Re-enable QOI support (#2236)

* Updated QOI to latest version.

* Enable back QOI support!

* Stray extra space! Should be good now.
This commit is contained in:
Uneven Prankster 2021-12-21 10:42:27 -03:00 committed by GitHub
parent 22d0baa896
commit 588de4d095
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 324 additions and 231 deletions

View file

@ -153,7 +153,7 @@
//#define SUPPORT_FILEFORMAT_TGA 1 //#define SUPPORT_FILEFORMAT_TGA 1
//#define SUPPORT_FILEFORMAT_JPG 1 //#define SUPPORT_FILEFORMAT_JPG 1
#define SUPPORT_FILEFORMAT_GIF 1 #define SUPPORT_FILEFORMAT_GIF 1
//#define SUPPORT_FILEFORMAT_QOI 1 // WARNING: Specs are not final yet! #define SUPPORT_FILEFORMAT_QOI 1
//#define SUPPORT_FILEFORMAT_PSD 1 //#define SUPPORT_FILEFORMAT_PSD 1
#define SUPPORT_FILEFORMAT_DDS 1 #define SUPPORT_FILEFORMAT_DDS 1
#define SUPPORT_FILEFORMAT_HDR 1 #define SUPPORT_FILEFORMAT_HDR 1

553
src/external/qoi.h vendored
View file

@ -28,13 +28,9 @@ SOFTWARE.
-- About -- About
QOI encodes and decodes images in a lossless format. An encoded QOI image is QOI encodes and decodes images in a lossless format. Compared to stb_image and
usually around 10--30% larger than a decently optimized PNG image. stb_image_write QOI offers 20x-50x faster encoding, 3x-4x faster decoding and
20% better compression.
QOI outperforms simpler PNG encoders in compression ratio and performance. QOI
images are typically 20% smaller than PNGs written with stbi_image but 10%
larger than with libpng. Encoding is 25-50x faster and decoding is 3-4x faster
than stbi_image or libpng.
-- Synopsis -- Synopsis
@ -78,95 +74,156 @@ QOI_NO_STDIO before including this library.
This library uses malloc() and free(). To supply your own malloc implementation This library uses malloc() and free(). To supply your own malloc implementation
you can define QOI_MALLOC and QOI_FREE before including this library. you can define QOI_MALLOC and QOI_FREE before including this library.
This library uses memset() to zero-initialize the index. To supply your own
implementation you can define QOI_ZEROARR before including this library.
-- Data Format -- Data Format
A QOI file has a 14 byte header, followed by any number of data "chunks". A QOI file has a 14 byte header, followed by any number of data "chunks" and an
8-byte end marker.
struct qoi_header_t { struct qoi_header_t {
char magic[4]; // magic bytes "qoif" char magic[4]; // magic bytes "qoif"
uint32_t width; // image width in pixels (BE) uint32_t width; // image width in pixels (BE)
uint32_t height; // image height in pixels (BE) uint32_t height; // image height in pixels (BE)
uint8_t channels; // must be 3 (RGB) or 4 (RGBA) uint8_t channels; // 3 = RGB, 4 = RGBA
uint8_t colorspace; // a bitmap 0000rgba where uint8_t colorspace; // 0 = sRGB with linear alpha, 1 = all channels linear
// - a zero bit indicates sRGBA,
// - a one bit indicates linear (user interpreted)
// colorspace for each channel
}; };
The decoder and encoder start with {r: 0, g: 0, b: 0, a: 255} as the previous Images are encoded from top to bottom, left to right. The decoder and encoder
pixel value. Pixels are either encoded as start with {r: 0, g: 0, b: 0, a: 255} as the previous pixel value. An image is
complete when all pixels specified by width * height have been covered.
Pixels are encoded as
- a run of the previous pixel - a run of the previous pixel
- an index into a previously seen pixel - an index into an array of previously seen pixels
- a difference to the previous pixel value in r,g,b,a - a difference to the previous pixel value in r,g,b
- full r,g,b,a values - full r,g,b or r,g,b,a values
A running array[64] of previously seen pixel values is maintained by the encoder The color channels are assumed to not be premultiplied with the alpha channel
and decoder. Each pixel that is seen by the encoder and decoder is put into this ("un-premultiplied alpha").
array at the position (r^g^b^a) % 64. In the encoder, if the pixel value at this
index matches the current pixel, this index position is written to the stream.
