Add shadowmapping example (#3653)
This commit is contained in:
parent
34a9163c52
commit
1fc3d9aeb2
9 changed files with 489 additions and 0 deletions
BIN
examples/shaders/resources/models/robot.glb
Normal file
BIN
examples/shaders/resources/models/robot.glb
Normal file
Binary file not shown.
86
examples/shaders/resources/shaders/glsl120/shadowmap.fs
Normal file
86
examples/shaders/resources/shaders/glsl120/shadowmap.fs
Normal file
|
@ -0,0 +1,86 @@
|
|||
#version 120
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// This shader is based on the basic lighting shader
|
||||
// This only supports one light, which is directional, and it (of course) supports shadows
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying in vec3 fragPosition;
|
||||
varying in vec2 fragTexCoord;
|
||||
//varying in vec4 fragColor;
|
||||
varying in vec3 fragNormal;
|
||||
|
||||
// Input uniform values
|
||||
uniform sampler2D texture0;
|
||||
uniform vec4 colDiffuse;
|
||||
|
||||
// Input lighting values
|
||||
uniform vec3 lightDir;
|
||||
uniform vec4 lightColor;
|
||||
uniform vec4 ambient;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
// Input shadowmapping values
|
||||
uniform mat4 lightVP; // Light source view-projection matrix
|
||||
uniform sampler2D shadowMap;
|
||||
|
||||
uniform int shadowMapResolution;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Texel color fetching from texture sampler
|
||||
vec4 texelColor = texture2D(texture0, fragTexCoord);
|
||||
vec3 lightDot = vec3(0.0);
|
||||
vec3 normal = normalize(fragNormal);
|
||||
vec3 viewD = normalize(viewPos - fragPosition);
|
||||
vec3 specular = vec3(0.0);
|
||||
|
||||
vec3 l = -lightDir;
|
||||
|
||||
float NdotL = max(dot(normal, l), 0.0);
|
||||
lightDot += lightColor.rgb*NdotL;
|
||||
|
||||
float specCo = 0.0;
|
||||
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(l), normal))), 16.0); // 16 refers to shine
|
||||
specular += specCo;
|
||||
|
||||
vec4 finalColor = (texelColor*((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0)));
|
||||
|
||||
// Shadow calculations
|
||||
vec4 fragPosLightSpace = lightVP * vec4(fragPosition, 1);
|
||||
fragPosLightSpace.xyz /= fragPosLightSpace.w; // Perform the perspective division
|
||||
fragPosLightSpace.xyz = (fragPosLightSpace.xyz + 1.0f) / 2.0f; // Transform from [-1, 1] range to [0, 1] range
|
||||
vec2 sampleCoords = fragPosLightSpace.xy;
|
||||
float curDepth = fragPosLightSpace.z;
|
||||
// Slope-scale depth bias: depth biasing reduces "shadow acne" artifacts, where dark stripes appear all over the scene.
|
||||
// The solution is adding a small bias to the depth
|
||||
// In this case, the bias is proportional to the slope of the surface, relative to the light
|
||||
float bias = max(0.0008 * (1.0 - dot(normal, l)), 0.00008);
|
||||
int shadowCounter = 0;
|
||||
const int numSamples = 9;
|
||||
// PCF (percentage-closer filtering) algorithm:
|
||||
// Instead of testing if just one point is closer to the current point,
|
||||
// we test the surrounding points as well.
|
||||
// This blurs shadow edges, hiding aliasing artifacts.
|
||||
vec2 texelSize = vec2(1.0f / float(shadowMapResolution));
|
||||
for (int x = -1; x <= 1; x++)
|
||||
{
|
||||
for (int y = -1; y <= 1; y++)
|
||||
{
|
||||
float sampleDepth = texture2D(shadowMap, sampleCoords + texelSize * vec2(x, y)).r;
|
||||
if (curDepth - bias > sampleDepth)
|
||||
{
|
||||
shadowCounter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
finalColor = mix(finalColor, vec4(0, 0, 0, 1), float(shadowCounter) / float(numSamples));
|
||||
|
||||
// Add ambient lighting whether in shadow or not
|
||||
finalColor += texelColor*(ambient/10.0)*colDiffuse;
|
||||
|
||||
// Gamma correction
|
||||
finalColor = pow(finalColor, vec4(1.0/2.2));
|
||||
gl_FragColor = finalColor;
|
||||
}
|
32
examples/shaders/resources/shaders/glsl120/shadowmap.vs
Normal file
32
examples/shaders/resources/shaders/glsl120/shadowmap.vs
Normal file
|
@ -0,0 +1,32 @@
|
|||
#version 120
|
||||
|
||||
// Input vertex attributes
|
||||
attribute vec3 vertexPosition;
|
||||
attribute vec2 vertexTexCoord;
|
||||
attribute vec3 vertexNormal;
|
||||
attribute vec4 vertexColor;
|
||||
|
||||
// Input uniform values
|
||||
uniform mat4 mvp;
|
||||
uniform mat4 matModel;
|
||||
uniform mat4 matNormal;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
varying vec3 fragPosition;
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
varying vec3 fragNormal;
|
||||
|
||||
// NOTE: Add here your custom variables
|
||||
|
||||
void main()
|
||||
{
|
||||
// Send vertex attributes to fragment shader
|
||||
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
