This repository has been archived on 2025-06-21. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
raylib-python-cffi/examples/shaders/shaders_basic_lighting.py
2019-06-23 21:03:26 +01:00

325 lines
13 KiB
Python

# /*******************************************************************************************
# *
# * raylib [shaders] example - basic lighting
# *
# * NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support,
# * OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version.
# *
# * NOTE: Shaders used in this example are #version 330 (OpenGL 3.3).
# *
# * This example has been created using raylib 2.5 (www.raylib.com)
# * raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
# *
# * Example contributed by Chris Camacho (@codifies) and reviewed by Ramon Santamaria (@raysan5)
# *
# * Chris Camacho (@codifies - http://bedroomcoders.co.uk/) notes:
# *
# * This is based on the PBR lighting example, but greatly simplified to aid learning...
# * actually there is very little of the PBR example left!
# * When I first looked at the bewildering complexity of the PBR example I feared
# * I would never understand how I could do simple lighting with raylib however its
# * a testement to the authors of raylib (including rlights.h) that the example
# * came together fairly quickly.
# *
# * Copyright (c) 2019 Chris Camacho (@codifies) and Ramon Santamaria (@raysan5)
# *
# ********************************************************************************************/
from raylib.static import *
from dataclasses import dataclass
from enum import Enum
from typing import Any
import math
def MatrixRotateX(angle):
result = MatrixIdentity();
cosres = math.cos(angle);
sinres = math.sin(angle);
result.m5 = cosres;
result.m6 = -sinres;
result.m9 = sinres;
result.m10 = cosres;
return result;
def MatrixRotateY(angle):
result = MatrixIdentity()
cosres = math.cos(angle);
sinres = math.sin(angle);
result.m0 = cosres;
result.m2 = sinres;
result.m8 = -sinres;
result.m10 = cosres;
return result;
def MatrixIdentity():
result = ffi.new("struct Matrix *",[ 1.0, 0.0, 0.0, 0.0,0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ])
return result
def MatrixRotateZ(angle):
result = MatrixIdentity();
cosres = math.cos(angle);
sinres = math.sin(angle);
result.m0 = cosres;
result.m1 = -sinres;
result.m4 = sinres;
result.m5 = cosres;
return result
def MatrixMultiply(left, right):
result = ffi.new("struct Matrix *")
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
return result
#//----------------------------------------------------------------------------------
#// Types and Structures Definition
#//----------------------------------------------------------------------------------
MAX_LIGHTS = 4 #// Max dynamic lights supported by shader
lightsCount = 0
#// Light type
LIGHT_DIRECTIONAL=0
LIGHT_POINT=1
class Light:
def __init__(self, type, position, target, color, shader):
global lightsCount
if lightsCount >= MAX_LIGHTS:
raise Exception("Too many lights")
self.enabled = True
self.type = type
self.position = position
self.target = target
self.color = color
self.shader = shader
#// TODO: Below code doesn't look good to me,
# // it assumes a specific shader naming and structure
# // Probably this implementation could be improved
self.enabledName = f"lights[{lightsCount}].enabled"
self.typeName = f"lights[{lightsCount}].type"
self.posName = f"lights[{lightsCount}].position"
self.targetName = f"lights[{lightsCount}].target"
self.colorName = f"lights[{lightsCount}].color"
