raylib-go/physics/physics.go
2022-03-24 00:05:50 +01:00

1602 lines
45 KiB
Go

// Package physics - 2D Physics library for videogames
//
// A port of Victor Fisac's physac engine (https://github.com/raysan5/raylib/blob/master/src/physac.h)
package physics
import (
"math"
"math/rand"
"time"
rl "github.com/gen2brain/raylib-go/raylib"
)
// ShapeType type
type ShapeType int
// Physics shape types
const (
// Circle type
CircleShape ShapeType = iota
// Polygon type
PolygonShape
)
// Polygon type
type Polygon struct {
// Current used vertex and normals count
VertexCount int
// Polygon vertex positions vectors
Positions [maxVertices]rl.Vector2
// Polygon vertex normals vectors
Normals [maxVertices]rl.Vector2
}
// Shape type
type Shape struct {
// Physics shape type (circle or polygon)
Type ShapeType
// Shape physics body reference
Body *Body
// Circle shape radius (used for circle shapes)
Radius float32
// Vertices transform matrix 2x2
Transform rl.Mat2
// Polygon shape vertices position and normals data (just used for polygon shapes)
VertexData Polygon
}
// Body type
type Body struct {
// Reference unique identifier
ID int
// Enabled dynamics state (collisions are calculated anyway)
Enabled bool
// Physics body shape pivot
Position rl.Vector2
// Current linear velocity applied to position
Velocity rl.Vector2
// Current linear force (reset to 0 every step)
Force rl.Vector2
// Current angular velocity applied to orient
AngularVelocity float32
// Current angular force (reset to 0 every step)
Torque float32
// Rotation in radians
Orient float32
// Moment of inertia
Inertia float32
// Inverse value of inertia
InverseInertia float32
// Physics body mass
Mass float32
// Inverse value of mass
InverseMass float32
// Friction when the body has not movement (0 to 1)
StaticFriction float32
// Friction when the body has movement (0 to 1)
DynamicFriction float32
// Restitution coefficient of the body (0 to 1)
Restitution float32
// Apply gravity force to dynamics
UseGravity bool
// Physics grounded on other body state
IsGrounded bool
// Physics rotation constraint
FreezeOrient bool
// Physics body shape information (type, radius, vertices, normals)
Shape Shape
}
// Manifold type
type Manifold struct {
// Reference unique identifier
ID int
// Manifold first physics body reference
BodyA *Body
// Manifold second physics body reference
BodyB *Body
// Depth of penetration from collision
Penetration float32
// Normal direction vector from 'a' to 'b'
Normal rl.Vector2
// Points of contact during collision
Contacts [2]rl.Vector2
// Current collision number of contacts
ContactsCount int
// Mixed restitution during collision
Restitution float32
// Mixed dynamic friction during collision
DynamicFriction float32
// Mixed static friction during collision
StaticFriction float32
}
// Constants
const (
maxBodies = 64
maxManifolds = 4096
maxVertices = 24
circleVertices = 24
collisionIterations = 100
penetrationAllowance = 0.05
penetrationCorrection = 0.4
degToRad = math.Pi / 180
epsilon = 0.000001
physacK = 1.0 / 3.0
)
// Globals
var (
// Offset time for MONOTONIC clock
baseTime = time.Now()
// Start time in milliseconds
startTime float32
// Delta time used for physics steps, in milliseconds
deltaTime float32 = 1.0 / 60.0 / 10.0 * 1000
// Current time in milliseconds
currentTime float32
// Hi-res clock frequency
frequency uint64 = 0
// Physics time step delta time accumulator
accumulator float32
// Physics world gravity force
gravityForce = rl.NewVector2(0, 9.81)
// Physics bodies pointers array
bodies [64]*Body
// Physics world current bodies counter
bodiesCount int
// Physics bodies pointers array
manifolds [4096]*Manifold
// Physics world current manifolds counter
manifoldsCount int
)