|
||||
fragTexCoord = vertexTexCoord;
|
||||
fragColor = vertexColor;
|
||||
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = mvp*vec4(vertexPosition, 1.0);
|
||||
}
|
86
examples/shaders/resources/shaders/glsl330/shadowmap.fs
Normal file
86
examples/shaders/resources/shaders/glsl330/shadowmap.fs
Normal file
|
@ -0,0 +1,86 @@
|
|||
#version 330
|
||||
|
||||
// This shader is based on the basic lighting shader
|
||||
// This only supports one light, which is directional, and it (of course) supports shadows
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
in vec2 fragTexCoord;
|
||||
//in vec4 fragColor;
|
||||
in vec3 fragNormal;
|
||||
|
||||
// Input uniform values
|
||||
uniform sampler2D texture0;
|
||||
uniform vec4 colDiffuse;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
// Input lighting values
|
||||
uniform vec3 lightDir;
|
||||
uniform vec4 lightColor;
|
||||
uniform vec4 ambient;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
// Input shadowmapping values
|
||||
uniform mat4 lightVP; // Light source view-projection matrix
|
||||
uniform sampler2D shadowMap;
|
||||
|
||||
uniform int shadowMapResolution;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Texel color fetching from texture sampler
|
||||
vec4 texelColor = texture(texture0, fragTexCoord);
|
||||
vec3 lightDot = vec3(0.0);
|
||||
vec3 normal = normalize(fragNormal);
|
||||
vec3 viewD = normalize(viewPos - fragPosition);
|
||||
vec3 specular = vec3(0.0);
|
||||
|
||||
vec3 l = -lightDir;
|
||||
|
||||
float NdotL = max(dot(normal, l), 0.0);
|
||||
lightDot += lightColor.rgb*NdotL;
|
||||
|
||||
float specCo = 0.0;
|
||||
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(l), normal))), 16.0); // 16 refers to shine
|
||||
specular += specCo;
|
||||
|
||||
finalColor = (texelColor*((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0)));
|
||||
|
||||
// Shadow calculations
|
||||
vec4 fragPosLightSpace = lightVP * vec4(fragPosition, 1);
|
||||
fragPosLightSpace.xyz /= fragPosLightSpace.w; // Perform the perspective division
|
||||
fragPosLightSpace.xyz = (fragPosLightSpace.xyz + 1.0f) / 2.0f; // Transform from [-1, 1] range to [0, 1] range
|
||||
vec2 sampleCoords = fragPosLightSpace.xy;
|
||||
float curDepth = fragPosLightSpace.z;
|
||||
// Slope-scale depth bias: depth biasing reduces "shadow acne" artifacts, where dark stripes appear all over the scene.
|
||||
// The solution is adding a small bias to the depth
|
||||
// In this case, the bias is proportional to the slope of the surface, relative to the light
|
||||
float bias = max(0.0002 * (1.0 - dot(normal, l)), 0.00002) + 0.00001;
|
||||
int shadowCounter = 0;
|
||||
const int numSamples = 9;
|
||||
// PCF (percentage-closer filtering) algorithm:
|
||||
// Instead of testing if just one point is closer to the current point,
|
||||
// we test the surrounding points as well.
|
||||
// This blurs shadow edges, hiding aliasing artifacts.
|
||||
vec2 texelSize = vec2(1.0f / float(shadowMapResolution));
|
||||
for (int x = -1; x <= 1; x++)
|
||||
{
|
||||
for (int y = -1; y <= 1; y++)
|
||||
{
|
||||
float sampleDepth = texture(shadowMap, sampleCoords + texelSize * vec2(x, y)).r;
|
||||
if (curDepth - bias > sampleDepth)
|
||||
{
|
||||
shadowCounter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
finalColor = mix(finalColor, vec4(0, 0, 0, 1), float(shadowCounter) / float(numSamples));
|
||||
|
||||
// Add ambient lighting whether in shadow or not
|
||||
finalColor += texelColor*(ambient/10.0)*colDiffuse;
|
||||
|
||||
// Gamma correction
|
||||
finalColor = pow(finalColor, vec4(1.0/2.2));
|
||||
}
|
32
examples/shaders/resources/shaders/glsl330/shadowmap.vs
Normal file
32
examples/shaders/resources/shaders/glsl330/shadowmap.vs
Normal file
|
@ -0,0 +1,32 @@
|
|||
#version 330
|
||||
|
||||
// Input vertex attributes
|
||||
in vec3 vertexPosition;
|
||||
in vec2 vertexTexCoord;
|
||||
in vec3 vertexNormal;
|
||||
in vec4 vertexColor;
|
||||
|
||||
// Input uniform values
|
||||
uniform mat4 mvp;
|
||||
uniform mat4 matModel;
|
||||
uniform mat4 matNormal;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
out vec3 fragPosition;
|
||||
out vec2 fragTexCoord;
|
||||
out vec4 fragColor;
|
||||
out vec3 fragNormal;
|
||||
|
||||
// NOTE: Add here your custom variables
|
||||
|
||||
void main()
|
||||
{
|
||||
// Send vertex attributes to fragment shader
|
||||
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
|
||||
fragTexCoord = vertexTexCoord;
|
||||
fragColor = vertexColor;
|
||||
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = mvp*vec4(vertexPosition, 1.0);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue