculate overlap on X axis
|
||||
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
|
||||
|
||||
// SAT test on X axis
|
||||
if (overlap.x > 0.0f)
|
||||
{
|
||||
// Calculate overlap on Y axis
|
||||
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
|
||||
|
||||
// SAT test on Y axis
|
||||
if (overlap.y > 0.0f)
|
||||
{
|
||||
// Find out which axis is axis of least penetration
|
||||
if (overlap.y > overlap.x)
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
else contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update rigidbody grounded state
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
|
||||
}
|
||||
|
||||
// 2. Calculate collision impulse
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate relative velocity
|
||||
Vector2 relVelocity = { physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x, physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y };
|
||||
|
||||
// Calculate relative velocity in terms of the normal direction
|
||||
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
|
||||
// Resolve physic collision
|
||||
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
|
||||
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
|
||||
|
||||
// Dot not resolve if velocities are separating
|
||||
if (velAlongNormal <= 0.0f)
|
||||
// 1. Calculate collision normal
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Define collision contact normal, direction and penetration depth
|
||||
Vector2 contactNormal = { 0.0f, 0.0f };
|
||||
Vector2 direction = { 0.0f, 0.0f };
|
||||
float penetrationDepth = 0.0f;
|
||||
|
||||
switch(physicObjects[i]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
// Calculate minimum bounciness value from both objects
|
||||
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
|
||||
|
||||
// Calculate impulse scalar value
|
||||
float j = -(1.0f + e) * velAlongNormal;
|
||||
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
|
||||
|
||||
// Calculate final impulse vector
|
||||
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
|
||||
|
||||
// Calculate collision mass ration
|
||||
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
|
||||
float ratio = 0.0f;
|
||||
|
||||
// Apply impulse to current rigidbodies velocities if they are enabled
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
switch(physicObjects[k]->collider.type)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[i]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio;
|
||||
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio;
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector from i to k
|
||||
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
|
||||
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
|
||||
|
||||
// Define overlapping and penetration attributes
|
||||
Vector2 overlap;
|
||||
|
||||
// Calculate overlap on X axis
|
||||
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
|
||||
|
||||
// SAT test on X axis
|
||||
if (overlap.x > 0.0f)
|
||||
{
|
||||
// Calculate overlap on Y axis
|
||||
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
|
||||
|
||||
// SAT test on Y axis
|
||||
if (overlap.y > 0.0f)
|
||||
{
|
||||
// Find out which axis is axis of least penetration
|
||||
if (overlap.y > overlap.x)
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
else contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
|
||||
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
|
||||
else closestPoint.x = physicObjects[i]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
|
||||
else closestPoint.y = physicObjects[i]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicObjects[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
}
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
switch(physicObjects[k]->collider.type)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[k]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio;
|
||||
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio;
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
|
||||
direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
|
||||
else closestPoint.x = physicObjects[k]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
|
||||
else closestPoint.y = physicObjects[k]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicObjects[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal and penetration depth
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
|
||||
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
|
||||
|
||||
// Calculate distance between circles
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Check if circles are not completely overlapped
|
||||
if (distance != 0.0f)
|
||||
{
|
||||
// Calculate contact normal direction (Y axis needs to be flipped)
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
}
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
|
||||
// Update rigidbody grounded state
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
|
||||
}
|
||||
|
||||
// 2. Calculate collision impulse
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate relative velocity
|
||||
Vector2 relVelocity = { 0.0f, 0.0f };
|
||||
relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
|
||||
relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
|
||||
|
||||
// Calculate relative velocity in terms of the normal direction
|
||||
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
|
||||
|
||||
// Dot not resolve if velocities are separating
|
||||
if (velAlongNormal <= 0.0f)
|
||||
{