Each chunk starts with a 2, 3 or 4 bit tag, followed by a number of data bits. A running array[64] (zero-initialized) of previously seen pixel values is
The bit length of chunks is divisible by 8 - i.e. all chunks are byte aligned. maintained by the encoder and decoder. Each pixel that is seen by the encoder
and decoder is put into this array at the position formed by a hash function of
the color value. In the encoder, if the pixel value at the index matches the
current pixel, this index position is written to the stream as QOI_OP_INDEX.
The hash function for the index is:
QOI_INDEX { index_position = (r * 3 + g * 5 + b * 7 + a * 11) % 64
u8 tag : 2; // b00
u8 idx : 6; // 6-bit index into the color index array: 0..63
}
QOI_RUN_8 { Each chunk starts with a 2- or 8-bit tag, followed by a number of data bits. The
u8 tag : 3; // b010 bit length of chunks is divisible by 8 - i.e. all chunks are byte aligned. All
u8 run : 5; // 5-bit run-length repeating the previous pixel: 1..32 values encoded in these data bits have the most significant bit on the left.
}
QOI_RUN_16 { The 8-bit tags have precedence over the 2-bit tags. A decoder must check for the
u8 tag : 3; // b011 presence of an 8-bit tag first.
u16 run : 13; // 13-bit run-length repeating the previous pixel: 33..8224
}
QOI_DIFF_8 { The byte stream's end is marked with 7 0x00 bytes followed a single 0x01 byte.
u8 tag : 2; // b10
u8 dr : 2; // 2-bit red channel difference: -2..1
u8 dg : 2; // 2-bit green channel difference: -2..1
u8 db : 2; // 2-bit blue channel difference: -2..1
}
QOI_DIFF_16 {
u8 tag : 3; // b110
u8 dr : 5; // 5-bit red channel difference: -16..15
u8 dg : 4; // 4-bit green channel difference: -8.. 7
u8 db : 4; // 4-bit blue channel difference: -8.. 7
}
QOI_DIFF_24 { The possible chunks are:
u8 tag : 4; // b1110
u8 dr : 5; // 5-bit red channel difference: -16..15
u8 dg : 5; // 5-bit green channel difference: -16..15
u8 db : 5; // 5-bit blue channel difference: -16..15
u8 da : 5; // 5-bit alpha channel difference: -16..15
}
QOI_COLOR {
u8 tag : 4; // b1111
u8 has_r: 1; // red byte follows
u8 has_g: 1; // green byte follows
u8 has_b: 1; // blue byte follows
u8 has_a: 1; // alpha byte follows
u8 r; // red value if has_r == 1: 0..255
u8 g; // green value if has_g == 1: 0..255
u8 b; // blue value if has_b == 1: 0..255
u8 a; // alpha value if has_a == 1: 0..255
}
The byte stream is padded with 4 zero bytes. Size the longest chunk we can .- QOI_OP_INDEX ----------.
encounter is 5 bytes (QOI_COLOR with RGBA set), with this padding we just have | Byte[0] |
to check for an overrun once per decode loop iteration. | 7 6 5 4 3 2 1 0 |
|-------+-----------------|
| 0 0 | index |
`-------------------------`
2-bit tag b00
6-bit index into the color index array: 0..63
A valid encoder must not issue 7 or more consecutive QOI_OP_INDEX chunks to the
index 0, to avoid confusion with the 8 byte end marker.
.- QOI_OP_DIFF -----------.
| Byte[0] |
| 7 6 5 4 3 2 1 0 |
|-------+-----+-----+-----|
| 0 1 | dr | dg | db |
`-------------------------`
2-bit tag b01
2-bit red channel difference from the previous pixel between -2..1
2-bit green channel difference from the previous pixel between -2..1
2-bit blue channel difference from the previous pixel between -2..1
The difference to the current channel values are using a wraparound operation,
so "1 - 2" will result in 255, while "255 + 1" will result in 0.
Values are stored as unsigned integers with a bias of 2. E.g. -2 is stored as
0 (b00). 1 is stored as 3 (b11).
