Removed oculus glfw sample (already on raylib)

Replaced by example rlgl_oculus_rift
This commit is contained in:
raysan5 2016-07-16 19:52:32 +02:00
parent 35bda8980f
commit 0ba349bdf2
24 changed files with 0 additions and 35921 deletions

View file

@ -1,196 +0,0 @@
/********************************************************************************//**
\file OVR_CAPI_Util.h
\brief This header provides LibOVR utility function declarations
\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
*************************************************************************************/
#ifndef OVR_CAPI_Util_h
#define OVR_CAPI_Util_h
#include "../OVR_CAPI.h"
#ifdef __cplusplus
extern "C" {
#endif
/// Enumerates modifications to the projection matrix based on the application's needs.
///
/// \see ovrMatrix4f_Projection
///
typedef enum ovrProjectionModifier_
{
/// Use for generating a default projection matrix that is:
/// * Right-handed.
/// * Near depth values stored in the depth buffer are smaller than far depth values.
/// * Both near and far are explicitly defined.
/// * With a clipping range that is (0 to w).
ovrProjection_None = 0x00,
/// Enable if using left-handed transformations in your application.
ovrProjection_LeftHanded = 0x01,
/// After the projection transform is applied, far values stored in the depth buffer will be less than closer depth values.
/// NOTE: Enable only if the application is using a floating-point depth buffer for proper precision.
ovrProjection_FarLessThanNear = 0x02,
/// When this flag is used, the zfar value pushed into ovrMatrix4f_Projection() will be ignored
/// NOTE: Enable only if ovrProjection_FarLessThanNear is also enabled where the far clipping plane will be pushed to infinity.
ovrProjection_FarClipAtInfinity = 0x04,
/// Enable if the application is rendering with OpenGL and expects a projection matrix with a clipping range of (-w to w).
/// Ignore this flag if your application already handles the conversion from D3D range (0 to w) to OpenGL.
ovrProjection_ClipRangeOpenGL = 0x08,
} ovrProjectionModifier;
/// Return values for ovr_Detect.
///
/// \see ovr_Detect
///
typedef struct OVR_ALIGNAS(8) ovrDetectResult_
{
/// Is ovrFalse when the Oculus Service is not running.
/// This means that the Oculus Service is either uninstalled or stopped.
/// IsOculusHMDConnected will be ovrFalse in this case.
/// Is ovrTrue when the Oculus Service is running.
/// This means that the Oculus Service is installed and running.
/// IsOculusHMDConnected will reflect the state of the HMD.
ovrBool IsOculusServiceRunning;
/// Is ovrFalse when an Oculus HMD is not detected.
/// If the Oculus Service is not running, this will be ovrFalse.
/// Is ovrTrue when an Oculus HMD is detected.
/// This implies that the Oculus Service is also installed and running.
ovrBool IsOculusHMDConnected;
OVR_UNUSED_STRUCT_PAD(pad0, 6) ///< \internal struct padding
} ovrDetectResult;
OVR_STATIC_ASSERT(sizeof(ovrDetectResult) == 8, "ovrDetectResult size mismatch");
/// Detects Oculus Runtime and Device Status
///
/// Checks for Oculus Runtime and Oculus HMD device status without loading the LibOVRRT
/// shared library. This may be called before ovr_Initialize() to help decide whether or
/// not to initialize LibOVR.
///
/// \param[in] timeoutMilliseconds Specifies a timeout to wait for HMD to be attached or 0 to poll.
///
/// \return Returns an ovrDetectResult object indicating the result of detection.
///
/// \see ovrDetectResult
///
OVR_PUBLIC_FUNCTION(ovrDetectResult) ovr_Detect(int timeoutMilliseconds);
// On the Windows platform,
#ifdef _WIN32
/// This is the Windows Named Event name that is used to check for HMD connected state.
#define OVR_HMD_CONNECTED_EVENT_NAME L"OculusHMDConnected"
#endif // _WIN32
/// Used to generate projection from ovrEyeDesc::Fov.
///
/// \param[in] fov Specifies the ovrFovPort to use.
/// \param[in] znear Distance to near Z limit.
/// \param[in] zfar Distance to far Z limit.
/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
///
/// \return Returns the calculated projection matrix.
///
/// \see ovrProjectionModifier
///
OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_Projection(ovrFovPort fov, float znear, float zfar, unsigned int projectionModFlags);
/// Extracts the required data from the result of ovrMatrix4f_Projection.
///
/// \param[in] projection Specifies the project matrix from which to extract ovrTimewarpProjectionDesc.
/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
/// \return Returns the extracted ovrTimewarpProjectionDesc.
/// \see ovrTimewarpProjectionDesc
///
OVR_PUBLIC_FUNCTION(ovrTimewarpProjectionDesc) ovrTimewarpProjectionDesc_FromProjection(ovrMatrix4f projection, unsigned int projectionModFlags);
/// Generates an orthographic sub-projection.
///
/// Used for 2D rendering, Y is down.
///
/// \param[in] projection The perspective matrix that the orthographic matrix is derived from.
/// \param[in] orthoScale Equal to 1.0f / pixelsPerTanAngleAtCenter.
/// \param[in] orthoDistance Equal to the distance from the camera in meters, such as 0.8m.
/// \param[in] HmdToEyeOffsetX Specifies the offset of the eye from the center.
///
/// \return Returns the calculated projection matrix.
///
OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_OrthoSubProjection(ovrMatrix4f projection, ovrVector2f orthoScale,
float orthoDistance, float HmdToEyeOffsetX);
/// Computes offset eye poses based on headPose returned by ovrTrackingState.
///
/// \param[in] headPose Indicates the HMD position and orientation to use for the calculation.
/// \param[in] hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
/// ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average
/// of the two vectors for both eyes.
/// \param[out] outEyePoses If outEyePoses are used for rendering, they should be passed to
/// ovr_SubmitFrame in ovrLayerEyeFov::RenderPose or ovrLayerEyeFovDepth::RenderPose.
///
OVR_PUBLIC_FUNCTION(void) ovr_CalcEyePoses(ovrPosef headPose,
const ovrVector3f hmdToEyeOffset[2],
ovrPosef outEyePoses[2]);
/// Returns the predicted head pose in outHmdTrackingState and offset eye poses in outEyePoses.
///
/// This is a thread-safe function where caller should increment frameIndex with every frame
/// and pass that index where applicable to functions called on the rendering thread.
/// Assuming outEyePoses are used for rendering, it should be passed as a part of ovrLayerEyeFov.
/// The caller does not need to worry about applying HmdToEyeOffset to the returned outEyePoses variables.
///
/// \param[in] hmd Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] frameIndex Specifies the targeted frame index, or 0 to refer to one frame after
/// the last time ovr_SubmitFrame was called.
/// \param[in] latencyMarker Specifies that this call is the point in time where
/// the "App-to-Mid-Photon" latency timer starts from. If a given ovrLayer
/// provides "SensorSampleTimestamp", that will override the value stored here.
/// \param[in] hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
/// ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average
/// of the two vectors for both eyes.
/// \param[out] outEyePoses The predicted eye poses.
/// \param[out] outSensorSampleTime The time when this function was called. May be NULL, in which case it is ignored.
///
OVR_PUBLIC_FUNCTION(void) ovr_GetEyePoses(ovrSession session, long long frameIndex, ovrBool latencyMarker,
const ovrVector3f hmdToEyeOffset[2],
ovrPosef outEyePoses[2],
double* outSensorSampleTime);
/// Tracking poses provided by the SDK come in a right-handed coordinate system. If an application
/// is passing in ovrProjection_LeftHanded into ovrMatrix4f_Projection, then it should also use
/// this function to flip the HMD tracking poses to be left-handed.
///
/// While this utility function is intended to convert a left-handed ovrPosef into a right-handed
/// coordinate system, it will also work for converting right-handed to left-handed since the
/// flip operation is the same for both cases.
///
/// \param[in] inPose that is right-handed
/// \param[out] outPose that is requested to be left-handed (can be the same pointer to inPose)
///
OVR_PUBLIC_FUNCTION(void) ovrPosef_FlipHandedness(const ovrPosef* inPose, ovrPosef* outPose);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // Header include guard

View file

@ -1,70 +0,0 @@
/************************************************************************************
Filename : OVR_StereoProjection.h
Content : Stereo projection functions
Created : November 30, 2013
Authors : Tom Fosyth
Copyright : Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
Licensed under the Oculus VR Rift SDK License Version 3.3 (the "License");
you may not use the Oculus VR Rift SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
You may obtain a copy of the License at
http://www.oculusvr.com/licenses/LICENSE-3.3
Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*************************************************************************************/
#ifndef OVR_StereoProjection_h
#define OVR_StereoProjection_h
#include "Extras/OVR_Math.h"
namespace OVR {
//-----------------------------------------------------------------------------------
// ***** Stereo Enumerations
// StereoEye specifies which eye we are rendering for; it is used to
// retrieve StereoEyeParams.
enum StereoEye
{
StereoEye_Left,
StereoEye_Right,
StereoEye_Center
};
//-----------------------------------------------------------------------------------
// ***** Propjection functions
Matrix4f CreateProjection ( bool rightHanded, bool isOpenGL, FovPort fov, StereoEye eye,
float zNear = 0.01f, float zFar = 10000.0f,
bool flipZ = false, bool farAtInfinity = false);
Matrix4f CreateOrthoSubProjection ( bool rightHanded, StereoEye eyeType,
float tanHalfFovX, float tanHalfFovY,
float unitsX, float unitsY, float distanceFromCamera,
float interpupillaryDistance, Matrix4f const &projection,
float zNear = 0.0f, float zFar = 0.0f,
bool flipZ = false, bool farAtInfinity = false);
ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort fov );
} //namespace OVR
#endif // OVR_StereoProjection_h

File diff suppressed because it is too large Load diff

View file

@ -1,76 +0,0 @@
/********************************************************************************//**
\file OVR_CAPI_Audio.h
\brief CAPI audio functions.
\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
************************************************************************************/
#ifndef OVR_CAPI_Audio_h
#define OVR_CAPI_Audio_h
#ifdef _WIN32
#include <windows.h>
#include "OVR_CAPI.h"
#define OVR_AUDIO_MAX_DEVICE_STR_SIZE 128
/// Gets the ID of the preferred VR audio output device.
///
/// \param[out] deviceOutId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutWaveId(UINT* deviceOutId);
/// Gets the ID of the preferred VR audio input device.
///
/// \param[out] deviceInId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInWaveId(UINT* deviceInId);
/// Gets the GUID of the preferred VR audio device as a string.
///
/// \param[out] deviceOutStrBuffer A buffer where the GUID string for the device will copied to.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuidStr(WCHAR deviceOutStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
/// Gets the GUID of the preferred VR audio device.
///
/// \param[out] deviceOutGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuid(GUID* deviceOutGuid);
/// Gets the GUID of the preferred VR microphone device as a string.
///
/// \param[out] deviceInStrBuffer A buffer where the GUID string for the device will copied to.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuidStr(WCHAR deviceInStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
/// Gets the GUID of the preferred VR microphone device.
///
/// \param[out] deviceInGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuid(GUID* deviceInGuid);
#endif //OVR_OS_MS
#endif // OVR_CAPI_Audio_h