# enabledName = '0' + str(lightsCount)
# typeName = '0' + str(lightsCount)
# posName = '0' + str(lightsCount)
# targetName = '0' + str(lightsCount)
# colorName = '0' + str(lightsCount)
self.enabledLoc = GetShaderLocation(shader, self.enabledName.encode('utf-8'))
self.typeLoc = GetShaderLocation(shader, self.typeName.encode('utf-8'))
self.posLoc = GetShaderLocation(shader, self.posName.encode('utf-8'))
self.targetLoc = GetShaderLocation(shader, self.targetName.encode('utf-8'))
self.colorLoc = GetShaderLocation(shader, self.colorName.encode('utf-8'))
self.UpdateLightValues()
lightsCount += 1
#// Send light properties to shader
# // NOTE: Light shader locations should be available
def UpdateLightValues(self):
#// Send to shader light enabled state and type
SetShaderValue(shader, self.enabledLoc, ffi.new("int *",self.enabled), UNIFORM_INT)
SetShaderValue(shader, self.typeLoc, ffi.new("int *",self.type), UNIFORM_INT)
#// Send to shader light position values
position = [ self.position.x, self.position.y, self.position.z]
SetShaderValue(shader, self.posLoc, ffi.new("struct Vector3 *",position), UNIFORM_VEC3)
#// Send to shader light target position values
target =[ self.target.x, self.target.y, self.target.z ]
SetShaderValue(shader, self.targetLoc, ffi.new("struct Vector3 *",target), UNIFORM_VEC3)
#// Send to shader light color values
color = [self.color[0]/255.0, self.color[1]/255.0, self.color[2]/255.0, self.color[3]/255.0]
SetShaderValue(shader, self.colorLoc, ffi.new("struct Vector4 *",color), UNIFORM_VEC4)
def Vector3Zero():
return ffi.new("struct Vector3 *",[ 0, 0, 0])
#// Initialization
#//--------------------------------------------------------------------------------------
screenWidth = 800;
screenHeight = 450;
SetConfigFlags(FLAG_MSAA_4X_HINT); # Enable Multi Sampling Anti Aliasing 4x (if available)
InitWindow(screenWidth, screenHeight, b"raylib [shaders] example - basic lighting")
#// Define the camera to look into our 3d world
cameraPtr = ffi.new("struct Camera3D *")
camera = cameraPtr[0]
camera.position = [ 2.0, 2.0, 6.0 ] # // Camera position
camera.target = [ 0.0, 0.5, 0.0]# // Camera looking at point
camera.up = [ 0.0, 1.0, 0.0]# // Camera up vector (rotation towards target)
camera.fovy = 45.0 # // Camera field-of-view Y
camera.type = CAMERA_PERSPECTIVE # // Camera mode type
#// Load models
modelA = LoadModelFromMesh(GenMeshTorus(0.4, 1.0, 16, 32))
modelB = LoadModelFromMesh(GenMeshCube(1.0, 1.0, 1.0))
modelC = LoadModelFromMesh(GenMeshSphere(0.5, 32, 32))
#// Load models texture
texture = LoadTexture(b"resources/texel_checker.png")
#// Assign texture to default model material
modelA.materials[0].maps[MAP_DIFFUSE].texture = texture
modelB.materials[0].maps[MAP_DIFFUSE].texture = texture
modelC.materials[0].maps[MAP_DIFFUSE].texture = texture
shader = LoadShader(b"resources/shaders/glsl330/basic_lighting.vs",
b"resources/shaders/glsl330/basic_lighting.fs");
#// Get some shader loactions
shader.locs[LOC_MATRIX_MODEL] = GetShaderLocation(shader, b"matModel");
shader.locs[LOC_VECTOR_VIEW] = GetShaderLocation(shader, b"viewPos");
#// ambient light level
ambientLoc = GetShaderLocation(shader, b"ambient");
v = ffi.new("struct Vector4 *", [ 0.2, 0.2, 0.2, 1.0 ])
SetShaderValue(shader, ambientLoc, v, UNIFORM_VEC4);
angle = 6.282;
#// All models use the same shader
modelA.materials[0].shader = shader
modelB.materials[0].shader = shader
modelC.materials[0].shader = shader
#// Using 4 point lights, white, red, green and blue
lights = [0] * 4
#lights[0] = Light(LIGHT_POINT, ffi.new("struct Vector3 *",[ 400, 400, 400 ]), Vector3Zero(), WHITE, shader)
lights[0] = Light(LIGHT_POINT, ffi.new("struct Vector3 *",[ 4, 2, 4 ]), Vector3Zero(), WHITE, shader)
lights[1] = Light(LIGHT_POINT, ffi.new("struct Vector3 *",[4, 2, 4 ]), Vector3Zero(), RED, shader)
lights[2] = Light(LIGHT_POINT, ffi.new("struct Vector3 *",[ 0, 4, 2 ]), Vector3Zero(), GREEN, shader)
lights[3] = Light(LIGHT_POINT, ffi.new("struct Vector3 *",[ 0, 4, 2 ]), Vector3Zero(), BLUE, shader)
SetCameraMode(camera, CAMERA_ORBITAL) #// Set an orbital camera mode
SetTargetFPS(60) # // Set our game to run at 60 frames-per-second
#//--------------------------------------------------------------------------------------
#// Main game loop
while not WindowShouldClose(): #// Detect window close button or ESC key
#// Update
#//----------------------------------------------------------------------------------
if IsKeyPressed(KEY_W): lights[0].enabled = not lights[0].enabled
if IsKeyPressed(KEY_R): lights[1].enabled = not lights[1].enabled
if IsKeyPressed(KEY_G): lights[2].enabled = not lights[2].enabled
if IsKeyPressed(KEY_B): lights[3].enabled = not lights[3].enabled
UpdateCamera(cameraPtr); #// Update camera
#// Make the lights do differing orbits
angle -= 0.02
lights[0].position.x = math.cos(angle)*4.0
lights[0].position.z = math.sin(angle)*4.0
lights[1].position.x = math.cos(-angle*0.6)*4.0
lights[1].position.z = math.sin(-angle*0.6)*4.0
lights[2].position.y = math.cos(angle*0.2)*4.0
lights[2].position.z = math.sin(angle*0.2)*4.0
lights[3].position.y = math.cos(-angle*0.35)*4.0
lights[3].position.z = math.sin(-angle*0.35)*4.0
lights[0].UpdateLightValues()
lights[1].UpdateLightValues()
lights[2].UpdateLightValues()
lights[3].UpdateLightValues()
#// Rotate the torus
modelA.transform = MatrixMultiply(modelA.transform, MatrixRotateX(-0.025))[0]
modelA.transform = MatrixMultiply(modelA.transform, MatrixRotateZ(0.012))[0]
#// Update the light shader with the camera view position
cameraPos = [ camera.position.x, camera.position.y, camera.position.z ]
SetShaderValue(shader, shader.locs[LOC_VECTOR_VIEW], ffi.new("struct Vector3 *",cameraPos), UNIFORM_VEC3)
#//----------------------------------------------------------------------------------
#// Draw
#//----------------------------------------------------------------------------------
BeginDrawing()
ClearBackground(RAYWHITE)
BeginMode3D(camera)
#// Draw the three models
DrawModel(modelA, [0,0,0], 1.0, WHITE)
DrawModel(modelB, [-1.6,0,0], 1.0, WHITE)
DrawModel(modelC, [ 1.6,0,0], 1.0, WHITE)
#// Draw markers to show where the lights are
if lights[0].enabled: DrawSphereEx(lights[0].position[0], 0.2, 8, 8, WHITE)
if lights[1].enabled: DrawSphereEx(lights[1].position[0], 0.2, 8, 8, RED)
if lights[2].enabled: DrawSphereEx(lights[2].position[0], 0.2, 8, 8, GREEN)
if lights[3].enabled: DrawSphereEx(lights[3].position[0], 0.2, 8, 8, BLUE)
DrawGrid(10, 1.0)
EndMode3D()
DrawFPS(10, 10)
DrawText(b"Keys RGB & W toggle lights", 10, 30, 20, DARKGRAY)
EndDrawing()
#//----------------------------------------------------------------------------------
#// De-Initialization
#//--------------------------------------------------------------------------------------
UnloadModel(modelA) # // Unload the modelA
UnloadModel(modelB) # // Unload the modelB
UnloadModel(modelC) # // Unload the modelC
UnloadTexture(texture) #// Unload the texture
UnloadShader(shader) #// Unload shader
CloseWindow(); #// Close window and OpenGL context