.- QOI_OP_LUMA -------------------------------------.
| Byte[0] | Byte[1] |
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 |
|-------+-----------------+-------------+-----------|
| 1 0 | green diff | dr - dg | db - dg |
`---------------------------------------------------`
2-bit tag b10
6-bit green channel difference from the previous pixel -32..31
4-bit red channel difference minus green channel difference -8..7
4-bit blue channel difference minus green channel difference -8..7
The green channel is used to indicate the general direction of change and is
encoded in 6 bits. The red and blue channels (dr and db) base their diffs off
of the green channel difference and are encoded in 4 bits. I.e.:
dr_dg = (last_px.r - cur_px.r) - (last_px.g - cur_px.g)
db_dg = (last_px.b - cur_px.b) - (last_px.g - cur_px.g)
The difference to the current channel values are using a wraparound operation,
so "10 - 13" will result in 253, while "250 + 7" will result in 1.
Values are stored as unsigned integers with a bias of 32 for the green channel
and a bias of 8 for the red and blue channel.
.- QOI_OP_RUN ------------.
| Byte[0] |
| 7 6 5 4 3 2 1 0 |
|-------+-----------------|
| 1 1 | run |
`-------------------------`
2-bit tag b11
6-bit run-length repeating the previous pixel: 1..62
The run-length is stored with a bias of -1. Note that the run-lengths 63 and 64
(b111110 and b111111) are illegal as they are occupied by the QOI_OP_RGB and
QOI_OP_RGBA tags.
.- QOI_OP_RGB ------------------------------------------.
| Byte[0] | Byte[1] | Byte[2] | Byte[3] |
| 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 |
|-------------------------+---------+---------+---------|
| 1 1 1 1 1 1 1 0 | red | green | blue |
`-------------------------------------------------------`
8-bit tag b11111110
8-bit red channel value
8-bit green channel value
8-bit blue channel value
.- QOI_OP_RGBA ---------------------------------------------------.
| Byte[0] | Byte[1] | Byte[2] | Byte[3] | Byte[4] |
| 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 |
|-------------------------+---------+---------+---------+---------|
| 1 1 1 1 1 1 1 1 | red | green | blue | alpha |
`-----------------------------------------------------------------`
8-bit tag b11111111
8-bit red channel value
8-bit green channel value
8-bit blue channel value
8-bit alpha channel value
*/ */
// ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
// Header - Public functions Header - Public functions */
#ifndef QOI_H #ifndef QOI_H
#define QOI_H #define QOI_H
@ -175,19 +232,20 @@ to check for an overrun once per decode loop iteration.
extern "C" { extern "C" {
#endif #endif
// A pointer to qoi_desc struct has to be supplied to all of qoi's functions. It /* A pointer to a qoi_desc struct has to be supplied to all of qoi's functions.
// describes either the input format (for qoi_write, qoi_encode), or is filled It describes either the input format (for qoi_write and qoi_encode), or is
// with the description read from the file header (for qoi_read, qoi_decode). filled with the description read from the file header (for qoi_read and
qoi_decode).
// The colorspace in this qoi_desc is a bitmap with 0000rgba where a 0-bit The colorspace in this qoi_desc is an enum where
// indicates sRGB and a 1-bit indicates linear colorspace for each channel. You 0 = sRGB, i.e. gamma scaled RGB channels and a linear alpha channel
// may use one of the predefined constants: QOI_SRGB, QOI_SRGB_LINEAR_ALPHA or 1 = all channels are linear
// QOI_LINEAR. The colorspace is purely informative. It will be saved to the You may use the constants QOI_SRGB or QOI_LINEAR. The colorspace is purely
// file header, but does not affect en-/decoding in any way. informative. It will be saved to the file header, but does not affect
en-/decoding in any way. */
#define QOI_SRGB 0x00 #define QOI_SRGB 0
#define QOI_SRGB_LINEAR_ALPHA 0x01 #define QOI_LINEAR 1
#define QOI_LINEAR 0x0f
typedef struct { typedef struct {
unsigned int width; unsigned int width;
@ -198,49 +256,49 @@ typedef struct {
#ifndef QOI_NO_STDIO #ifndef QOI_NO_STDIO
// Encode raw RGB or RGBA pixels into a QOI image and write it to the file /* Encode raw RGB or RGBA pixels into a QOI image and write it to the file
// system. The qoi_desc struct must be filled with the image width, height, system. The qoi_desc struct must be filled with the image width, height,
// number of channels (3 = RGB, 4 = RGBA) and the colorspace. number of channels (3 = RGB, 4 = RGBA) and the colorspace.