View file

@ -1,155 +0,0 @@
/********************************************************************************//**
\file OVR_CAPI_D3D.h
\brief D3D specific structures used by the CAPI interface.
\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
************************************************************************************/
#ifndef OVR_CAPI_D3D_h
#define OVR_CAPI_D3D_h
#include "OVR_CAPI.h"
#include "OVR_Version.h"
#if defined (_WIN32)
#include <Unknwn.h>
//-----------------------------------------------------------------------------------
// ***** Direct3D Specific
/// Create Texture Swap Chain suitable for use with Direct3D 11 and 12.
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
/// which must be the same one the application renders to the eye textures with.
/// \param[in] desc Specifies requested texture properties. See notes for more info about texture format.
/// \param[in] bindFlags Specifies what ovrTextureBindFlags the application requires for this texture chain.
/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon a successful return value, else it will be NULL.
/// This texture chain must be eventually destroyed via ovr_DestroyTextureSwapChain before destroying the HMD with ovr_Destroy.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// \note The texture format provided in \a desc should be thought of as the format the distortion-compositor will use for the
/// ShaderResourceView when reading the contents of the texture. To that end, it is highly recommended that the application
/// requests texture swapchain formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor
/// does sRGB-correct rendering. As such, the compositor relies on the GPU's hardware sampler to do the sRGB-to-linear
/// conversion. If the application still prefers to render to a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) while handling the
/// linear-to-gamma conversion via HLSL code, then the application must still request the corresponding sRGB format and also use
/// the \a ovrTextureMisc_DX_Typeless flag in the ovrTextureSwapChainDesc's Flag field. This will allow the application to create
/// a RenderTargetView that is the desired linear format while the compositor continues to treat it as sRGB. Failure to do so
/// will cause the compositor to apply unexpected gamma conversions leading to gamma-curve artifacts. The \a ovrTextureMisc_DX_Typeless
/// flag for depth buffer formats (e.g. OVR_FORMAT_D32_FLOAT) is ignored as they are always converted to be typeless.
///
/// \see ovr_GetTextureSwapChainLength
/// \see ovr_GetTextureSwapChainCurrentIndex
/// \see ovr_GetTextureSwapChainDesc
/// \see ovr_GetTextureSwapChainBufferDX
/// \see ovr_DestroyTextureSwapChain
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainDX(ovrSession session,
IUnknown* d3dPtr,
const ovrTextureSwapChainDesc* desc,
ovrTextureSwapChain* out_TextureSwapChain);
/// Get a specific buffer within the chain as any compatible COM interface (similar to QueryInterface)
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainDX
/// \param[in] index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength),
/// or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
/// \param[in] iid Specifies the interface ID of the interface pointer to query the buffer for.
/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// <b>Example code</b>
/// \code{.cpp}
/// ovr_GetTextureSwapChainBufferDX(session, chain, 0, IID_ID3D11Texture2D, &d3d11Texture);
/// ovr_GetTextureSwapChainBufferDX(session, chain, 1, IID_PPV_ARGS(&dxgiResource));
/// \endcode
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferDX(ovrSession session,
ovrTextureSwapChain chain,
int index,
IID iid,
void** out_Buffer);
/// Create Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
///
/// A second call to ovr_CreateMirrorTextureDX for a given ovrSession before destroying the first one
/// is not supported and will result in an error return.
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
/// which must be the same one the application renders to the textures with.
/// \param[in] desc Specifies requested texture properties. See notes for more info about texture format.
/// \param[out] out_MirrorTexture Returns the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
/// This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the HMD with ovr_Destroy.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// \note The texture format provided in \a desc should be thought of as the format the compositor will use for the RenderTargetView when
/// writing into mirror texture. To that end, it is highly recommended that the application requests a mirror texture format that is
/// in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor does sRGB-correct rendering. If however the application wants
/// to still read the mirror texture as a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) and handle the sRGB-to-linear conversion in
/// HLSL code, then it is recommended the application still requests an sRGB format and also use the \a ovrTextureMisc_DX_Typeless flag in the
/// ovrMirrorTextureDesc's Flags field. This will allow the application to bind a ShaderResourceView that is a linear format while the
/// compositor continues to treat is as sRGB. Failure to do so will cause the compositor to apply unexpected gamma conversions leading to
/// gamma-curve artifacts.
///
///
/// <b>Example code</b>
/// \code{.cpp}
/// ovrMirrorTexture mirrorTexture = nullptr;
/// ovrMirrorTextureDesc mirrorDesc = {};
/// mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
/// mirrorDesc.Width = mirrorWindowWidth;
/// mirrorDesc.Height = mirrorWindowHeight;
/// ovrResult result = ovr_CreateMirrorTextureDX(session, d3d11Device, &mirrorDesc, &mirrorTexture);
/// [...]
/// // Destroy the texture when done with it.
/// ovr_DestroyMirrorTexture(session, mirrorTexture);
/// mirrorTexture = nullptr;
/// \endcode
///
/// \see ovr_GetMirrorTextureBufferDX
/// \see ovr_DestroyMirrorTexture
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureDX(ovrSession session,
IUnknown* d3dPtr,
const ovrMirrorTextureDesc* desc,
ovrMirrorTexture* out_MirrorTexture);
/// Get a the underlying buffer as any compatible COM interface (similar to QueryInterface)
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureDX
/// \param[in] iid Specifies the interface ID of the interface pointer to query the buffer for.
/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// <b>Example code</b>
/// \code{.cpp}
/// ID3D11Texture2D* d3d11Texture = nullptr;
/// ovr_GetMirrorTextureBufferDX(session, mirrorTexture, IID_PPV_ARGS(&d3d11Texture));
/// d3d11DeviceContext->CopyResource(d3d11TextureBackBuffer, d3d11Texture);
/// d3d11Texture->Release();
/// dxgiSwapChain->Present(0, 0);
/// \endcode
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferDX(ovrSession session,
ovrMirrorTexture mirrorTexture,
IID iid,
void** out_Buffer);
#endif // _WIN32
#endif // OVR_CAPI_D3D_h

View file

@ -1,99 +0,0 @@
/********************************************************************************//**
\file OVR_CAPI_GL.h
\brief OpenGL-specific structures used by the CAPI interface.
\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
************************************************************************************/
#ifndef OVR_CAPI_GL_h
#define OVR_CAPI_GL_h
#include "OVR_CAPI.h"
/// Creates a TextureSwapChain suitable for use with OpenGL.
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] desc Specifies the requested texture properties. See notes for more info about texture format.
/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon
/// a successful return value, else it will be NULL. This texture swap chain must be eventually
/// destroyed via ovr_DestroyTextureSwapChain before destroying the HMD with ovr_Destroy.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// \note The \a format provided should be thought of as the format the distortion compositor will use when reading
/// the contents of the texture. To that end, it is highly recommended that the application requests texture swap chain
/// formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the distortion compositor does sRGB-correct
/// rendering. Furthermore, the app should then make sure "glEnable(GL_FRAMEBUFFER_SRGB);" is called before rendering
/// into these textures. Even though it is not recommended, if the application would like to treat the texture as a linear
/// format and do linear-to-gamma conversion in GLSL, then the application can avoid calling "glEnable(GL_FRAMEBUFFER_SRGB);",
/// but should still pass in an sRGB variant for the \a format. Failure to do so will cause the distortion compositor
/// to apply incorrect gamma conversions leading to gamma-curve artifacts.
///
/// \see ovr_GetTextureSwapChainLength
/// \see ovr_GetTextureSwapChainCurrentIndex
/// \see ovr_GetTextureSwapChainDesc
/// \see ovr_GetTextureSwapChainBufferGL
/// \see ovr_DestroyTextureSwapChain
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainGL(ovrSession session,
const ovrTextureSwapChainDesc* desc,
ovrTextureSwapChain* out_TextureSwapChain);
/// Get a specific buffer within the chain as a GL texture name
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainGL
/// \param[in] index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength)
/// or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
/// \param[out] out_TexId Returns the GL texture object name associated with the specific index requested
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferGL(ovrSession session,
ovrTextureSwapChain chain,
int index,
unsigned int* out_TexId);
/// Creates a Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
///
/// A second call to ovr_CreateMirrorTextureGL for a given ovrSession before destroying the first one
/// is not supported and will result in an error return.
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] desc Specifies the requested mirror texture description.
/// \param[out] out_MirrorTexture Specifies the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
/// This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the HMD with ovr_Destroy.
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
/// \note The \a format provided should be thought of as the format the distortion compositor will use when writing into the mirror
/// texture. It is highly recommended that mirror textures are requested as sRGB formats because the distortion compositor
/// does sRGB-correct rendering. If the application requests a non-sRGB format (e.g. R8G8B8A8_UNORM) as the mirror texture,
/// then the application might have to apply a manual linear-to-gamma conversion when reading from the mirror texture.
/// Failure to do so can result in incorrect gamma conversions leading to gamma-curve artifacts and color banding.
///
/// \see ovr_GetMirrorTextureBufferGL
/// \see ovr_DestroyMirrorTexture
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureGL(ovrSession session,
const ovrMirrorTextureDesc* desc,
ovrMirrorTexture* out_MirrorTexture);
/// Get a the underlying buffer as a GL texture name
///
/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
/// \param[in] mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureGL
/// \param[out] out_TexId Specifies the GL texture object name associated with the mirror texture
///
/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
/// ovr_GetLastErrorInfo to get more information.
///
OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferGL(ovrSession session,
ovrMirrorTexture mirrorTexture,
unsigned int* out_TexId);
#endif // OVR_CAPI_GL_h

View file

@ -1,53 +0,0 @@
/********************************************************************************//**
\file OVR_CAPI.h
\brief Keys for CAPI proprty function calls
\copyright Copyright 2015 Oculus VR, LLC All Rights reserved.
************************************************************************************/
#ifndef OVR_CAPI_Keys_h
#define OVR_CAPI_Keys_h
#include "OVR_Version.h"
#define OVR_KEY_USER "User" // string
#define OVR_KEY_NAME "Name" // string
#define OVR_KEY_GENDER "Gender" // string "Male", "Female", or "Unknown"
#define OVR_DEFAULT_GENDER "Unknown"
#define OVR_KEY_PLAYER_HEIGHT "PlayerHeight" // float meters
#define OVR_DEFAULT_PLAYER_HEIGHT 1.778f
#define OVR_KEY_EYE_HEIGHT "EyeHeight" // float meters
#define OVR_DEFAULT_EYE_HEIGHT 1.675f
#define OVR_KEY_NECK_TO_EYE_DISTANCE "NeckEyeDistance" // float[2] meters
#define OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL 0.0805f
#define OVR_DEFAULT_NECK_TO_EYE_VERTICAL 0.075f
#define OVR_KEY_EYE_TO_NOSE_DISTANCE "EyeToNoseDist" // float[2] meters
#define OVR_PERF_HUD_MODE "PerfHudMode" // int, allowed values are defined in enum ovrPerfHudMode
#define OVR_LAYER_HUD_MODE "LayerHudMode" // int, allowed values are defined in enum ovrLayerHudMode
#define OVR_LAYER_HUD_CURRENT_LAYER "LayerHudCurrentLayer" // int, The layer to show
#define OVR_LAYER_HUD_SHOW_ALL_LAYERS "LayerHudShowAll" // bool, Hide other layers when the hud is enabled
#define OVR_DEBUG_HUD_STEREO_MODE "DebugHudStereoMode" // int, allowed values are defined in enum ovrDebugHudStereoMode
#define OVR_DEBUG_HUD_STEREO_GUIDE_INFO_ENABLE "DebugHudStereoGuideInfoEnable" // bool
#define OVR_DEBUG_HUD_STEREO_GUIDE_SIZE "DebugHudStereoGuideSize2f" // float[2]
#define OVR_DEBUG_HUD_STEREO_GUIDE_POSITION "DebugHudStereoGuidePosition3f" // float[3]
#define OVR_DEBUG_HUD_STEREO_GUIDE_YAWPITCHROLL "DebugHudStereoGuideYawPitchRoll3f" // float[3]
#define OVR_DEBUG_HUD_STEREO_GUIDE_COLOR "DebugHudStereoGuideColor4f" // float[4]
#endif // OVR_CAPI_Keys_h

View file

@ -1,209 +0,0 @@
/********************************************************************************//**
\file OVR_ErrorCode.h
\brief This header provides LibOVR error code declarations.
\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
*************************************************************************************/
#ifndef OVR_ErrorCode_h
#define OVR_ErrorCode_h
#include "OVR_Version.h"
#include <stdint.h>
#ifndef OVR_RESULT_DEFINED
#define OVR_RESULT_DEFINED ///< Allows ovrResult to be independently defined.
/// API call results are represented at the highest level by a single ovrResult.
typedef int32_t ovrResult;
#endif
/// \brief Indicates if an ovrResult indicates success.
///
/// Some functions return additional successful values other than ovrSucces and
/// require usage of this macro to indicate successs.
///
#if !defined(OVR_SUCCESS)
#define OVR_SUCCESS(result) (result >= 0)
#endif
/// \brief Indicates if an ovrResult indicates an unqualified success.
///
/// This is useful for indicating that the code intentionally wants to
/// check for result == ovrSuccess as opposed to OVR_SUCCESS(), which
/// checks for result >= ovrSuccess.
///
#if !defined(OVR_UNQUALIFIED_SUCCESS)
#define OVR_UNQUALIFIED_SUCCESS(result) (result == ovrSuccess)
#endif
/// \brief Indicates if an ovrResult indicates failure.
///
#if !defined(OVR_FAILURE)
#define OVR_FAILURE(result) (!OVR_SUCCESS(result))
#endif
// Success is a value greater or equal to 0, while all error types are negative values.
#ifndef OVR_SUCCESS_DEFINED
#define OVR_SUCCESS_DEFINED ///< Allows ovrResult to be independently defined.
typedef enum ovrSuccessType_
{
/// This is a general success result. Use OVR_SUCCESS to test for success.
ovrSuccess = 0,
/// Returned from a call to SubmitFrame. The call succeeded, but what the app
/// rendered will not be visible on the HMD. Ideally the app should continue
/// calling SubmitFrame, but not do any rendering. When the result becomes
/// ovrSuccess, rendering should continue as usual.
ovrSuccess_NotVisible = 1000,
ovrSuccess_HMDFirmwareMismatch = 4100, ///< The HMD Firmware is out of date but is acceptable.
ovrSuccess_TrackerFirmwareMismatch = 4101, ///< The Tracker Firmware is out of date but is acceptable.
ovrSuccess_ControllerFirmwareMismatch = 4104, ///< The controller firmware is out of date but is acceptable.
ovrSuccess_TrackerDriverNotFound = 4105, ///< The tracker driver interface was not found. Can be a temporary error
} ovrSuccessType;
#endif
typedef enum ovrErrorType_
{
/* General errors */
ovrError_MemoryAllocationFailure = -1000, ///< Failure to allocate memory.
ovrError_SocketCreationFailure = -1001, ///< Failure to create a socket.
ovrError_InvalidSession = -1002, ///< Invalid ovrSession parameter provided.
ovrError_Timeout = -1003, ///< The operation timed out.
ovrError_NotInitialized = -1004, ///< The system or component has not been initialized.
ovrError_InvalidParameter = -1005, ///< Invalid parameter provided. See error info or log for details.
ovrError_ServiceError = -1006, ///< Generic service error. See error info or log for details.
ovrError_NoHmd = -1007, ///< The given HMD doesn't exist.
ovrError_Unsupported = -1009, ///< Function call is not supported on this hardware/software
ovrError_DeviceUnavailable = -1010, ///< Specified device type isn't available.
ovrError_InvalidHeadsetOrientation = -1011, ///< The headset was in an invalid orientation for the requested operation (e.g. vertically oriented during ovr_RecenterPose).
ovrError_ClientSkippedDestroy = -1012, ///< The client failed to call ovr_Destroy on an active session before calling ovr_Shutdown. Or the client crashed.
ovrError_ClientSkippedShutdown = -1013, ///< The client failed to call ovr_Shutdown or the client crashed.
ovrError_ServiceDeadlockDetected = -1014, ///< The service watchdog discovered a deadlock.
/* Audio error range, reserved for Audio errors. */
ovrError_AudioReservedBegin = -2000, ///< First Audio error.
ovrError_AudioDeviceNotFound = -2001, ///< Failure to find the specified audio device.
ovrError_AudioComError = -2002, ///< Generic COM error.
ovrError_AudioReservedEnd = -2999, ///< Last Audio error.
/* Initialization errors. */
ovrError_Initialize = -3000, ///< Generic initialization error.
ovrError_LibLoad = -3001, ///< Couldn't load LibOVRRT.
ovrError_LibVersion = -3002, ///< LibOVRRT version incompatibility.
ovrError_ServiceConnection = -3003, ///< Couldn't connect to the OVR Service.
ovrError_ServiceVersion = -3004, ///< OVR Service version incompatibility.
ovrError_IncompatibleOS = -3005, ///< The operating system version is incompatible.
ovrError_DisplayInit = -3006, ///< Unable to initialize the HMD display.
ovrError_ServerStart = -3007, ///< Unable to start the server. Is it already running?
ovrError_Reinitialization = -3008, ///< Attempting to re-initialize with a different version.
ovrError_MismatchedAdapters = -3009, ///< Chosen rendering adapters between client and service do not match
ovrError_LeakingResources = -3010, ///< Calling application has leaked resources
ovrError_ClientVersion = -3011, ///< Client version too old to connect to service
ovrError_OutOfDateOS = -3012, ///< The operating system is out of date.
ovrError_OutOfDateGfxDriver = -3013, ///< The graphics driver is out of date.
ovrError_IncompatibleGPU = -3014, ///< The graphics hardware is not supported
ovrError_NoValidVRDisplaySystem = -3015, ///< No valid VR display system found.
ovrError_Obsolete = -3016, ///< Feature or API is obsolete and no longer supported.
ovrError_DisabledOrDefaultAdapter = -3017, ///< No supported VR display system found, but disabled or driverless adapter found.
ovrError_HybridGraphicsNotSupported = -3018, ///< The system is using hybrid graphics (Optimus, etc...), which is not support.
ovrError_DisplayManagerInit = -3019, ///< Initialization of the DisplayManager failed.
ovrError_TrackerDriverInit = -3020, ///< Failed to get the interface for an attached tracker
/* Hardware errors */
ovrError_InvalidBundleAdjustment = -4000, ///< Headset has no bundle adjustment data.
ovrError_USBBandwidth = -4001, ///< The USB hub cannot handle the camera frame bandwidth.
ovrError_USBEnumeratedSpeed = -4002, ///< The USB camera is not enumerating at the correct device speed.
ovrError_ImageSensorCommError = -4003, ///< Unable to communicate with the image sensor.
ovrError_GeneralTrackerFailure = -4004, ///< We use this to report various sensor issues that don't fit in an easily classifiable bucket.
ovrError_ExcessiveFrameTruncation = -4005, ///< A more than acceptable number of frames are coming back truncated.
ovrError_ExcessiveFrameSkipping = -4006, ///< A more than acceptable number of frames have been skipped.
ovrError_SyncDisconnected = -4007, ///< The sensor is not receiving the sync signal (cable disconnected?).
ovrError_TrackerMemoryReadFailure = -4008, ///< Failed to read memory from the sensor.
ovrError_TrackerMemoryWriteFailure = -4009, ///< Failed to write memory from the sensor.
ovrError_TrackerFrameTimeout = -4010, ///< Timed out waiting for a camera frame.
ovrError_TrackerTruncatedFrame = -4011, ///< Truncated frame returned from sensor.
ovrError_TrackerDriverFailure = -4012, ///< The sensor driver has encountered a problem.
ovrError_TrackerNRFFailure = -4013, ///< The sensor wireless subsystem has encountered a problem.
ovrError_HardwareGone = -4014, ///< The hardware has been unplugged
ovrError_NordicEnabledNoSync = -4015, ///< The nordic indicates that sync is enabled but it is not sending sync pulses
ovrError_NordicSyncNoFrames = -4016, ///< It looks like we're getting a sync signal, but no camera frames have been received
ovrError_CatastrophicFailure = -4017, ///< A catastrophic failure has occurred. We will attempt to recover by resetting the device
ovrError_CatastrophicTimeout = -4018, ///< The catastrophic recovery has timed out.
ovrError_RepeatCatastrophicFail = -4019, ///< Catastrophic failure has repeated too many times.
ovrError_USBOpenDeviceFailure = -4020, ///< Could not open handle for Rift device (likely already in use by another process).
ovrError_HMDGeneralFailure = -4021, ///< Unexpected HMD issues that don't fit a specific bucket.
ovrError_HMDFirmwareMismatch = -4100, ///< The HMD Firmware is out of date and is unacceptable.
ovrError_TrackerFirmwareMismatch = -4101, ///< The sensor Firmware is out of date and is unacceptable.
ovrError_BootloaderDeviceDetected = -4102, ///< A bootloader HMD is detected by the service.
ovrError_TrackerCalibrationError = -4103, ///< The sensor calibration is missing or incorrect.
ovrError_ControllerFirmwareMismatch = -4104, ///< The controller firmware is out of date and is unacceptable.
ovrError_DevManDeviceDetected = -4105, ///< A DeviceManagement mode HMD is detected by the service.
ovrError_RebootedBootloaderDevice = -4106, ///< Had to reboot bootloader device, which succeeded.
ovrError_FailedRebootBootloaderDev = -4107, ///< Had to reboot bootloader device, which failed. Device is stuck in bootloader mode.
ovrError_IMUTooManyLostSamples = -4200, ///< Too many lost IMU samples.
ovrError_IMURateError = -4201, ///< IMU rate is outside of the expected range.
ovrError_FeatureReportFailure = -4202, ///< A feature report has failed.
ovrError_HMDWirelessTimeout = -4203, ///< HMD wireless interface never returned from busy state.
ovrError_BootloaderAssertLog = -4300, ///< HMD Bootloader Assert Log was not empty.
ovrError_AppAssertLog = -4301, ///< HMD App Assert Log was not empty.
/* Synchronization errors */
ovrError_Incomplete = -5000, ///< Requested async work not yet complete.
ovrError_Abandoned = -5001, ///< Requested async work was abandoned and result is incomplete.
/* Rendering errors */
ovrError_DisplayLost = -6000, ///< In the event of a system-wide graphics reset or cable unplug this is returned to the app.
ovrError_TextureSwapChainFull = -6001, ///< ovr_CommitTextureSwapChain was called too many times on a texture swapchain without calling submit to use the chain.
ovrError_TextureSwapChainInvalid = -6002, ///< The ovrTextureSwapChain is in an incomplete or inconsistent state. Ensure ovr_CommitTextureSwapChain was called at least once first.
ovrError_GraphicsDeviceReset = -6003, ///< Graphics device has been reset (TDR, etc...)
ovrError_DisplayRemoved = -6004, ///< HMD removed from the display adapter
ovrError_ContentProtectionNotAvailable = -6005,///<Content protection is not available for the display
ovrError_ApplicationInvisible = -6006, ///< Application declared itself as an invisible type and is not allowed to submit frames.
ovrError_Disallowed = -6007, ///< The given request is disallowed under the current conditions.
ovrError_DisplayPluggedIncorrectly = -6008, ///< Display portion of HMD is plugged into an incompatible port (ex: IGP)
/* Fatal errors */
ovrError_RuntimeException = -7000, ///< A runtime exception occurred. The application is required to shutdown LibOVR and re-initialize it before this error state will be cleared.
ovrError_MetricsUnknownApp = -90000,
ovrError_MetricsDuplicateApp = -90001,
ovrError_MetricsNoEvents = -90002,
ovrError_MetricsRuntime = -90003,
ovrError_MetricsFile = -90004,
ovrError_MetricsNoClientInfo = -90005,
ovrError_MetricsNoAppMetaData = -90006,
ovrError_MetricsNoApp = -90007,
ovrError_MetricsOafFailure = -90008,
ovrError_MetricsSessionAlreadyActive = -90009,
ovrError_MetricsSessionNotActive = -90010,
} ovrErrorType;
/// Provides information about the last error.
/// \see ovr_GetLastErrorInfo
typedef struct ovrErrorInfo_
{
ovrResult Result; ///< The result from the last API call that generated an error ovrResult.
char ErrorString[512]; ///< A UTF8-encoded null-terminated English string describing the problem. The format of this string is subject to change in future versions.
} ovrErrorInfo;
#endif /* OVR_ErrorCode_h */