// Init - Initializes physics values, pointers and creates physics loop thread
func Init() {
initTimer()
accumulator = 0
}
// SetGravity - Sets physics global gravity force
func SetGravity(x, y float32) {
gravityForce.X = x
gravityForce.Y = y
}
// NewBodyCircle - Creates a new circle physics body with generic parameters
func NewBodyCircle(pos rl.Vector2, radius, density float32) *Body {
newID := findAvailableBodyIndex()
if newID < 0 {
return nil
}
// Initialize new body with generic values
newBody := &Body{
ID: newID,
Enabled: true,
Position: pos,
Velocity: rl.Vector2{},
Force: rl.Vector2{},
AngularVelocity: 0.0,
Torque: 0.0,
Orient: 0.0,
Shape: Shape{
Type: CircleShape,
Radius: radius,
Transform: rl.Mat2Radians(0.0),
VertexData: Polygon{},
},
StaticFriction: 0.4,
DynamicFriction: 0.2,
Restitution: 0.0,
UseGravity: true,
IsGrounded: false,
FreezeOrient: false,
}
newBody.Shape.Body = newBody
newBody.Mass = math.Pi * radius * radius * density
newBody.InverseMass = safeDiv(1.0, newBody.Mass)
newBody.Inertia = newBody.Mass * radius * radius
newBody.InverseInertia = safeDiv(1.0, newBody.Inertia)
// Add new body to bodies pointers array and update bodies count
bodies[bodiesCount] = newBody
bodiesCount++
return newBody
}
// NewBodyRectangle - Creates a new rectangle physics body with generic parameters
func NewBodyRectangle(pos rl.Vector2, width, height, density float32) *Body {
newID := findAvailableBodyIndex()
if newID < 0 {
return nil
}
// Initialize new body with generic values
newBody := &Body{
ID: newID,
Enabled: true,
Position: pos,
Velocity: rl.Vector2{},
Force: rl.Vector2{},
AngularVelocity: 0.0,
Torque: 0.0,
Orient: 0.0,
Shape: Shape{
Type: PolygonShape,
Transform: rl.Mat2Radians(0.0),
VertexData: createRectanglePolygon(pos, rl.NewVector2(width, height)),
},
StaticFriction: 0.4,
DynamicFriction: 0.2,
Restitution: 0.0,
UseGravity: true,
IsGrounded: false,
FreezeOrient: false,
}
// Calculate centroid and moment of inertia
newBody.Shape.Body = newBody
var center rl.Vector2
area := float32(0.0)
inertia := float32(0.0)
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
// Triangle vertices, third vertex implied as (0, 0)
nextIndex := getNextIndex(i, newBody.Shape.VertexData.VertexCount)
p1 := newBody.Shape.VertexData.Positions[i]
p2 := newBody.Shape.VertexData.Positions[nextIndex]
D := rl.Vector2CrossProduct(p1, p2)
triangleArea := D / 2
area += triangleArea
// Use area to weight the centroid average, not just vertex position
center.X += triangleArea * physacK * (p1.X + p2.X)
center.Y += triangleArea * physacK * (p1.Y + p2.Y)
var intx2 float32 = p1.X*p1.X + p2.X*p1.X + p2.X*p2.X
var inty2 float32 = p1.Y*p1.Y + p2.Y*p1.Y + p2.Y*p2.Y
inertia += (0.25 * physacK * D) * (intx2 + inty2)
}
center.X *= 1.0 / area
center.Y *= 1.0 / area
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
newBody.Shape.VertexData.Positions[i].X -= center.X
newBody.Shape.VertexData.Positions[i].Y -= center.Y
}
newBody.Mass = density * area
newBody.InverseMass = safeDiv(1.0, newBody.Mass)
newBody.Inertia = density * inertia
newBody.InverseInertia = safeDiv(1.0, newBody.Inertia)
// Add new body to bodies pointers array and update bodies count
bodies[bodiesCount] = newBody
bodiesCount++
return newBody
}
// NewBodyPolygon - Creates a new polygon physics body with generic parameters
func NewBodyPolygon(pos rl.Vector2, radius float32, sides int, density float32) *Body {
newID := findAvailableBodyIndex()
if newID < 0 {
return nil
}
// Initialize new body with generic values
newBody := &Body{
ID: newID,
Enabled: true,
Position: pos,
Velocity: rl.Vector2{},
Force: rl.Vector2{},
AngularVelocity: 0.0,
Torque: 0.0,
Orient: 0.0,
Shape: Shape{
Type: PolygonShape,
Transform: rl.Mat2Radians(0),
VertexData: createRandomPolygon(radius, sides),