// The function returns 0 on failure (invalid parameters, or fopen or malloc The function returns 0 on failure (invalid parameters, or fopen or malloc
// failed) or the number of bytes written on success. failed) or the number of bytes written on success. */
int qoi_write(const char *filename, const void *data, const qoi_desc *desc); int qoi_write(const char *filename, const void *data, const qoi_desc *desc);
// Read and decode a QOI image from the file system. If channels is 0, the /* Read and decode a QOI image from the file system. If channels is 0, the
// number of channels from the file header is used. If channels is 3 or 4 the number of channels from the file header is used. If channels is 3 or 4 the
// output format will be forced into this number of channels. output format will be forced into this number of channels.
// The function either returns NULL on failure (invalid data, or malloc or fopen The function either returns NULL on failure (invalid data, or malloc or fopen
// failed) or a pointer to the decoded pixels. On success, the qoi_desc struct failed) or a pointer to the decoded pixels. On success, the qoi_desc struct
// will be filled with the description from the file header. will be filled with the description from the file header.
// The returned pixel data should be free()d after use. The returned pixel data should be free()d after use. */
void *qoi_read(const char *filename, qoi_desc *desc, int channels); void *qoi_read(const char *filename, qoi_desc *desc, int channels);
#endif // QOI_NO_STDIO #endif /* QOI_NO_STDIO */
// Encode raw RGB or RGBA pixels into a QOI image in memory. /* Encode raw RGB or RGBA pixels into a QOI image in memory.
// The function either returns NULL on failure (invalid parameters or malloc The function either returns NULL on failure (invalid parameters or malloc
// failed) or a pointer to the encoded data on success. On success the out_len failed) or a pointer to the encoded data on success. On success the out_len
// is set to the size in bytes of the encoded data. is set to the size in bytes of the encoded data.
// The returned qoi data should be free()d after user. The returned qoi data should be free()d after use. */
void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len); void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len);
// Decode a QOI image from memory. /* Decode a QOI image from memory.
// The function either returns NULL on failure (invalid parameters or malloc The function either returns NULL on failure (invalid parameters or malloc
// failed) or a pointer to the decoded pixels. On success, the qoi_desc struct failed) or a pointer to the decoded pixels. On success, the qoi_desc struct
// is filled with the description from the file header. is filled with the description from the file header.
// The returned pixel data should be free()d after use. The returned pixel data should be free()d after use. */
void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels); void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels);
@ -248,44 +306,52 @@ void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#endif // QOI_H #endif /* QOI_H */
// ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
// Implementation Implementation */
#ifdef QOI_IMPLEMENTATION #ifdef QOI_IMPLEMENTATION
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#ifndef QOI_MALLOC #ifndef QOI_MALLOC
#define QOI_MALLOC(sz) malloc(sz) #define QOI_MALLOC(sz) malloc(sz)
#define QOI_FREE(p) free(p) #define QOI_FREE(p) free(p)
#endif #endif
#ifndef QOI_ZEROARR
#define QOI_ZEROARR(a) memset((a),0,sizeof(a))
#endif
#define QOI_INDEX 0x00 // 00xxxxxx #define QOI_OP_INDEX 0x00 /* 00xxxxxx */
#define QOI_RUN_8 0x40 // 010xxxxx #define QOI_OP_DIFF 0x40 /* 01xxxxxx */
#define QOI_RUN_16 0x60 // 011xxxxx #define QOI_OP_LUMA 0x80 /* 10xxxxxx */
#define QOI_DIFF_8 0x80 // 10xxxxxx #define QOI_OP_RUN 0xc0 /* 11xxxxxx */
#define QOI_DIFF_16 0xc0 // 110xxxxx #define QOI_OP_RGB 0xfe /* 11111110 */
#define QOI_DIFF_24 0xe0 // 1110xxxx #define QOI_OP_RGBA 0xff /* 11111111 */
#define QOI_COLOR 0xf0 // 1111xxxx
#define QOI_MASK_2 0xc0 // 11000000 #define QOI_MASK_2 0xc0 /* 11000000 */
#define QOI_MASK_3 0xe0 // 11100000
#define QOI_MASK_4 0xf0 // 11110000
#define QOI_COLOR_HASH(C) (C.rgba.r ^ C.rgba.g ^ C.rgba.b ^ C.rgba.a) #define QOI_COLOR_HASH(C) (C.rgba.r*3 + C.rgba.g*5 + C.rgba.b*7 + C.rgba.a*11)
#define QOI_MAGIC \ #define QOI_MAGIC \
(((unsigned int)'q') << 24 | ((unsigned int)'o') << 16 | \ (((unsigned int)'q') << 24 | ((unsigned int)'o') << 16 | \
((unsigned int)'i') << 8 | ((unsigned int)'f')) ((unsigned int)'i') << 8 | ((unsigned int)'f'))
#define QOI_HEADER_SIZE 14 #define QOI_HEADER_SIZE 14
#define QOI_PADDING 4
/* 2GB is the max file size that this implementation can safely handle. We guard
against anything larger than that, assuming the worst case with 5 bytes per
pixel, rounded down to a nice clean value. 400 million pixels ought to be
enough for anybody. */
#define QOI_PIXELS_MAX ((unsigned int)400000000)
typedef union { typedef union {
struct { unsigned char r, g, b, a; } rgba; struct { unsigned char r, g, b, a; } rgba;
unsigned int v; unsigned int v;
} qoi_rgba_t; } qoi_rgba_t;
static const unsigned char qoi_padding[8] = {0,0,0,0,0,0,0,1};
void qoi_write_32(unsigned char *bytes, int *p, unsigned int v) { void qoi_write_32(unsigned char *bytes, int *p, unsigned int v) {
bytes[(*p)++] = (0xff000000 & v) >> 24; bytes[(*p)++] = (0xff000000 & v) >> 24;
bytes[(*p)++] = (0x00ff0000 & v) >> 16; bytes[(*p)++] = (0x00ff0000 & v) >> 16;
@ -298,25 +364,33 @@ unsigned int qoi_read_32(const unsigned char *bytes, int *p) {
unsigned int b = bytes[(*p)++]; unsigned int b = bytes[(*p)++];
unsigned int c = bytes[(*p)++]; unsigned int c = bytes[(*p)++];
unsigned int d = bytes[(*p)++]; unsigned int d = bytes[(*p)++];
return (a << 24) | (b << 16) | (c << 8) | d; return a << 24 | b << 16 | c << 8 | d;
} }
void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) { void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) {
int i, max_size, p, run;
int px_len, px_end, px_pos, channels;
unsigned char *bytes;
const unsigned char *pixels;
qoi_rgba_t index[64];
qoi_rgba_t px, px_prev;
if ( if (
data == NULL || out_len == NULL || desc == NULL || data == NULL || out_len == NULL || desc == NULL ||
desc->width == 0 || desc->height == 0 || desc->width == 0 || desc->height == 0 ||
desc->channels < 3 || desc->channels > 4 || desc->channels < 3 || desc->channels > 4 ||
(desc->colorspace & 0xf0) != 0 desc->colorspace > 1 ||
desc->height >= QOI_PIXELS_MAX / desc->width
) { ) {
return NULL; return NULL;
} }
int max_size = max_size =
desc->width * desc->height * (desc->channels + 1) + desc->width * desc->height * (desc->channels + 1) +
QOI_HEADER_SIZE + QOI_PADDING; QOI_HEADER_SIZE + sizeof(qoi_padding);
int p = 0; p = 0;
unsigned char *bytes = QOI_MALLOC(max_size); bytes = (unsigned char *) QOI_MALLOC(max_size);
if (!bytes) { if (!bytes) {
return NULL; return NULL;
} }
@ -328,94 +402,98 @@ void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) {
bytes[p++] = desc->colorspace; bytes[p++] = desc->colorspace;
const unsigned char *pixels = (const unsigned char *)data; pixels = (const unsigned char *)data;
qoi_rgba_t index[64] = {0}; QOI_ZEROARR(index);
int run = 0; run = 0;
qoi_rgba_t px_prev = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 255}}; px_prev.rgba.r = 0;
qoi_rgba_t px = px_prev; px_prev.rgba.g = 0;
px_prev.rgba.b = 0;
px_prev.rgba.a = 255;
px = px_prev;
int px_len = desc->width * desc->height * desc->channels; px_len = desc->width * desc->height * desc->channels;
int px_end = px_len - desc->channels; px_end = px_len - desc->channels;
for (int px_pos = 0; px_pos < px_len; px_pos += desc->channels) { channels = desc->channels;
if (desc->channels == 4) {
for (px_pos = 0; px_pos < px_len; px_pos += channels) {
if (channels == 4) {
px = *(qoi_rgba_t *)(pixels + px_pos); px = *(qoi_rgba_t *)(pixels + px_pos);
} }
else { else {
px.rgba.r = pixels[px_pos]; px.rgba.r = pixels[px_pos + 0];
px.rgba.g = pixels[px_pos+1]; px.rgba.g = pixels[px_pos + 1];
px.rgba.b = pixels[px_pos+2]; px.rgba.b = pixels[px_pos + 2];
} }
if (px.v == px_prev.v) { if (px.v == px_prev.v) {
run++; run++;
} if (run == 62 || px_pos == px_end) {
bytes[p++] = QOI_OP_RUN | (run - 1);
if (run > 0 && (run == 0x2020 || px.v != px_prev.v || px_pos == px_end)) { run = 0;
if (run < 33) {
run -= 1;
bytes[p++] = QOI_RUN_8 | run;
} }
else {
run -= 33;
bytes[p++] = QOI_RUN_16 | run >> 8;
bytes[p++] = run;
}
run = 0;
} }
else {
int index_pos;
if (px.v != px_prev.v) { if (run > 0) {
int index_pos = QOI_COLOR_HASH(px) % 64; bytes[p++] = QOI_OP_RUN | (run - 1);
run = 0;
}
index_pos = QOI_COLOR_HASH(px) % 64;
if (index[index_pos].v == px.v) { if (index[index_pos].v == px.v) {
bytes[p++] = QOI_INDEX | index_pos; bytes[p++] = QOI_OP_INDEX | index_pos;
} }
else { else {
index[index_pos] = px; index[index_pos] = px;
int vr = px.rgba.r - px_prev.rgba.r; if (px.rgba.a == px_prev.rgba.a) {
int vg = px.rgba.g - px_prev.rgba.g; signed char vr = px.rgba.r - px_prev.rgba.r;
int vb = px.rgba.b - px_prev.rgba.b; signed char vg = px.rgba.g - px_prev.rgba.g;
int va = px.rgba.a - px_prev.rgba.a; signed char vb = px.rgba.b - px_prev.rgba.b;
signed char vg_r = vr - vg;
signed char vg_b = vb - vg;
if (
vr > -17 && vr < 16 && vg > -17 && vg < 16 &&
vb > -17 && vb < 16 && va > -17 && va < 16
) {
if ( if (
va == 0 && vr > -3 && vr < 2 && vr > -3 && vr < 2 &&
vg > -3 && vg < 2 && vb > -3 && vb < 2 vg > -3 && vg < 2 &&
vb > -3 && vb < 2
) { ) {
bytes[p++] = QOI_DIFF_8 | ((vr + 2) << 4) | (vg + 2) << 2 | (vb + 2); bytes[p++] = QOI_OP_DIFF | (vr + 2) << 4 | (vg + 2) << 2 | (vb + 2);
} }
else if ( else if (
va == 0 && vr > -17 && vr < 16 && vg_r > -9 && vg_r < 8 &&
vg > -9 && vg < 8 && vb > -9 && vb < 8 vg > -33 && vg < 32 &&
vg_b > -9 && vg_b < 8
) { ) {
bytes[p++] = QOI_DIFF_16 | (vr + 16); bytes[p++] = QOI_OP_LUMA | (vg + 32);
bytes[p++] = ((vg + 8) << 4) | (vb + 8); bytes[p++] = (vg_r + 8) << 4 | (vg_b + 8);
} }
else { else {
bytes[p++] = QOI_DIFF_24 | ((vr + 16) >> 1); bytes[p++] = QOI_OP_RGB;
bytes[p++] = ((vr + 16) << 7) | ((vg + 16) << 2) | ((vb + 16) >> 3); bytes[p++] = px.rgba.r;
bytes[p++] = ((vb + 16) << 5) | (va + 16); bytes[p++] = px.rgba.g;
bytes[p++] = px.rgba.b;
} }
} }
else { else {
bytes[p++] = QOI_COLOR | (vr?8:0)|(vg?4:0)|(vb?2:0)|(va?1:0); bytes[p++] = QOI_OP_RGBA;
if (vr) { bytes[p++] = px.rgba.r; } bytes[p++] = px.rgba.r;
if (vg) { bytes[p++] = px.rgba.g; } bytes[p++] = px.rgba.g;
if (vb) { bytes[p++] = px.rgba.b; } bytes[p++] = px.rgba.b;
if (va) { bytes[p++] = px.rgba.a; } bytes[p++] = px.rgba.a;
} }
} }
} }
px_prev = px; px_prev = px;
} }
for (int i = 0; i < QOI_PADDING; i++) { for (i = 0; i < (int)sizeof(qoi_padding); i++) {
bytes[p++] = 0; bytes[p++] = qoi_padding[i];
} }
*out_len = p; *out_len = p;
@ -423,18 +501,25 @@ void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) {
} }
void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) { void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
const unsigned char *bytes;
unsigned int header_magic;
unsigned char *pixels;
qoi_rgba_t index[64];
qoi_rgba_t px;
int px_len, chunks_len, px_pos;
int p = 0, run = 0;
if ( if (
data == NULL || desc == NULL || data == NULL || desc == NULL ||
(channels != 0 && channels != 3 && channels != 4) || (channels != 0 && channels != 3 && channels != 4) ||
size < QOI_HEADER_SIZE + QOI_PADDING size < QOI_HEADER_SIZE + (int)sizeof(qoi_padding)
) { ) {
return NULL; return NULL;
} }
const unsigned char *bytes = (const unsigned char *)data; bytes = (const unsigned char *)data;
int p = 0;
unsigned int header_magic = qoi_read_32(bytes, &p); header_magic = qoi_read_32(bytes, &p);
desc->width = qoi_read_32(bytes, &p); desc->width = qoi_read_32(bytes, &p);
desc->height = qoi_read_32(bytes, &p); desc->height = qoi_read_32(bytes, &p);
desc->channels = bytes[p++]; desc->channels = bytes[p++];
@ -443,7 +528,9 @@ void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
if ( if (
desc->width == 0 || desc->height == 0 || desc->width == 0 || desc->height == 0 ||
desc->channels < 3 || desc->channels > 4 || desc->channels < 3 || desc->channels > 4 ||
header_magic != QOI_MAGIC desc->colorspace > 1 ||
header_magic != QOI_MAGIC ||
desc->height >= QOI_PIXELS_MAX / desc->width
) { ) {
return NULL; return NULL;
} }
@ -452,58 +539,54 @@ void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
channels = desc->channels; channels = desc->channels;
} }
int px_len = desc->width * desc->height * channels; px_len = desc->width * desc->height * channels;
unsigned char *pixels = QOI_MALLOC(px_len); pixels = (unsigned char *) QOI_MALLOC(px_len);
if (!pixels) { if (!pixels) {
return NULL; return NULL;
} }
qoi_rgba_t px = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 255}}; QOI_ZEROARR(index);
qoi_rgba_t index[64] = {0}; px.rgba.r = 0;
px.rgba.g = 0;
px.rgba.b = 0;
px.rgba.a = 255;
int run = 0; chunks_len = size - (int)sizeof(qoi_padding);
int chunks_len = size - QOI_PADDING; for (px_pos = 0; px_pos < px_len; px_pos += channels) {
for (int px_pos = 0; px_pos < px_len; px_pos += channels) {
if (run > 0) { if (run > 0) {
run--; run--;
} }
else if (p < chunks_len) { else if (p < chunks_len) {
int b1 = bytes[p++]; int b1 = bytes[p++];
if ((b1 & QOI_MASK_2) == QOI_INDEX) { if (b1 == QOI_OP_RGB) {
px = index[b1 ^ QOI_INDEX]; px.rgba.r = bytes[p++];
px.rgba.g = bytes[p++];
px.rgba.b = bytes[p++];
} }
else if ((b1 & QOI_MASK_3) == QOI_RUN_8) { else if (b1 == QOI_OP_RGBA) {
run = (b1 & 0x1f); px.rgba.r = bytes[p++];
px.rgba.g = bytes[p++];
px.rgba.b = bytes[p++];
px.rgba.a = bytes[p++];
} }
else if ((b1 & QOI_MASK_3) == QOI_RUN_16) { else if ((b1 & QOI_MASK_2) == QOI_OP_INDEX) {
int b2 = bytes[p++]; px = index[b1];
run = (((b1 & 0x1f) << 8) | (b2)) + 32;
} }
else if ((b1 & QOI_MASK_2) == QOI_DIFF_8) { else if ((b1 & QOI_MASK_2) == QOI_OP_DIFF) {
px.rgba.r += ((b1 >> 4) & 0x03) - 2; px.rgba.r += ((b1 >> 4) & 0x03) - 2;
px.rgba.g += ((b1 >> 2) & 0x03) - 2; px.rgba.g += ((b1 >> 2) & 0x03) - 2;
px.rgba.b += ( b1 & 0x03) - 2; px.rgba.b += ( b1 & 0x03) - 2;
} }
else if ((b1 & QOI_MASK_3) == QOI_DIFF_16) { else if ((b1 & QOI_MASK_2) == QOI_OP_LUMA) {
int b2 = bytes[p++]; int b2 = bytes[p++];
px.rgba.r += (b1 & 0x1f) - 16; int vg = (b1 & 0x3f) - 32;
px.rgba.g += (b2 >> 4) - 8; px.rgba.r += vg - 8 + ((b2 >> 4) & 0x0f);
px.rgba.b += (b2 & 0x0f) - 8; px.rgba.g += vg;
px.rgba.b += vg - 8 + (b2 & 0x0f);
} }
else if ((b1 & QOI_MASK_4) == QOI_DIFF_24) { else if ((b1 & QOI_MASK_2) == QOI_OP_RUN) {
int b2 = bytes[p++]; run = (b1 & 0x3f);
int b3 = bytes[p++];
px.rgba.r += (((b1 & 0x0f) << 1) | (b2 >> 7)) - 16;
px.rgba.g += ((b2 & 0x7c) >> 2) - 16;
px.rgba.b += (((b2 & 0x03) << 3) | ((b3 & 0xe0) >> 5)) - 16;
px.rgba.a += (b3 & 0x1f) - 16;
}
else if ((b1 & QOI_MASK_4) == QOI_COLOR) {
if (b1 & 8) { px.rgba.r = bytes[p++]; }
if (b1 & 4) { px.rgba.g = bytes[p++]; }
if (b1 & 2) { px.rgba.b = bytes[p++]; }
if (b1 & 1) { px.rgba.a = bytes[p++]; }
} }
index[QOI_COLOR_HASH(px) % 64] = px; index[QOI_COLOR_HASH(px) % 64] = px;
@ -513,9 +596,9 @@ void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
*(qoi_rgba_t*)(pixels + px_pos) = px; *(qoi_rgba_t*)(pixels + px_pos) = px;
} }
else { else {
pixels[px_pos] = px.rgba.r; pixels[px_pos + 0] = px.rgba.r;
pixels[px_pos+1] = px.rgba.g; pixels[px_pos + 1] = px.rgba.g;
pixels[px_pos+2] = px.rgba.b; pixels[px_pos + 2] = px.rgba.b;
} }
} }
@ -526,47 +609,57 @@ void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
#include <stdio.h> #include <stdio.h>
int qoi_write(const char *filename, const void *data, const qoi_desc *desc) { int qoi_write(const char *filename, const void *data, const qoi_desc *desc) {
FILE *f = fopen(filename, "wb");
int size; int size;
void *encoded = qoi_encode(data, desc, &size); void *encoded;
if (!encoded) {
if (!f) {
return 0; return 0;
} }
FILE *f = fopen(filename, "wb"); encoded = qoi_encode(data, desc, &size);
if (!f) { if (!encoded) {
QOI_FREE(encoded); fclose(f);
return 0; return 0;
} }
fwrite(encoded, 1, size, f); fwrite(encoded, 1, size, f);
fclose(f); fclose(f);
QOI_FREE(encoded); QOI_FREE(encoded);
return size; return size;
} }
void *qoi_read(const char *filename, qoi_desc *desc, int channels) { void *qoi_read(const char *filename, qoi_desc *desc, int channels) {
FILE *f = fopen(filename, "rb"); FILE *f = fopen(filename, "rb");
int size, bytes_read;
void *pixels, *data;
if (!f) { if (!f) {
return NULL; return NULL;
} }
fseek(f, 0, SEEK_END); fseek(f, 0, SEEK_END);
int size = ftell(f); size = ftell(f);
if (size <= 0) {
fclose(f);
return NULL;
}
fseek(f, 0, SEEK_SET); fseek(f, 0, SEEK_SET);
void *data = QOI_MALLOC(size); data = QOI_MALLOC(size);
if (!data) { if (!data) {
fclose(f); fclose(f);
return NULL; return NULL;
} }
int bytes_read = fread(data, 1, size, f); bytes_read = fread(data, 1, size, f);
fclose(f); fclose(f);
void *pixels = qoi_decode(data, bytes_read, desc, channels); pixels = qoi_decode(data, bytes_read, desc, channels);
QOI_FREE(data); QOI_FREE(data);
return pixels; return pixels;
} }
#endif // QOI_NO_STDIO #endif /* QOI_NO_STDIO */
#endif // QOI_IMPLEMENTATION #endif /* QOI_IMPLEMENTATION */