View file

@ -1,60 +0,0 @@
/********************************************************************************//**
\file OVR_Version.h
\brief This header provides LibOVR version identification.
\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
*************************************************************************************/
#ifndef OVR_Version_h
#define OVR_Version_h
/// Conventional string-ification macro.
#if !defined(OVR_STRINGIZE)
#define OVR_STRINGIZEIMPL(x) #x
#define OVR_STRINGIZE(x) OVR_STRINGIZEIMPL(x)
#endif
// Master version numbers
#define OVR_PRODUCT_VERSION 1 // Product version doesn't participate in semantic versioning.
#define OVR_MAJOR_VERSION 1 // If you change these values then you need to also make sure to change LibOVR/Projects/Windows/LibOVR.props in parallel.
#define OVR_MINOR_VERSION 4 //
#define OVR_PATCH_VERSION 0
#define OVR_BUILD_NUMBER 0
// This is the ((product * 100) + major) version of the service that the DLL is compatible with.
// When we backport changes to old versions of the DLL we update the old DLLs
// to move this version number up to the latest version.
// The DLL is responsible for checking that the service is the version it supports
// and returning an appropriate error message if it has not been made compatible.
#define OVR_DLL_COMPATIBLE_VERSION 101
#define OVR_FEATURE_VERSION 0
/// "Major.Minor.Patch"
#if !defined(OVR_VERSION_STRING)
#define OVR_VERSION_STRING OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION)
#endif
/// "Major.Minor.Patch.Build"
#if !defined(OVR_DETAILED_VERSION_STRING)
#define OVR_DETAILED_VERSION_STRING OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION.OVR_BUILD_NUMBER)
#endif
/// \brief file description for version info
/// This appears in the user-visible file properties. It is intended to convey publicly
/// available additional information such as feature builds.
#if !defined(OVR_FILE_DESCRIPTION_STRING)
#if defined(_DEBUG)
#define OVR_FILE_DESCRIPTION_STRING "dev build debug"
#else
#define OVR_FILE_DESCRIPTION_STRING "dev build"
#endif
#endif
#endif // OVR_Version_h

View file

@ -1,26 +0,0 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvpMatrix;
// Output vertex attributes (to fragment shader)
out vec2 fragTexCoord;
out vec4 fragColor;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0);
}

View file

@ -1,59 +0,0 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
// Input uniform values
uniform sampler2D texture0;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
const vec2 LeftLensCenter = vec2(0.2863248, 0.5);
const vec2 RightLensCenter = vec2(0.7136753, 0.5);
const vec2 LeftScreenCenter = vec2(0.25, 0.5);
const vec2 RightScreenCenter = vec2(0.75, 0.5);
const vec2 Scale = vec2(0.25, 0.45); //vec2(0.1469278, 0.2350845);
const vec2 ScaleIn = vec2(4, 2.2222);
const vec4 HmdWarpParam = vec4(1, 0.22, 0.24, 0);
/*
// Another set of default values
ChromaAbCorrection = {1.0, 0.0, 1.0, 0}
DistortionK = {1.0, 0.22, 0.24, 0}
Scale = {0.25, 0.5*AspectRatio, 0, 0}
ScaleIn = {4.0, 2/AspectRatio, 0, 0}
Left Screen Center = {0.25, 0.5, 0, 0}
Left Lens Center = {0.287994117, 0.5, 0, 0}
Right Screen Center = {0.75, 0.5, 0, 0}
Right Lens Center = {0.712005913, 0.5, 0, 0}
*/
// Scales input texture coordinates for distortion.
vec2 HmdWarp(vec2 in01, vec2 LensCenter)
{
vec2 theta = (in01 - LensCenter)*ScaleIn; // Scales to [-1, 1]
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 rvector = theta*(HmdWarpParam.x + HmdWarpParam.y*rSq + HmdWarpParam.z*rSq*rSq + HmdWarpParam.w*rSq*rSq*rSq);
return LensCenter + Scale*rvector;
}
void main()
{
// SOURCE: http://www.mtbs3d.com/phpbb/viewtopic.php?f=140&t=17081
// The following two variables need to be set per eye
vec2 LensCenter = gl_FragCoord.x < 540 ? LeftLensCenter : RightLensCenter;
vec2 ScreenCenter = gl_FragCoord.x < 540 ? LeftScreenCenter : RightScreenCenter;
vec2 tc = HmdWarp(fragTexCoord, LensCenter);
if (any(bvec2(clamp(tc,ScreenCenter-vec2(0.25,0.5), ScreenCenter+vec2(0.25,0.5)) - tc))) finalColor = vec4(0.0, 0.0, 0.0, 1.0);
else
{
//tc.x = gl_FragCoord.x < 640 ? (2.0 * tc.x) : (2.0 * (tc.x - 0.5));
finalColor = texture2D(texture0, tc);
}
}

File diff suppressed because one or more lines are too long

View file

@ -1,738 +0,0 @@
/*******************************************************************************************
*
* raylib Oculus minimum sample (OpenGL 3.3 Core)
*
* NOTE: This example requires raylib module [rlgl]
*
* Compile rlgl module using:
* gcc -c rlgl.c -Wall -std=c99 -DRLGL_STANDALONE -DRAYMATH_IMPLEMENTATION -DGRAPHICS_API_OPENGL_33
*
* Compile example using:
* gcc -o oculus_glfw_sample.exe oculus_glfw_sample.c rlgl.o -L. -lLibOVRRT32_1 -lglfw3 -lopengl32 -lgdi32 -std=c99
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "glad.h"
#include <GLFW/glfw3.h> // Windows/Context and inputs management
#define RLGL_STANDALONE
#include "rlgl.h" // rlgl library: OpenGL 1.1 immediate-mode style coding
#define PLATFORM_OCULUS
#if defined(PLATFORM_OCULUS)
#include "OculusSDK/LibOVR/Include/OVR_CAPI_GL.h" // Oculus SDK for OpenGL
#endif
#if defined(PLATFORM_OCULUS)
// OVR device variables
ovrSession session;
ovrHmdDesc hmdDesc;
ovrGraphicsLuid luid;
#endif
unsigned int frameIndex = 0;
#define RED (Color){ 230, 41, 55, 255 } // Red
#define MAROON (Color){ 190, 33, 55, 255 } // Maroon
#define RAYWHITE (Color){ 245, 245, 245, 255 } // My own White (raylib logo)
#define DARKGRAY (Color){ 80, 80, 80, 255 } // Dark Gray
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#if defined(PLATFORM_OCULUS)
typedef struct OculusBuffer {
ovrTextureSwapChain textureChain;
GLuint depthId;
GLuint fboId;
int width;
int height;
} OculusBuffer;
typedef struct OculusMirror {
ovrMirrorTexture texture;
GLuint fboId;
int width;
int height;
} OculusMirror;
typedef struct OculusLayer {
ovrViewScaleDesc viewScaleDesc;
ovrLayerEyeFov eyeLayer; // layer 0
//ovrLayerQuad quadLayer; // TODO: layer 1: '2D' quad for GUI
Matrix eyeProjections[2];
int width;
int height;
} OculusLayer;
#endif
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void ErrorCallback(int error, const char* description);
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods);
// Drawing functions (uses rlgl functionality)
static void DrawGrid(int slices, float spacing);
static void DrawCube(Vector3 position, float width, float height, float length, Color color);
static void DrawCubeWires(Vector3 position, float width, float height, float length, Color color);
static void DrawRectangleV(Vector2 position, Vector2 size, Color color);
#if defined(PLATFORM_OCULUS)
// Oculus Rift functions
static Matrix FromOvrMatrix(ovrMatrix4f ovrM);
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height);
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer);
static void SetOculusBuffer(ovrSession session, OculusBuffer buffer);
static void UnsetOculusBuffer(OculusBuffer buffer);
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height); // Load Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror); // Unload Oculus mirror buffers
static void BlitOculusMirror(ovrSession session, OculusMirror mirror);
static OculusLayer InitOculusLayer(ovrSession session);
#endif
//----------------------------------------------------------------------------------
// Main Entry point
//----------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 1080; // Mirror screen width (set to hmdDesc.Resolution.w/2)
int screenHeight = 600; // Mirror screen height (set to hmdDesc.Resolution.h/2)
// NOTE: Mirror screen size can be set to any desired resolution!
// GLFW3 Initialization + OpenGL 3.3 Context + Extensions
//--------------------------------------------------------
glfwSetErrorCallback(ErrorCallback);
if (!glfwInit())
{
TraceLog(WARNING, "GLFW3: Can not initialize GLFW");
return 1;
}
else TraceLog(INFO, "GLFW3: GLFW initialized successfully");
glfwWindowHint(GLFW_DEPTH_BITS, 16);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, GL_TRUE);
GLFWwindow *window = glfwCreateWindow(screenWidth, screenHeight, "raylib oculus sample", NULL, NULL);
if (!window)
{
glfwTerminate();
return 2;
}
else TraceLog(INFO, "GLFW3: Window created successfully");
glfwSetKeyCallback(window, KeyCallback);
glfwMakeContextCurrent(window);
glfwSwapInterval(0);
// Load OpenGL 3.3 extensions
rlglLoadExtensions(glfwGetProcAddress);
// Initialize rlgl internal buffers and OpenGL state
rlglInit();
rlglInitGraphics(0, 0, screenWidth, screenHeight);
rlClearColor(245, 245, 245, 255); // Define clear color
rlEnableDepthTest(); // Enable DEPTH_TEST for 3D
//--------------------------------------------------------
#if defined(PLATFORM_OCULUS)
ovrResult result = ovr_Initialize(NULL);
if (OVR_FAILURE(result)) TraceLog(ERROR, "OVR: Could not initialize Oculus device");
result = ovr_Create(&session, &luid);
if (OVR_FAILURE(result))
{
TraceLog(WARNING, "OVR: Could not create Oculus session");
ovr_Shutdown();
}
hmdDesc = ovr_GetHmdDesc(session);
TraceLog(INFO, "OVR: Product Name: %s", hmdDesc.ProductName);
TraceLog(INFO, "OVR: Manufacturer: %s", hmdDesc.Manufacturer);
TraceLog(INFO, "OVR: Product ID: %i", hmdDesc.ProductId);
TraceLog(INFO, "OVR: Product Type: %i", hmdDesc.Type);
TraceLog(INFO, "OVR: Serian Number: %s", hmdDesc.SerialNumber);
TraceLog(INFO, "OVR: Resolution: %ix%i", hmdDesc.Resolution.w, hmdDesc.Resolution.h);
//screenWidth = hmdDesc.Resolution.w/2;
//screenHeight = hmdDesc.Resolution.h/2;
// Initialize Oculus Buffers
OculusLayer layer = InitOculusLayer(session);
OculusBuffer buffer = LoadOculusBuffer(session, layer.width, layer.height);
OculusMirror mirror = LoadOculusMirror(session, screenWidth, screenHeight);
layer.eyeLayer.ColorTexture[0] = buffer.textureChain; //SetOculusLayerTexture(eyeLayer, buffer.textureChain);
// Recenter OVR tracking origin
ovr_RecenterTrackingOrigin(session);
#endif
Camera camera;
camera.position = (Vector3){ 5.0f, 5.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 0.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 45.0f; // Camera field-of-view Y
Vector3 cubePosition = { 0.0f, 0.0f, 0.0f };
//--------------------------------------------------------------------------------------
// Main game loop
while (!glfwWindowShouldClose(window))
{
// Update
//----------------------------------------------------------------------------------
#if defined(PLATFORM_OCULUS)
frameIndex++;
ovrPosef eyePoses[2];
ovr_GetEyePoses(session, frameIndex, ovrTrue, layer.viewScaleDesc.HmdToEyeOffset, eyePoses, &layer.eyeLayer.SensorSampleTime);
layer.eyeLayer.RenderPose[0] = eyePoses[0];
layer.eyeLayer.RenderPose[1] = eyePoses[1];
#endif
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
#if defined(PLATFORM_OCULUS)
SetOculusBuffer(session, buffer);
#endif
rlClearScreenBuffers(); // Clear current framebuffer(s)
#if defined(PLATFORM_OCULUS)
for (int eye = 0; eye < 2; eye++)
{
rlViewport(layer.eyeLayer.Viewport[eye].Pos.x, layer.eyeLayer.Viewport[eye].Pos.y, layer.eyeLayer.Viewport[eye].Size.w, layer.eyeLayer.Viewport[eye].Size.h);
Quaternion eyeRPose = (Quaternion){ layer.eyeLayer.RenderPose[eye].Orientation.x,
layer.eyeLayer.RenderPose[eye].Orientation.y,
layer.eyeLayer.RenderPose[eye].Orientation.z,
layer.eyeLayer.RenderPose[eye].Orientation.w };
QuaternionInvert(&eyeRPose);
Matrix eyeOrientation = QuaternionToMatrix(eyeRPose);
Matrix eyeTranslation = MatrixTranslate(-layer.eyeLayer.RenderPose[eye].Position.x,
-layer.eyeLayer.RenderPose[eye].Position.y,
-layer.eyeLayer.RenderPose[eye].Position.z);
Matrix eyeView = MatrixMultiply(eyeTranslation, eyeOrientation);
Matrix modelview = MatrixMultiply(matView, eyeView);
SetMatrixModelview(modelview);
SetMatrixProjection(layer.eyeProjections[eye]);
#else
// Calculate projection matrix (from perspective) and view matrix from camera look at
Matrix matProj = MatrixPerspective(camera.fovy, (double)screenWidth/(double)screenHeight, 0.01, 1000.0);
MatrixTranspose(&matProj);
SetMatrixModelview(matView); // Replace internal modelview matrix by a custom one
SetMatrixProjection(matProj); // Replace internal projection matrix by a custom one
#endif
DrawCube(cubePosition, 2.0f, 2.0f, 2.0f, RED);
DrawCubeWires(cubePosition, 2.0f, 2.0f, 2.0f, RAYWHITE);
DrawGrid(10, 1.0f);
// NOTE: Internal buffers drawing (3D data)
rlglDraw();
#if !defined(PLATFORM_OCULUS)
// Draw '2D' elements in the scene (GUI)
// TODO: 2D drawing on Oculus Rift: requires an ovrLayerQuad layer
rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix
rlLoadIdentity(); // Reset internal projection matrix
rlOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix
rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix
rlLoadIdentity(); // Reset internal modelview matrix
DrawRectangleV((Vector2){ 10.0f, 10.0f }, (Vector2){ 600.0f, 20.0f }, DARKGRAY);
// NOTE: Internal buffers drawing (2D data)
rlglDraw();
#endif
#if defined(PLATFORM_OCULUS)
}
UnsetOculusBuffer(buffer);
ovr_CommitTextureSwapChain(session, buffer.textureChain);
ovrLayerHeader *layers = &layer.eyeLayer.Header;
ovr_SubmitFrame(session, frameIndex, &layer.viewScaleDesc, &layers, 1);
// Blit mirror texture to back buffer
BlitOculusMirror(session, mirror);
// Get session status information
ovrSessionStatus sessionStatus;
ovr_GetSessionStatus(session, &sessionStatus);
if (sessionStatus.ShouldQuit) TraceLog(WARNING, "OVR: Session should quit...");
if (sessionStatus.ShouldRecenter) ovr_RecenterTrackingOrigin(session);
#endif
glfwSwapBuffers(window);
glfwPollEvents();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
#if defined(PLATFORM_OCULUS)
UnloadOculusMirror(session, mirror); // Unload Oculus mirror buffer
UnloadOculusBuffer(session, buffer); // Unload Oculus texture buffers
ovr_Destroy(session); // Must be called after glfwTerminate() --> no
ovr_Shutdown();
#endif
rlglClose(); // Unload rlgl internal buffers and default shader/texture
glfwDestroyWindow(window);
glfwTerminate();
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definitions
//----------------------------------------------------------------------------------
// GLFW3: Error callback
static void ErrorCallback(int error, const char* description)
{
TraceLog(ERROR, description);
}
// GLFW3: Keyboard callback
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
// Draw rectangle using rlgl OpenGL 1.1 style coding (translated to OpenGL 3.3 internally)
static void DrawRectangleV(Vector2 position, Vector2 size, Color color)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
static void DrawGrid(int slices, float spacing)
{
int halfSlices = slices / 2;
rlBegin(RL_LINES);
for(int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Be careful! Function order matters (rotate -> scale -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlScalef(2.0f, 2.0f, 2.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Back Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Top Face -------------------------------------------------------
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
// Bottom Face ----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
// Right face -----------------------------------------------------
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
// Left Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
// Back Face ------------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
// Top Face -------------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
// Bottom Face ---------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
rlEnd();
rlPopMatrix();
}
#if defined(PLATFORM_OCULUS)
// Convert from Oculus ovrMatrix4f struct to raymath Matrix struct
static Matrix FromOvrMatrix(ovrMatrix4f ovrmat)
{
Matrix rmat;
rmat.m0 = ovrmat.M[0][0];
rmat.m1 = ovrmat.M[1][0];
rmat.m2 = ovrmat.M[2][0];
rmat.m3 = ovrmat.M[3][0];
rmat.m4 = ovrmat.M[0][1];
rmat.m5 = ovrmat.M[1][1];
rmat.m6 = ovrmat.M[2][1];
rmat.m7 = ovrmat.M[3][1];
rmat.m8 = ovrmat.M[0][2];
rmat.m9 = ovrmat.M[1][2];
rmat.m10 = ovrmat.M[2][2];
rmat.m11 = ovrmat.M[3][2];
rmat.m12 = ovrmat.M[0][3];
rmat.m13 = ovrmat.M[1][3];
rmat.m14 = ovrmat.M[2][3];
rmat.m15 = ovrmat.M[3][3];
MatrixTranspose(&rmat);
return rmat;
}
// Load Oculus required buffers: texture-swap-chain, fbo, texture-depth
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height)
{
OculusBuffer buffer;
buffer.width = width;
buffer.height = height;
// Create OVR texture chain
ovrTextureSwapChainDesc desc = {};
desc.Type = ovrTexture_2D;
desc.ArraySize = 1;
desc.Width = width;
desc.Height = height;
desc.MipLevels = 1;
desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB; // Requires glEnable(GL_FRAMEBUFFER_SRGB);
desc.SampleCount = 1;
desc.StaticImage = ovrFalse;
ovrResult result = ovr_CreateTextureSwapChainGL(session, &desc, &buffer.textureChain);
if (!OVR_SUCCESS(result)) TraceLog(WARNING, "OVR: Failed to create swap textures buffer");
int textureCount = 0;
ovr_GetTextureSwapChainLength(session, buffer.textureChain, &textureCount);
if (!OVR_SUCCESS(result) || !textureCount) TraceLog(WARNING, "OVR: Unable to count swap chain textures");
for (int i = 0; i < textureCount; ++i)
{
GLuint chainTexId;
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, i, &chainTexId);
glBindTexture(GL_TEXTURE_2D, chainTexId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
glBindTexture(GL_TEXTURE_2D, 0);
/*
// Setup framebuffer object (using depth texture)
glGenFramebuffers(1, &buffer.fboId);
glGenTextures(1, &buffer.depthId);
glBindTexture(GL_TEXTURE_2D, buffer.depthId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, buffer.width, buffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
*/
// Setup framebuffer object (using depth renderbuffer)
glGenFramebuffers(1, &buffer.fboId);
glGenRenderbuffers(1, &buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glBindRenderbuffer(GL_RENDERBUFFER, buffer.depthId);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, buffer.width, buffer.height);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
return buffer;
}
// Unload texture required buffers
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer)
{
if (buffer.textureChain)
{
ovr_DestroyTextureSwapChain(session, buffer.textureChain);
buffer.textureChain = NULL;
}
if (buffer.depthId != 0) glDeleteTextures(1, &buffer.depthId);
if (buffer.fboId != 0) glDeleteFramebuffers(1, &buffer.fboId);
}
// Set current Oculus buffer
static void SetOculusBuffer(ovrSession session, OculusBuffer buffer)
{
GLuint currentTexId;
int currentIndex;
ovr_GetTextureSwapChainCurrentIndex(session, buffer.textureChain, &currentIndex);
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, currentIndex, &currentTexId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, currentTexId, 0);
//glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, buffer.depthId, 0); // Already binded
//glViewport(0, 0, buffer.width, buffer.height); // Useful if rendering to separate framebuffers (every eye)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Same as rlClearScreenBuffers()
// NOTE: If your application is configured to treat the texture as a linear format (e.g. GL_RGBA)
// and performs linear-to-gamma conversion in GLSL or does not care about gamma-correction, then:
// - Require OculusBuffer format to be OVR_FORMAT_R8G8B8A8_UNORM_SRGB
// - Do NOT enable GL_FRAMEBUFFER_SRGB
//glEnable(GL_FRAMEBUFFER_SRGB);
}
// Unset Oculus buffer
static void UnsetOculusBuffer(OculusBuffer buffer)
{
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
// Load Oculus mirror buffers
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height)
{
OculusMirror mirror;
mirror.width = width;
mirror.height = height;
ovrMirrorTextureDesc mirrorDesc;
memset(&mirrorDesc, 0, sizeof(mirrorDesc));
mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
mirrorDesc.Width = mirror.width;
mirrorDesc.Height = mirror.height;
if (!OVR_SUCCESS(ovr_CreateMirrorTextureGL(session, &mirrorDesc, &mirror.texture))) TraceLog(WARNING, "Could not create mirror texture");
glGenFramebuffers(1, &mirror.fboId);
return mirror;
}
// Unload Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror)
{
if (mirror.fboId != 0) glDeleteFramebuffers(1, &mirror.fboId);
if (mirror.texture) ovr_DestroyMirrorTexture(session, mirror.texture);
}
static void BlitOculusMirror(ovrSession session, OculusMirror mirror)
{
GLuint mirrorTextureId;
ovr_GetMirrorTextureBufferGL(session, mirror.texture, &mirrorTextureId);
glBindFramebuffer(GL_READ_FRAMEBUFFER, mirror.fboId);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTextureId, 0);
glBlitFramebuffer(0, 0, mirror.width, mirror.height, 0, mirror.height, mirror.width, 0, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
}
// Requires: session, hmdDesc
static OculusLayer InitOculusLayer(ovrSession session)
{
OculusLayer layer = { 0 };
layer.viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;
memset(&layer.eyeLayer, 0, sizeof(ovrLayerEyeFov));
layer.eyeLayer.Header.Type = ovrLayerType_EyeFov;
layer.eyeLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
ovrEyeRenderDesc eyeRenderDescs[2];
for (int eye = 0; eye < 2; eye++)
{
eyeRenderDescs[eye] = ovr_GetRenderDesc(session, eye, hmdDesc.DefaultEyeFov[eye]);
ovrMatrix4f ovrPerspectiveProjection = ovrMatrix4f_Projection(eyeRenderDescs[eye].Fov, 0.01f, 10000.0f, ovrProjection_None); //ovrProjection_ClipRangeOpenGL);
layer.eyeProjections[eye] = FromOvrMatrix(ovrPerspectiveProjection); // NOTE: struct ovrMatrix4f { float M[4][4] } --> struct Matrix
layer.viewScaleDesc.HmdToEyeOffset[eye] = eyeRenderDescs[eye].HmdToEyeOffset;
layer.eyeLayer.Fov[eye] = eyeRenderDescs[eye].Fov;
ovrSizei eyeSize = ovr_GetFovTextureSize(session, eye, layer.eyeLayer.Fov[eye], 1.0f);
layer.eyeLayer.Viewport[eye].Size = eyeSize;
layer.eyeLayer.Viewport[eye].Pos.x = layer.width;
layer.eyeLayer.Viewport[eye].Pos.y = 0;
layer.height = eyeSize.h; //std::max(renderTargetSize.y, (uint32_t)eyeSize.h);
layer.width += eyeSize.w;
}
return layer;
}
#endif

Binary file not shown.

Before

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 340 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 167 KiB

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,363 +0,0 @@
/**********************************************************************************************
*
* rlgl - raylib OpenGL abstraction layer
*
* raylib now uses OpenGL 1.1 style functions (rlVertex) that are mapped to selected OpenGL version:
* OpenGL 1.1 - Direct map rl* -> gl*
* OpenGL 3.3 - Vertex data is stored in VAOs, call rlglDraw() to render
* OpenGL ES 2 - Vertex data is stored in VBOs or VAOs (when available), call rlglDraw() to render
*
* Copyright (c) 2014 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RLGL_H
#define RLGL_H
//#define RLGL_STANDALONE // NOTE: To use rlgl as standalone lib, just uncomment this line
#ifndef RLGL_STANDALONE
#include "raylib.h" // Required for: Model, Shader, Texture2D
#include "utils.h" // Required for: TraceLog()
#endif
#ifdef RLGL_STANDALONE
#define RAYMATH_STANDALONE
#endif
#include "raymath.h" // Required for: Vector3, Matrix
// Select desired OpenGL version
// NOTE: Those preprocessor defines are only used on rlgl module,
// if OpenGL version is required by any other module, it uses rlGetVersion()
// Choose opengl version here or just define it at compile time: -DGRAPHICS_API_OPENGL_33
//#define GRAPHICS_API_OPENGL_11 // Only available on PLATFORM_DESKTOP
//#define GRAPHICS_API_OPENGL_33 // Only available on PLATFORM_DESKTOP or Oculus Rift CV1
//#define GRAPHICS_API_OPENGL_ES2 // Only available on PLATFORM_ANDROID or PLATFORM_RPI or PLATFORM_WEB
// Security check in case no GRAPHICS_API_OPENGL_* defined
#if !defined(GRAPHICS_API_OPENGL_11) && !defined(GRAPHICS_API_OPENGL_33) && !defined(GRAPHICS_API_OPENGL_ES2)
#define GRAPHICS_API_OPENGL_11
#endif
// Security check in case multiple GRAPHICS_API_OPENGL_* defined
#if defined(GRAPHICS_API_OPENGL_11)
#if defined(GRAPHICS_API_OPENGL_33)
#undef GRAPHICS_API_OPENGL_33
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#undef GRAPHICS_API_OPENGL_ES2
#endif
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: This is the maximum amount of lines, triangles and quads per frame, be careful!
#define MAX_LINES_BATCH 8192
#define MAX_TRIANGLES_BATCH 4096
#define MAX_QUADS_BATCH 4096
#elif defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: Reduce memory sizes for embedded systems (RPI and HTML5)
// NOTE: On HTML5 (emscripten) this is allocated on heap, by default it's only 16MB!...just take care...
#define MAX_LINES_BATCH 1024 // Critical for wire shapes (sphere)
#define MAX_TRIANGLES_BATCH 2048 // Critical for some shapes (sphere)
#define MAX_QUADS_BATCH 1024 // Be careful with text, every letter maps a quad
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
typedef enum { RL_PROJECTION, RL_MODELVIEW, RL_TEXTURE } MatrixMode;
typedef enum { RL_LINES, RL_TRIANGLES, RL_QUADS } DrawMode;
typedef enum { OPENGL_11 = 1, OPENGL_33, OPENGL_ES_20 } GlVersion;
#if defined(RLGL_STANDALONE)
#ifndef __cplusplus
// Boolean type
typedef enum { false, true } bool;
#endif
// byte type
typedef unsigned char byte;
// Color type, RGBA (32bit)
typedef struct Color {
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
} Color;
// Texture formats (support depends on OpenGL version)
typedef enum {
UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha)
UNCOMPRESSED_GRAY_ALPHA,
UNCOMPRESSED_R5G6B5, // 16 bpp
UNCOMPRESSED_R8G8B8, // 24 bpp
UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha)
UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha)
UNCOMPRESSED_R8G8B8A8, // 32 bpp
COMPRESSED_DXT1_RGB, // 4 bpp (no alpha)
COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha)
COMPRESSED_DXT3_RGBA, // 8 bpp
COMPRESSED_DXT5_RGBA, // 8 bpp
COMPRESSED_ETC1_RGB, // 4 bpp
COMPRESSED_ETC2_RGB, // 4 bpp
COMPRESSED_ETC2_EAC_RGBA, // 8 bpp
COMPRESSED_PVRT_RGB, // 4 bpp
COMPRESSED_PVRT_RGBA, // 4 bpp
COMPRESSED_ASTC_4x4_RGBA, // 8 bpp
COMPRESSED_ASTC_8x8_RGBA // 2 bpp
} TextureFormat;
// Vertex data definning a mesh
typedef struct Mesh {
int vertexCount; // number of vertices stored in arrays
int triangleCount; // number of triangles stored (indexed or not)
float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0)
float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1)
float *texcoords2; // vertex second texture coordinates (useful for lightmaps) (shader-location = 5)
float *normals; // vertex normals (XYZ - 3 components per vertex) (shader-location = 2)
float *tangents; // vertex tangents (XYZ - 3 components per vertex) (shader-location = 4)
unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3)
unsigned short *indices;// vertex indices (in case vertex data comes indexed)
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int vboId[7]; // OpenGL Vertex Buffer Objects id (7 types of vertex data)
} Mesh;
// Shader type (generic shader)
typedef struct Shader {
unsigned int id; // Shader program id
// Vertex attributes locations (default locations)
int vertexLoc; // Vertex attribute location point (default-location = 0)
int texcoordLoc; // Texcoord attribute location point (default-location = 1)
int normalLoc; // Normal attribute location point (default-location = 2)
int colorLoc; // Color attibute location point (default-location = 3)
int tangentLoc; // Tangent attribute location point (default-location = 4)
int texcoord2Loc; // Texcoord2 attribute location point (default-location = 5)
// Uniform locations
int mvpLoc; // ModelView-Projection matrix uniform location point (vertex shader)
int tintColorLoc; // Color uniform location point (fragment shader)
// Texture map locations (generic for any kind of map)
int mapTexture0Loc; // Map texture uniform location point (default-texture-unit = 0)
int mapTexture1Loc; // Map texture uniform location point (default-texture-unit = 1)
int mapTexture2Loc; // Map texture uniform location point (default-texture-unit = 2)
} Shader;
// Texture2D type
// NOTE: Data stored in GPU memory
typedef struct Texture2D {
unsigned int id; // OpenGL texture id
int width; // Texture base width
int height; // Texture base height
int mipmaps; // Mipmap levels, 1 by default
int format; // Data format (TextureFormat)
} Texture2D;
// RenderTexture2D type, for texture rendering
typedef struct RenderTexture2D {
unsigned int id; // Render texture (fbo) id
Texture2D texture; // Color buffer attachment texture
Texture2D depth; // Depth buffer attachment texture
} RenderTexture2D;
// Material type
typedef struct Material {
Shader shader; // Standard shader (supports 3 map types: diffuse, normal, specular)
Texture2D texDiffuse; // Diffuse texture
Texture2D texNormal; // Normal texture
Texture2D texSpecular; // Specular texture
Color colDiffuse; // Diffuse color
Color colAmbient; // Ambient color
Color colSpecular; // Specular color
float glossiness; // Glossiness level (Ranges from 0 to 1000)
} Material;
// Camera type, defines a camera position/orientation in 3d space
typedef struct Camera {
Vector3 position; // Camera position
Vector3 target; // Camera target it looks-at
Vector3 up; // Camera up vector (rotation over its axis)
float fovy; // Camera field-of-view apperture in Y (degrees)
} Camera;
// Light type
typedef struct LightData {
unsigned int id; // Light unique id
int type; // Light type: LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT
bool enabled; // Light enabled
Vector3 position; // Light position
Vector3 target; // Light target: LIGHT_DIRECTIONAL and LIGHT_SPOT (cone direction target)
float radius; // Light attenuation radius light intensity reduced with distance (world distance)
Color diffuse; // Light diffuse color
float intensity; // Light intensity level
float coneAngle; // Light cone max angle: LIGHT_SPOT
} LightData, *Light;
// Light types
typedef enum { LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT } LightType;
// Color blending modes (pre-defined)
typedef enum { BLEND_ALPHA = 0, BLEND_ADDITIVE, BLEND_MULTIPLIED } BlendMode;
// TraceLog message types
typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType;
#endif
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
//------------------------------------------------------------------------------------
// Functions Declaration - Matrix operations
//------------------------------------------------------------------------------------
void rlMatrixMode(int mode); // Choose the current matrix to be transformed
void rlPushMatrix(void); // Push the current matrix to stack
void rlPopMatrix(void); // Pop lattest inserted matrix from stack
void rlLoadIdentity(void); // Reset current matrix to identity matrix
void rlTranslatef(float x, float y, float z); // Multiply the current matrix by a translation matrix
void rlRotatef(float angleDeg, float x, float y, float z); // Multiply the current matrix by a rotation matrix
void rlScalef(float x, float y, float z); // Multiply the current matrix by a scaling matrix
void rlMultMatrixf(float *mat); // Multiply the current matrix by another matrix
void rlFrustum(double left, double right, double bottom, double top, double near, double far);
void rlOrtho(double left, double right, double bottom, double top, double near, double far);
void rlViewport(int x, int y, int width, int height); // Set the viewport area
//------------------------------------------------------------------------------------
// Functions Declaration - Vertex level operations
//------------------------------------------------------------------------------------
void rlBegin(int mode); // Initialize drawing mode (how to organize vertex)
void rlEnd(void); // Finish vertex providing
void rlVertex2i(int x, int y); // Define one vertex (position) - 2 int
void rlVertex2f(float x, float y); // Define one vertex (position) - 2 float
void rlVertex3f(float x, float y, float z); // Define one vertex (position) - 3 float
void rlTexCoord2f(float x, float y); // Define one vertex (texture coordinate) - 2 float
void rlNormal3f(float x, float y, float z); // Define one vertex (normal) - 3 float
void rlColor4ub(byte r, byte g, byte b, byte a); // Define one vertex (color) - 4 byte
void rlColor3f(float x, float y, float z); // Define one vertex (color) - 3 float
void rlColor4f(float x, float y, float z, float w); // Define one vertex (color) - 4 float
//------------------------------------------------------------------------------------
// Functions Declaration - OpenGL equivalent functions (common to 1.1, 3.3+, ES2)
// NOTE: This functions are used to completely abstract raylib code from OpenGL layer
//------------------------------------------------------------------------------------
void rlEnableTexture(unsigned int id); // Enable texture usage
void rlDisableTexture(void); // Disable texture usage
void rlEnableRenderTexture(unsigned int id); // Enable render texture (fbo)
void rlDisableRenderTexture(void); // Disable render texture (fbo), return to default framebuffer
void rlEnableDepthTest(void); // Enable depth test
void rlDisableDepthTest(void); // Disable depth test
void rlEnableWireMode(void); // Enable wire mode
void rlDisableWireMode(void); // Disable wire mode
void rlDeleteTextures(unsigned int id); // Delete OpenGL texture from GPU
void rlDeleteRenderTextures(RenderTexture2D target); // Delete render textures (fbo) from GPU
void rlDeleteShader(unsigned int id); // Delete OpenGL shader program from GPU
void rlDeleteVertexArrays(unsigned int id); // Unload vertex data (VAO) from GPU memory
void rlDeleteBuffers(unsigned int id); // Unload vertex data (VBO) from GPU memory
void rlClearColor(byte r, byte g, byte b, byte a); // Clear color buffer with color
void rlClearScreenBuffers(void); // Clear used screen buffers (color and depth)
int rlGetVersion(void); // Returns current OpenGL version
//------------------------------------------------------------------------------------
// Functions Declaration - rlgl functionality
//------------------------------------------------------------------------------------
void rlglInit(void); // Initialize rlgl (shaders, VAO, VBO...)
void rlglClose(void); // De-init rlgl
void rlglDraw(void); // Draw VAO/VBO
void rlglInitGraphics(int offsetX, int offsetY, int width, int height); // Initialize Graphics (OpenGL stuff)
void rlglLoadExtensions(void *loader); // Load OpenGL extensions
unsigned int rlglLoadTexture(void *data, int width, int height, int textureFormat, int mipmapCount); // Load texture in GPU
RenderTexture2D rlglLoadRenderTexture(int width, int height); // Load a texture to be used for rendering (fbo with color and depth attachments)
void rlglUpdateTexture(unsigned int id, int width, int height, int format, void *data); // Update GPU texture with new data
void rlglGenerateMipmaps(Texture2D texture); // Generate mipmap data for selected texture
void rlglLoadMesh(Mesh *mesh, bool dynamic); // Upload vertex data into GPU and provided VAO/VBO ids
void rlglUpdateMesh(Mesh mesh, int buffer, int numVertex); // Update vertex data on GPU (upload new data to one buffer)
void rlglDrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform
void rlglUnloadMesh(Mesh *mesh); // Unload mesh data from CPU and GPU
Vector3 rlglUnproject(Vector3 source, Matrix proj, Matrix view); // Get world coordinates from screen coordinates
unsigned char *rlglReadScreenPixels(int width, int height); // Read screen pixel data (color buffer)
void *rlglReadTexturePixels(Texture2D texture); // Read texture pixel data
// NOTE: There is a set of shader related functions that are available to end user,
// to avoid creating function wrappers through core module, they have been directly declared in raylib.h
#if defined(RLGL_STANDALONE)
//------------------------------------------------------------------------------------
// Shaders System Functions (Module: rlgl)
// NOTE: This functions are useless when using OpenGL 1.1
//------------------------------------------------------------------------------------
Shader LoadShader(char *vsFileName, char *fsFileName); // Load a custom shader and bind default locations
void UnloadShader(Shader shader); // Unload a custom shader from memory
Shader GetDefaultShader(void); // Get default shader
Shader GetStandardShader(void); // Get default shader
Texture2D GetDefaultTexture(void); // Get default texture
int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location
void SetShaderValue(Shader shader, int uniformLoc, float *value, int size); // Set shader uniform value (float)
void SetShaderValuei(Shader shader, int uniformLoc, int *value, int size); // Set shader uniform value (int)
void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat); // Set shader uniform value (matrix 4x4)
void SetMatrixProjection(Matrix proj); // Set a custom projection matrix (replaces internal projection matrix)
void SetMatrixModelview(Matrix view); // Set a custom modelview matrix (replaces internal modelview matrix)
void BeginShaderMode(Shader shader); // Begin custom shader drawing
void EndShaderMode(void); // End custom shader drawing (use default shader)
void BeginBlendMode(int mode); // Begin blending mode (alpha, additive, multiplied)
void EndBlendMode(void); // End blending mode (reset to default: alpha blending)
Light CreateLight(int type, Vector3 position, Color diffuse); // Create a new light, initialize it and add to pool
void DestroyLight(Light light); // Destroy a light and take it out of the list
void TraceLog(int msgType, const char *text, ...);
#endif
#if defined(RLGL_OCULUS_SUPPORT)
void InitOculusDevice(void); // Init Oculus Rift device
void CloseOculusDevice(void); // Close Oculus Rift device
void UpdateOculusTracking(void); // Update Oculus Rift tracking (position and orientation)
void SetOculusMatrix(int eye); // Set internal projection and modelview matrix depending on eyes tracking data
void BeginOculusDrawing(void); // Begin Oculus drawing configuration
void EndOculusDrawing(void); // End Oculus drawing process (and desktop mirror)
#endif
#ifdef __cplusplus
}
#endif
#endif // RLGL_H