|
||||
// Calculate minimum bounciness value from both objects
|
||||
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
|
||||
|
||||
// Calculate impulse scalar value
|
||||
float j = -(1.0f + e)*velAlongNormal;
|
||||
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
|
||||
|
||||
// Calculate final impulse vector
|
||||
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
|
||||
|
||||
// Calculate collision mass ration
|
||||
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
|
||||
float ratio = 0.0f;
|
||||
|
||||
// Apply impulse to current rigidbodies velocities if they are enabled
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[i]->rigidbody.mass/massSum;
|
||||
|
||||
// 3. Correct colliders overlaping (transform position)
|
||||
// ---------------------------------------------------------------------------------------------------------------------------------
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[k]->rigidbody.mass/massSum;
|
||||
|
||||
// Calculate transform position penetration correction
|
||||
Vector2 posCorrection;
|
||||
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
|
||||
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
// 3. Correct colliders overlaping (transform position)
|
||||
// ---------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate transform position penetration correction
|
||||
Vector2 posCorrection;
|
||||
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
|
||||
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
|
||||
|
||||
// Fix transform positions
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Fix transform positions
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Update collider bounds
|
||||
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
|
||||
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
|
||||
}
|
||||
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -298,7 +486,7 @@ PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale
|
|||
obj->rigidbody.friction = 0.0f;
|
||||
obj->rigidbody.bounciness = 0.0f;
|
||||
|
||||
obj->collider.enabled = false;
|
||||
obj->collider.enabled = true;
|
||||
obj->collider.type = COLLIDER_RECTANGLE;
|
||||
obj->collider.bounds = TransformToRectangle(obj->transform);
|
||||
obj->collider.radius = 0.0f;
|
||||
|
@ -334,6 +522,45 @@ void DestroyPhysicObject(PhysicObject *pObj)
|
|||
physicObjectsCount--;
|
||||
}
|
||||
|
||||
// Apply directional force to a physic object
|
||||
void ApplyForce(PhysicObject *pObj, Vector2 force)
|
||||
{
|
||||
if (pObj->rigidbody.enabled)
|
||||
{
|
||||
pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
|
||||
pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply radial force to all physic objects in range
|
||||
void ApplyForceAtPosition(Vector2 position, float force, float radius)
|
||||
{
|
||||
for(int i = 0; i < physicObjectsCount; i++)
|
||||
{
|
||||
// Calculate direction and distance between force and physic object pposition
|
||||
Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
|
||||
|
||||
if(physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
|
||||
{
|
||||
distance.x += physicObjects[i]->transform.scale.x/2;
|
||||
distance.y += physicObjects[i]->transform.scale.y/2;
|
||||
}
|
||||
|
||||
float distanceLength = Vector2Length(distance);
|
||||
|
||||
// Check if physic object is in force range
|
||||
if(distanceLength <= radius)
|
||||
{
|
||||
// Normalize force direction
|
||||
distance.x /= distanceLength;
|
||||
distance.y /= -distanceLength;
|
||||
|
||||
// Apply force to the physic object
|
||||
ApplyForce(physicObjects[i], (Vector2){ distance.x*force, distance.y*force });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Transform data type to Rectangle (position and scale)
|
||||
Rectangle TransformToRectangle(Transform transform)
|
||||
{
|
||||
|
@ -369,3 +596,12 @@ static float Vector2DotProduct(Vector2 v1, Vector2 v2)
|
|||
|
||||
return result;
|
||||
}
|
||||
|
||||
static float Vector2Length(Vector2 v)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = sqrt(v.x*v.x + v.y*v.y);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -40,7 +40,7 @@ typedef struct Vector2 {
|
|||
float y;
|
||||
} Vector2;
|
||||
|
||||
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
|
||||
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
|
||||
|
||||
typedef struct Transform {
|
||||
Vector2 position;
|
||||
|
@ -56,7 +56,7 @@ typedef struct Rigidbody {
|
|||
bool applyGravity;
|
||||
bool isGrounded;
|
||||
float friction; // Normalized value
|
||||
float bounciness; // Normalized value
|
||||
float bounciness;
|
||||
} Rigidbody;
|
||||
|
||||
typedef struct Collider {
|
||||
|
@ -81,13 +81,16 @@ extern "C" { // Prevents name mangling of functions
|
|||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
void InitPhysics(); // Initializes pointers array (just pointers, fixed size)
|
||||
void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
|
||||
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
|
||||
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
|
||||
|
||||
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
|
||||
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
|
||||
|
||||
void ApplyForce(PhysicObject *pObj, Vector2 force); // Apply directional force to a physic object
|
||||
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
|
||||
|
||||
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
|
||||
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue