Standard Lighting (3/3)

- Added normal and specular maps to standard shader.
- Added full tint attribute to standard shader and material data type.
- Changed point light attenuation to radius.
This commit is contained in:
victorfisac 2016-05-30 19:59:21 +02:00
parent b0a0c5d431
commit 11cf455fe0
2 changed files with 34 additions and 18 deletions

View file

@ -8,12 +8,18 @@ in vec3 fragNormal;
out vec4 finalColor;
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;
uniform vec4 colTint;
uniform vec4 colAmbient;
uniform vec4 colDiffuse;
uniform vec4 colSpecular;
uniform float glossiness;
uniform int useNormal;
uniform int useSpecular;
uniform mat4 modelMatrix;
uniform vec3 viewDir;
@ -24,7 +30,7 @@ struct Light {
vec3 direction;
vec4 diffuse;
float intensity;
float attenuation;
float radius;
float coneAngle;
};
@ -32,27 +38,27 @@ const int maxLights = 8;
uniform int lightsCount;
uniform Light lights[maxLights];
vec3 CalcPointLight(Light l, vec3 n, vec3 v)
vec3 CalcPointLight(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 surfaceToLight = l.position - surfacePos;
// Diffuse shading
float brightness = clamp(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n)), 0, 1);
float diff = 1.0/dot(surfaceToLight/l.attenuation, surfaceToLight/l.attenuation)*brightness*l.intensity;
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
// Specular shading
float spec = 0.0;
if (diff > 0.0)
{
vec3 h = normalize(-l.direction + v);
spec = pow(dot(n, h), 3 + glossiness);
spec = pow(dot(n, h), 3 + glossiness)*s;
}
return (diff*l.diffuse.rgb*colDiffuse.rgb + spec*colSpecular.rgb);
}
vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v)
vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v, float s)
{
vec3 lightDir = normalize(-l.direction);
@ -64,14 +70,14 @@ vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v)
if (diff > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(dot(n, h), 3 + glossiness);
spec = pow(dot(n, h), 3 + glossiness)*s;
}
// Combine results
return (diff*l.intensity*l.diffuse.rgb*colDiffuse.rgb + spec*colSpecular.rgb);
}
vec3 CalcSpotLight(Light l, vec3 n, vec3 v)
vec3 CalcSpotLight(Light l, vec3 n, vec3 v, float s)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 lightToSurface = normalize(surfacePos - l.position);
@ -95,7 +101,7 @@ vec3 CalcSpotLight(Light l, vec3 n, vec3 v)
if (diffAttenuation > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(dot(n, h), 3 + glossiness);
spec = pow(dot(n, h), 3 + glossiness)*s;
}
return falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb);
@ -104,9 +110,10 @@ vec3 CalcSpotLight(Light l, vec3 n, vec3 v)
void main()
{
// Calculate fragment normal in screen space
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
mat3 normalMatrix = transpose(inverse(mat3(modelMatrix)));
vec3 normal = normalize(normalMatrix*fragNormal);
// Normalize normal and view direction vectors
vec3 n = normalize(normal);
vec3 v = normalize(viewDir);
@ -115,6 +122,17 @@ void main()
vec4 texelColor = texture(texture0, fragTexCoord);
vec3 lighting = colAmbient.rgb;
// Calculate normal texture color fetching or set to maximum normal value by default
if(useNormal == 1)
{
n *= texture(texture1, fragTexCoord).rgb;
n = normalize(n);
}
// Calculate specular texture color fetching or set to maximum specular value by default
float spec = 1.0;
if(useSpecular == 1) spec *= normalize(texture(texture2, fragTexCoord).r);
for (int i = 0; i < lightsCount; i++)
{
// Check if light is enabled
@ -123,14 +141,14 @@ void main()
// Calculate lighting based on light type
switch (lights[i].type)
{
case 0: lighting += CalcPointLight(lights[i], n, v); break;
case 1: lighting += CalcDirectionalLight(lights[i], n, v); break;
case 2: lighting += CalcSpotLight(lights[i], n, v); break;
case 0: lighting += CalcPointLight(lights[i], n, v, spec); break;
case 1: lighting += CalcDirectionalLight(lights[i], n, v, spec); break;
case 2: lighting += CalcSpotLight(lights[i], n, v, spec); break;
default: break;
}
}
}
// Calculate final fragment color
finalColor = vec4(texelColor.rgb*lighting, texelColor.a);
finalColor = vec4(texelColor.rgb*lighting*colTint.rgb, texelColor.a*colTint.a);
}