View file

@ -1,397 +0,0 @@
/*******************************************************************************************
*
* raylib [rlgl] example - Using rlgl module as standalone module
*
* NOTE: This example requires OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders but it can also be used.
*
* Compile rlgl module using:
* gcc -c rlgl.c -Wall -std=c99 -DRLGL_STANDALONE -DRAYMATH_IMPLEMENTATION -DGRAPHICS_API_OPENGL_33
*
* Compile example using:
* gcc -o $(NAME_PART).exe $(FILE_NAME) rlgl.o -lglfw3 -lopengl32 -lgdi32 -std=c99
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "glad.h" // Extensions loading library
#include <GLFW/glfw3.h> // Windows/Context and inputs management
#define RLGL_STANDALONE
#include "rlgl.h" // rlgl library: OpenGL 1.1 immediate-mode style coding
#define RED (Color){ 230, 41, 55, 255 } // Red
#define MAROON (Color){ 190, 33, 55, 255 } // Maroon
#define RAYWHITE (Color){ 245, 245, 245, 255 } // My own White (raylib logo)
#define DARKGRAY (Color){ 80, 80, 80, 255 } // Dark Gray
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void ErrorCallback(int error, const char* description);
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods);
// Drawing functions (uses rlgl functionality)
static void DrawGrid(int slices, float spacing);
static void DrawCube(Vector3 position, float width, float height, float length, Color color);
static void DrawCubeWires(Vector3 position, float width, float height, float length, Color color);
static void DrawRectangleV(Vector2 position, Vector2 size, Color color);
//----------------------------------------------------------------------------------
// Main Entry point
//----------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
const int screenWidth = 800;
const int screenHeight = 450;
// GLFW3 Initialization + OpenGL 3.3 Context + Extensions
//--------------------------------------------------------
glfwSetErrorCallback(ErrorCallback);
if (!glfwInit())
{
TraceLog(WARNING, "GLFW3: Can not initialize GLFW");
return 1;
}
else TraceLog(INFO, "GLFW3: GLFW initialized successfully");
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_DEPTH_BITS, 16);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, GL_TRUE);
GLFWwindow *window = glfwCreateWindow(screenWidth, screenHeight, "rlgl standalone", NULL, NULL);
if (!window)
{
glfwTerminate();
return 2;
}
else TraceLog(INFO, "GLFW3: Window created successfully");
glfwSetKeyCallback(window, KeyCallback);
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
// Load OpenGL 3.3 extensions
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
TraceLog(WARNING, "GLAD: Cannot load OpenGL extensions");
return 3;
}
else TraceLog(INFO, "GLAD: OpenGL extensions loaded successfully");
//--------------------------------------------------------
// Initialize rlgl internal buffers and OpenGL state
rlglInit();
// Initialize viewport and internal projection/modelview matrices
rlViewport(0, 0, screenWidth, screenHeight);
rlMatrixMode(RL_PROJECTION); // Switch to PROJECTION matrix
rlLoadIdentity(); // Reset current matrix (PROJECTION)
rlOrtho(0, screenWidth, screenHeight, 0, 0.0f, 1.0f); // Orthographic projection with top-left corner at (0,0)
rlMatrixMode(RL_MODELVIEW); // Switch back to MODELVIEW matrix
rlLoadIdentity(); // Reset current matrix (MODELVIEW)
rlClearColor(245, 245, 245, 255); // Define clear color
rlEnableDepthTest(); // Enable DEPTH_TEST for 3D
Vector3 cubePosition = { 0.0f, 0.0f, 0.0f }; // Cube default position (center)
Camera camera;
camera.position = (Vector3){ 5.0f, 5.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 0.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 45.0f; // Camera field-of-view Y
//--------------------------------------------------------------------------------------
// Main game loop
while (!glfwWindowShouldClose(window))
{
// Update
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
rlClearScreenBuffers(); // Clear current framebuffer
// Calculate projection matrix (from perspective) and view matrix from camera look at
Matrix matProj = MatrixPerspective(camera.fovy, (double)screenWidth/(double)screenHeight, 0.01, 1000.0);
MatrixTranspose(&matProj);
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
SetMatrixModelview(matView); // Replace internal modelview matrix by a custom one
SetMatrixProjection(matProj); // Replace internal projection matrix by a custom one
DrawCube(cubePosition, 2.0f, 2.0f, 2.0f, RED);
DrawCubeWires(cubePosition, 2.0f, 2.0f, 2.0f, RAYWHITE);
DrawGrid(10, 1.0f);
// NOTE: Internal buffers drawing (3D data)
rlglDraw();
// Draw '2D' elements in the scene (GUI)
#define RLGL_CREATE_MATRIX_MANUALLY
#if defined(RLGL_CREATE_MATRIX_MANUALLY)
matProj = MatrixOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0);
MatrixTranspose(&matProj);
matView = MatrixIdentity();
SetMatrixModelview(matView); // Replace internal modelview matrix by a custom one
SetMatrixProjection(matProj); // Replace internal projection matrix by a custom one
#else // Let rlgl generate and multiply matrix internally
rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix
rlLoadIdentity(); // Reset internal projection matrix
rlOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix
rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix
rlLoadIdentity(); // Reset internal modelview matrix
#endif
DrawRectangleV((Vector2){ 10.0f, 10.0f }, (Vector2){ 600.0f, 20.0f }, DARKGRAY);
// NOTE: Internal buffers drawing (2D data)
rlglDraw();
glfwSwapBuffers(window);
glfwPollEvents();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
rlglClose(); // Unload rlgl internal buffers and default shader/texture
glfwDestroyWindow(window);
glfwTerminate();
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definitions
//----------------------------------------------------------------------------------
// GLFW3: Error callback
static void ErrorCallback(int error, const char* description)
{
TraceLog(ERROR, description);
}
// GLFW3: Keyboard callback
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
// Draw rectangle using rlgl OpenGL 1.1 style coding (translated to OpenGL 3.3 internally)
static void DrawRectangleV(Vector2 position, Vector2 size, Color color)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
static void DrawGrid(int slices, float spacing)
{
int halfSlices = slices / 2;
rlBegin(RL_LINES);
for(int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Be careful! Function order matters (rotate -> scale -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlScalef(2.0f, 2.0f, 2.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Back Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Top Face -------------------------------------------------------
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
// Bottom Face ----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
// Right face -----------------------------------------------------
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
// Left Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
// Back Face ------------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
// Top Face -------------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
// Bottom Face ---------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
rlEnd();
rlPopMatrix();
}

View file

@ -1,496 +0,0 @@
/*******************************************************************************************
*
* raylib [rlgl] example - Using rlgl module as standalone module
*
* NOTE: This example requires OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders but it can also be used.
*
* Compile rlgl module using:
* gcc -c rlgl.c -Wall -std=c99 -DRLGL_STANDALONE -DRAYMATH_IMPLEMENTATION -DGRAPHICS_API_OPENGL_33
*
* Compile example using:
* gcc -o $(NAME_PART).exe $(FILE_NAME) rlgl.o -lglfw3 -lopengl32 -lgdi32 -std=c99
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "glad.h" // Extensions loading library
#include <GLFW/glfw3.h> // Windows/Context and inputs management
#define RLGL_STANDALONE
#include "rlgl.h" // rlgl library: OpenGL 1.1 immediate-mode style coding
#include <stdlib.h> // Required for: abs()
#define RED (Color){ 230, 41, 55, 255 } // Red
#define MAROON (Color){ 190, 33, 55, 255 } // Maroon
#define RAYWHITE (Color){ 245, 245, 245, 255 } // My own White (raylib logo)
#define DARKGRAY (Color){ 80, 80, 80, 255 } // Dark Gray
#define WHITE (Color){ 255, 255, 255, 255 } // White
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Rectangle type
typedef struct Rectangle {
int x;
int y;
int width;
int height;
} Rectangle;
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void ErrorCallback(int error, const char* description);
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods);
// Drawing functions (uses rlgl functionality)
static void DrawGrid(int slices, float spacing);
static void DrawCube(Vector3 position, float width, float height, float length, Color color);
static void DrawCubeWires(Vector3 position, float width, float height, float length, Color color);
static void DrawRectangleV(Vector2 position, Vector2 size, Color color);
static void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint);
static void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint);
//----------------------------------------------------------------------------------
// Main Entry point
//----------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
const int screenWidth = 1080;
const int screenHeight = 600;
// GLFW3 Initialization + OpenGL 3.3 Context + Extensions
//--------------------------------------------------------
glfwSetErrorCallback(ErrorCallback);
if (!glfwInit())
{
TraceLog(WARNING, "GLFW3: Can not initialize GLFW");
return 1;
}
else TraceLog(INFO, "GLFW3: GLFW initialized successfully");
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_DEPTH_BITS, 16);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, GL_TRUE);
GLFWwindow *window = glfwCreateWindow(screenWidth, screenHeight, "rlgl standalone", NULL, NULL);
if (!window)
{
glfwTerminate();
return 2;
}
else TraceLog(INFO, "GLFW3: Window created successfully");
glfwSetKeyCallback(window, KeyCallback);
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
// Load OpenGL 3.3 extensions
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
TraceLog(WARNING, "GLAD: Cannot load OpenGL extensions");
return 3;
}
else TraceLog(INFO, "GLAD: OpenGL extensions loaded successfully");
//--------------------------------------------------------
// Initialize rlgl internal buffers and OpenGL state
rlglInit();
rlglInitGraphics(0, 0, screenWidth, screenHeight);
rlClearColor(245, 245, 245, 255); // Define clear color
rlEnableDepthTest(); // Enable DEPTH_TEST for 3D
Shader distortion = LoadShader("base.vs", "distortion.fs");
// TODO: Upload to distortion shader configuration parameters (screen size, etc.)
//SetShaderValue(Shader shader, int uniformLoc, float *value, int size);
// Create a RenderTexture2D to be used for render to texture
RenderTexture2D target = rlglLoadRenderTexture(screenWidth, screenHeight);
Vector3 cubePosition = { 0.0f, 0.0f, 0.0f };
Camera camera;
camera.position = (Vector3){ 5.0f, 5.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 0.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 60.0f; // Camera field-of-view Y
//--------------------------------------------------------------------------------------
// Main game loop
while (!glfwWindowShouldClose(window))
{
// Update
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
rlEnableRenderTexture(target.id); // Enable render target
rlClearScreenBuffers(); // Clear current framebuffer
for (int i = 0; i < 2; i++)
{
rlViewport(i*screenWidth/2, 0, screenWidth/2, screenHeight);
// Calculate projection matrix (from perspective) and view matrix from camera look at
// TODO: Consider every eye fovy
Matrix matProj = MatrixPerspective(camera.fovy, (double)(screenWidth/2)/(double)screenHeight, 0.01, 1000.0);
MatrixTranspose(&matProj);
// TODO: Recalculate view matrix considering IPD (inter-pupillary-distance)
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
SetMatrixModelview(matView); // Replace internal modelview matrix by a custom one
SetMatrixProjection(matProj); // Replace internal projection matrix by a custom one
DrawCube(cubePosition, 2.0f, 2.0f, 2.0f, RED);
DrawCubeWires(cubePosition, 2.0f, 2.0f, 2.0f, RAYWHITE);
DrawGrid(10, 1.0f);
// NOTE: Internal buffers drawing (3D data)
rlglDraw();
// Draw '2D' elements in the scene (GUI)
#define RLGL_CREATE_MATRIX_MANUALLY
#if defined(RLGL_CREATE_MATRIX_MANUALLY)
matProj = MatrixOrtho(0.0, screenWidth/2, screenHeight, 0.0, 0.0, 1.0);
MatrixTranspose(&matProj);
matView = MatrixIdentity();
SetMatrixModelview(matView); // Replace internal modelview matrix by a custom one
SetMatrixProjection(matProj); // Replace internal projection matrix by a custom one
#else // Let rlgl generate and multiply matrix internally
rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix
rlLoadIdentity(); // Reset internal projection matrix
rlOrtho(0.0, screenWidth/2, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix
rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix
rlLoadIdentity(); // Reset internal modelview matrix
#endif
// TODO: 2D not drawing properly on stereo rendering
//DrawRectangleV((Vector2){ 10.0f, 10.0f }, (Vector2){ 500.0f, 20.0f }, DARKGRAY);
// NOTE: Internal buffers drawing (2D data)
rlglDraw();
}
rlDisableRenderTexture(); // Disable render target
// Set viewport to default framebuffer size (screen size)
rlViewport(0, 0, screenWidth, screenHeight);
// Let rlgl reconfigure internal matrices using OpenGL 1.1 style coding
rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix
rlLoadIdentity(); // Reset internal projection matrix
rlOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix
rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix
rlLoadIdentity(); // Reset internal modelview matrix
// Draw RenderTexture (fbo) using distortion shader
BeginShaderMode(distortion);
// NOTE: Render texture must be y-flipped due to default OpenGL coordinates (left-bottom)
DrawTextureRec(target.texture, (Rectangle){ 0, 0, target.texture.width, -target.texture.height }, (Vector2){ 0, 0 }, WHITE);
EndShaderMode();
glfwSwapBuffers(window);
glfwPollEvents();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadShader(distortion);
rlglClose(); // Unload rlgl internal buffers and default shader/texture
glfwDestroyWindow(window);
glfwTerminate();
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definitions
//----------------------------------------------------------------------------------
// GLFW3: Error callback
static void ErrorCallback(int error, const char* description)
{
TraceLog(ERROR, description);
}
// GLFW3: Keyboard callback
static void KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
// Draw rectangle using rlgl OpenGL 1.1 style coding (translated to OpenGL 3.3 internally)
static void DrawRectangleV(Vector2 position, Vector2 size, Color color)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x, position.y);
rlVertex2i(position.x + size.x, position.y + size.y);
rlVertex2i(position.x + size.x, position.y);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
static void DrawGrid(int slices, float spacing)
{
int halfSlices = slices / 2;
rlBegin(RL_LINES);
for(int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Be careful! Function order matters (rotate -> scale -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlScalef(2.0f, 2.0f, 2.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Back Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Top Face -------------------------------------------------------
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
// Bottom Face ----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
// Right face -----------------------------------------------------
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
// Left Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
// Back Face ------------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
// Top Face -------------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
// Bottom Face ---------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
rlEnd();
rlPopMatrix();
}
// Draw a part of a texture (defined by a rectangle)
static void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint)
{
Rectangle destRec = { (int)position.x, (int)position.y, abs(sourceRec.width), abs(sourceRec.height) };
Vector2 origin = { 0, 0 };
DrawTexturePro(texture, sourceRec, destRec, origin, 0.0f, tint);
}
// Draw a part of a texture (defined by a rectangle) with 'pro' parameters
// NOTE: origin is relative to destination rectangle size
static void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint)
{
// Check if texture is valid
if (texture.id != 0)
{
if (sourceRec.width < 0) sourceRec.x -= sourceRec.width;
if (sourceRec.height < 0) sourceRec.y -= sourceRec.height;
rlEnableTexture(texture.id);
rlPushMatrix();
rlTranslatef(destRec.x, destRec.y, 0);
rlRotatef(rotation, 0, 0, 1);
rlTranslatef(-origin.x, -origin.y, 0);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Bottom-left corner for texture and quad
rlTexCoord2f((float)sourceRec.x / texture.width, (float)sourceRec.y / texture.height);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
rlTexCoord2f((float)sourceRec.x / texture.width, (float)(sourceRec.y + sourceRec.height) / texture.height);
rlVertex2f(0.0f, destRec.height);
// Top-right corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width) / texture.width, (float)(sourceRec.y + sourceRec.height) / texture.height);
rlVertex2f(destRec.width, destRec.height);
// Top-left corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width) / texture.width, (float)sourceRec.y / texture.height);
rlVertex2f(destRec.width, 0.0f);
rlEnd();
rlPopMatrix();
rlDisableTexture();
}
}

View file

@ -1,174 +0,0 @@
// Vertex shader definition to embed, no external file required
static const char vStandardShaderStr[] =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
#endif
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
"attribute vec3 vertexPosition; \n"
"attribute vec3 vertexNormal; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec3 fragPosition; \n"
"varying vec3 fragNormal; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec3 vertexPosition; \n"
"in vec3 vertexNormal; \n"
"in vec2 vertexTexCoord; \n"
"in vec4 vertexColor; \n"
"out vec3 fragPosition; \n"
"out vec3 fragNormal; \n"
"out vec2 fragTexCoord; \n"
"out vec4 fragColor; \n"
#endif
"uniform mat4 mvpMatrix; \n"
"void main() \n"
"{ \n"
" fragPosition = vertexPosition; \n"
" fragNormal = vertexNormal; \n"
" fragTexCoord = vertexTexCoord; \n"
" fragColor = vertexColor; \n"
" gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader definition to embed, no external file required
static const char fStandardShaderStr[] =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
"precision mediump float; \n" // precision required for OpenGL ES2 (WebGL)
#endif
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
"varying vec3 fragPosition; \n"
"varying vec3 fragNormal; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec3 fragPosition; \n"
"in vec3 fragNormal; \n"
"in vec2 fragTexCoord; \n"
"in vec4 fragColor; \n"
"out vec4 finalColor; \n"
#endif
"uniform sampler2D texture0; \n"
"uniform sampler2D texture1; \n"
"uniform sampler2D texture2; \n"
"uniform vec4 colAmbient; \n"
"uniform vec4 colDiffuse; \n"
"uniform vec4 colSpecular; \n"
"uniform float glossiness; \n"
"uniform int useNormal; \n"
"uniform int useSpecular; \n"
"uniform mat4 modelMatrix; \n"
"uniform vec3 viewDir; \n"
"struct Light { \n"
" int enabled; \n"
" int type; \n"
" vec3 position; \n"
" vec3 direction; \n"
" vec4 diffuse; \n"
" float intensity; \n"
" float radius; \n"
" float coneAngle; }; \n"
"const int maxLights = 8; \n"
"uniform int lightsCount; \n"
"uniform Light lights[maxLights]; \n"
"\n"
"vec3 CalcPointLight(Light l, vec3 n, vec3 v, float s) \n"
"{\n"
" vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));\n"
" vec3 surfaceToLight = l.position - surfacePos;\n"
" float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0);\n"
" float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;\n"
" float spec = 0.0;\n"
" if (diff > 0.0)\n"
" {\n"
" vec3 h = normalize(-l.direction + v);\n"
" spec = pow(dot(n, h), 3.0 + glossiness)*s;\n"
" }\n"
" return (diff*l.diffuse.rgb + spec*colSpecular.rgb);\n"
"}\n"
"\n"
"vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v, float s)\n"
"{\n"
" vec3 lightDir = normalize(-l.direction);\n"
" float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;\n"
" float spec = 0.0;\n"
" if (diff > 0.0)\n"
" {\n"
" vec3 h = normalize(lightDir + v);\n"
" spec = pow(dot(n, h), 3.0 + glossiness)*s;\n"
" }\n"
" return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);\n"
"}\n"
"\n"
"vec3 CalcSpotLight(Light l, vec3 n, vec3 v, float s)\n"
"{\n"
" vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1.0));\n"
" vec3 lightToSurface = normalize(surfacePos - l.position);\n"
" vec3 lightDir = normalize(-l.direction);\n"
" float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;\n"
" float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0);\n"
" attenuation = dot(lightToSurface, -lightDir);\n"
" float lightToSurfaceAngle = degrees(acos(attenuation));\n"
" if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;\n"
" float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;\n"
" float diffAttenuation = diff*attenuation;\n"
" float spec = 0.0;\n"
" if (diffAttenuation > 0.0)\n"
" {\n"
" vec3 h = normalize(lightDir + v);\n"
" spec = pow(dot(n, h), 3.0 + glossiness)*s;\n"
" }\n"
" return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));\n"
"}\n"
"\n"
"void main()\n"
"{\n"
" mat3 normalMatrix = mat3(modelMatrix);\n"
" vec3 normal = normalize(normalMatrix*fragNormal);\n"
" vec3 n = normalize(normal);\n"
" vec3 v = normalize(viewDir);\n"
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
" vec4 texelColor = texture2D(texture0, fragTexCoord);\n"
#elif defined(GRAPHICS_API_OPENGL_33)
" vec4 texelColor = texture(texture0, fragTexCoord);\n"
#endif
" vec3 lighting = colAmbient.rgb;\n"
" if (useNormal == 1)\n"
" {\n"
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
" n *= texture2D(texture1, fragTexCoord).rgb;\n"
#elif defined(GRAPHICS_API_OPENGL_33)
" n *= texture(texture1, fragTexCoord).rgb;\n"
#endif
" n = normalize(n);\n"
" }\n"
" float spec = 1.0;\n"
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
" if (useSpecular == 1) spec *= normalize(texture2D(texture2, fragTexCoord).r);\n"
#elif defined(GRAPHICS_API_OPENGL_33)
" if (useSpecular == 1) spec *= normalize(texture(texture2, fragTexCoord).r);\n"
#endif
" for (int i = 0; i < lightsCount; i++)\n"
" {\n"
" if (lights[i].enabled == 1)\n"
" {\n"
" if(lights[i].type == 0) lighting += CalcPointLight(lights[i], n, v, spec);\n"
" else if(lights[i].type == 1) lighting += CalcDirectionalLight(lights[i], n, v, spec);\n"
" else if(lights[i].type == 2) lighting += CalcSpotLight(lights[i], n, v, spec);\n"
" }\n"
" }\n"
#if defined(GRAPHICS_API_OPENGL_33)
" finalColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); \n"
#elif defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
" gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); \n"
#endif
"}\n";