},
StaticFriction: 0.4,
DynamicFriction: 0.2,
Restitution: 0.0,
UseGravity: true,
IsGrounded: false,
FreezeOrient: false,
}
newBody.Shape.Body = newBody
// Calculate centroid and moment of inertia
var center rl.Vector2
area := float32(0.0)
inertia := float32(0.0)
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
// Triangle vertices, third vertex implied as (0, 0)
nextIndex := getNextIndex(i, newBody.Shape.VertexData.VertexCount)
position1 := newBody.Shape.VertexData.Positions[i]
position2 := newBody.Shape.VertexData.Positions[nextIndex]
cross := rl.Vector2CrossProduct(position1, position2)
triangleArea := cross / 2
area += triangleArea
// Use area to weight the centroid average, not just vertex position
center.X += triangleArea * physacK * (position1.X + position2.X)
center.Y += triangleArea * physacK * (position1.Y + position2.Y)
intx2 := position1.X*position1.X + position2.X*position1.X + position2.X*position2.X
inty2 := position1.Y*position1.Y + position2.Y*position1.Y + position2.Y*position2.Y
inertia += (0.25 * physacK * cross) * (intx2 + inty2)
}
center.X *= 1.0 / area
center.Y *= 1.0 / area
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
newBody.Shape.VertexData.Positions[i].X -= center.X
newBody.Shape.VertexData.Positions[i].Y -= center.Y
}
newBody.Mass = density * area
newBody.InverseMass = safeDiv(1.0, newBody.Mass)
newBody.Inertia = density * inertia
newBody.InverseInertia = safeDiv(1.0, newBody.Inertia)
// Add new body to bodies pointers array and update bodies count
bodies[bodiesCount] = newBody
bodiesCount++
return newBody
}
// Reset - Destroys created physics bodies and manifolds
func Reset() {
Close()
}
// AddForce - Adds a force to a physics body
func AddForce(body *Body, force rl.Vector2) {
if body != nil {
body.Force = rl.Vector2Add(body.Force, force)
}
}
// AddTorque - Adds an angular force to a physics body
func AddTorque(body *Body, amount float32) {
if body != nil {
body.Torque += amount
}
}
// Shatter - Shatters a polygon shape physics body to little physics bodies with explosion force
func Shatter(body *Body, position rl.Vector2, force float32) {
if body == nil || body.Shape.Type != PolygonShape {
return
}
vertexData := body.Shape.VertexData
collision := false
for i := 0; i < vertexData.VertexCount; i++ {
nextIndex := getNextIndex(i, vertexData.VertexCount)
pA := body.Position
pB := rl.Mat2MultiplyVector2(body.Shape.Transform,
rl.Vector2Add(body.Position, vertexData.Positions[i]))
pC := rl.Mat2MultiplyVector2(body.Shape.Transform,
rl.Vector2Add(body.Position, vertexData.Positions[nextIndex]))
// Check collision between each triangle
alpha := ((pB.Y-pC.Y)*(position.X-pC.X) + (pC.X-pB.X)*(position.Y-pC.Y)) /
((pB.Y-pC.Y)*(pA.X-pC.X) + (pC.X-pB.X)*(pA.Y-pC.Y))
beta := ((pC.Y-pA.Y)*(position.X-pC.X) + (pA.X-pC.X)*(position.Y-pC.Y)) /
((pB.Y-pC.Y)*(pA.X-pC.X) + (pC.X-pB.X)*(pA.Y-pC.Y))
gamma := 1.0 - alpha - beta
if alpha > 0 && beta > 0 && gamma > 0 {
collision = true
break
}
}
if !collision {
return
}
count := vertexData.VertexCount
bodyPos := body.Position
trans := body.Shape.Transform
vertices := make([]rl.Vector2, count)
for i := 0; i < count; i++ {
vertices[i] = vertexData.Positions[i]
}
// Destroy shattered physics body
body.Destroy()
for i := 0; i < count; i++ {
nextIndex := getNextIndex(i, count)
center := triangleBarycenter(vertices[i], vertices[nextIndex], rl.Vector2{})
center = rl.Vector2Add(bodyPos, center)
offset := rl.Vector2Subtract(center, bodyPos)
var newBody *Body = NewBodyPolygon(center, 10, 3, 10)
var newData Polygon = Polygon{}
newData.VertexCount = 3
newData.Positions[0] = rl.Vector2Subtract(vertices[i], offset)
newData.Positions[1] = rl.Vector2Subtract(vertices[nextIndex], offset)
newData.Positions[2] = rl.Vector2Subtract(position, center)
// Separate vertices to avoid unnecessary physics collisions
newData.Positions[0].X *= 0.95
newData.Positions[0].Y *= 0.95
newData.Positions[1].X *= 0.95
newData.Positions[1].Y *= 0.95
newData.Positions[2].X *= 0.95
newData.Positions[2].Y *= 0.95
// Calculate polygon faces normals
for j := 0; j < newData.VertexCount; j++ {
nextVertex := getNextIndex(j, newData.VertexCount)
face := rl.Vector2Subtract(newData.Positions[nextVertex], newData.Positions[j])
newData.Normals[j] = rl.NewVector2(face.Y, -face.X)
normalize(&newData.Normals[j])
}
// Apply computed vertex data to new physics body shape
newBody.Shape.VertexData = newData
newBody.Shape.Transform = trans
// Calculate centroid and moment of inertia
center = rl.Vector2{}
area := float32(0.0)
inertia := float32(0.0)
for j := 0; j < newBody.Shape.VertexData.VertexCount; j++ {
// Triangle vertices, third vertex implied as (0, 0)
nextVertex := getNextIndex(j, newBody.Shape.VertexData.VertexCount)
p1 := newBody.Shape.VertexData.Positions[j]
p2 := newBody.Shape.VertexData.Positions[nextVertex]
D := rl.Vector2CrossProduct(p1, p2)
triangleArea := D / 2
area += triangleArea
// Use area to weight the centroid average, not just vertex position
center.X += triangleArea * physacK * (p1.X + p2.X)
center.Y += triangleArea * physacK * (p1.Y + p2.Y)
intx2 := p1.X*p1.X + p2.X*p1.X + p2.X*p2.X
inty2 := p1.Y*p1.Y + p2.Y*p1.Y + p2.Y*p2.Y
inertia += (0.25*physacK*D)*intx2 + inty2
}
center.X *= 1.0 / area
center.Y *= 1.0 / area
newBody.Mass = area
newBody.InverseMass = safeDiv(1.0, newBody.Mass)
newBody.Inertia = inertia
newBody.InverseInertia = safeDiv(1.0, newBody.Inertia)
// Calculate explosion force direction
pointA := newBody.Position
pointB := rl.Vector2Subtract(newData.Positions[1], newData.Positions[0])
pointB.X /= 2.0
pointB.Y /= 2.0
forceDirection := rl.Vector2Subtract(
rl.Vector2Add(pointA, rl.Vector2Add(newData.Positions[0], pointB)),
newBody.Position,
)
normalize(&forceDirection)
forceDirection.X *= force
forceDirection.Y *= force
// Apply force to new physics body
AddForce(newBody, forceDirection)
}
}
// GetBodies - Returns the slice of created physics bodies
func GetBodies() []*Body {
return bodies[:]
}
// GetBodiesCount - Returns the current amount of created physics bodies
func GetBodiesCount() int {
return bodiesCount
}
// GetBody - Returns a physics body of the bodies pool at a specific index
func GetBody(index int) *Body {
return bodies[index]
}
// GetShapeType - Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
func GetShapeType(index int) ShapeType {
result := ShapeType(-1)
if index < bodiesCount {
if bodies[index] != nil {
result = bodies[index].Shape.Type
}
}
return result
}
// GetShapeVerticesCount - Returns the amount of vertices of a physics body shape
func GetShapeVerticesCount(index int) int {
var result int = 0
if index < bodiesCount {
if bodies[index] != nil {
switch bodies[index].Shape.Type {
case CircleShape:
result = circleVertices
case PolygonShape:
result = bodies[index].Shape.VertexData.VertexCount
default:
}
}
}
return result
}
// GetShapeVertex - Returns transformed position of a body shape (body position + vertex transformed position)
func (b *Body) GetShapeVertex(vertex int) rl.Vector2 {
var position rl.Vector2
switch b.Shape.Type {
case CircleShape:
angle := 360.0 / circleVertices * float64(vertex) * (degToRad)
position.X = b.Position.X + float32(math.Cos(angle))*b.Shape.Radius
position.Y = b.Position.Y + float32(math.Sin(angle))*b.Shape.Radius
case PolygonShape:
position = rl.Vector2Add(
b.Position,
rl.Mat2MultiplyVector2(b.Shape.Transform, b.Shape.VertexData.Positions[vertex]),
)
}
return position
}
// SetBodyRotation - Sets physics body shape transform based on radians parameter
func (b *Body) SetRotation(radians float32) {
b.Orient = radians
if b.Shape.Type == PolygonShape {
b.Shape.Transform = rl.Mat2Radians(radians)
}
}
// Destroy - Unitializes and destroy a physics body
func (b *Body) Destroy() {
id := b.ID
index := -1
for i := 0; i < bodiesCount; i++ {
if bodies[i].ID == id {
index = i
break
}
}
if index == -1 {
return
}
bodies[index] = nil
// Reorder physics bodies pointers array and its catched index
for i := index; i+1 < bodiesCount; i++ {
bodies[i] = bodies[i+1]
}
// Update physics bodies count
bodiesCount--
}
// Close - Unitializes physics pointers
func Close() {
// Unitialize physics manifolds dynamic memory allocations
for i := manifoldsCount - 1; i >= 0; i-- {
destroyManifold(manifolds[i])
}
// Unitialize physics bodies dynamic memory allocations
for i := bodiesCount - 1; i >= 0; i-- {
bodies[i].Destroy()
}
}
// findAvailableBodyIndex - Finds a valid index for a new physics body initialization
func findAvailableBodyIndex() int {
index := -1
for i := 0; i < maxBodies; i++ {
currentID := i
// Check if current id already exist in other physics body
for k := 0; k < bodiesCount; k++ {
if bodies[k].ID == currentID {
currentID++
break
}
}
// If it is not used, use it as new physics body id
if currentID == i {
index = i
break
}
}
return index
}
// createRandomPolygon - Creates a random polygon shape with max vertex distance from polygon pivot
func createRandomPolygon(radius float32, sides int) Polygon {
var data Polygon = Polygon{}
data.VertexCount = sides
// Calculate polygon vertices positions
for i := 0; i < data.VertexCount; i++ {
data.Positions[i].X = float32(math.Cos(360.0/float64(sides)*float64(i)*degToRad)) * radius
data.Positions[i].Y = float32(math.Sin(360.0/float64(sides)*float64(i)*degToRad)) * radius
}
// Calculate polygon faces normals
for i := 0; i < data.VertexCount; i++ {
nextIndex := getNextIndex(i, sides)
face := rl.Vector2Subtract(data.Positions[nextIndex], data.Positions[i])
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
normalize(&data.Normals[i])
}
return data
}
// createRectanglePolygon - Creates a rectangle polygon shape based on a min and max positions
func createRectanglePolygon(pos rl.Vector2, size rl.Vector2) Polygon {
var data Polygon = Polygon{}
data.VertexCount = 4
// Calculate polygon vertices positions
data.Positions[0] = rl.NewVector2(pos.X+size.X/2, pos.Y-size.Y/2)
data.Positions[1] = rl.NewVector2(pos.X+size.X/2, pos.Y+size.Y/2)
data.Positions[2] = rl.NewVector2(pos.X-size.X/2, pos.Y+size.Y/2)
data.Positions[3] = rl.NewVector2(pos.X-size.X/2, pos.Y-size.Y/2)
// Calculate polygon faces normals
for i := 0; i < data.VertexCount; i++ {
nextIndex := getNextIndex(i, data.VertexCount)
face := rl.Vector2Subtract(data.Positions[nextIndex], data.Positions[i])
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
normalize(&data.Normals[i])
}
return data
}
// step - Does physics steps calculations (dynamics, collisions and position corrections)
func step() {
// Clear previous generated collisions information
for i := manifoldsCount - 1; i >= 0; i-- {
if manifold := manifolds[i]; manifold != nil {
destroyManifold(manifold)
}
}
// Reset physics bodies grounded state
for i := 0; i < bodiesCount; i++ {
bodies[i].IsGrounded = false
}
// Generate new collision information
for i := 0; i < bodiesCount; i++ {
bodyA := bodies[i]
if bodyA == nil {
continue
}
for j := i + 1; j < bodiesCount; j++ {
var bodyB *Body = bodies[j]
if bodyB == nil || bodyA.InverseMass == 0 && bodyB.InverseMass == 0 {
continue
}
manifold := createManifold(bodyA, bodyB)
solveManifold(manifold)
if manifold.ContactsCount > 0 {
// Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
newManifold := createManifold(bodyA, bodyB)
newManifold.Penetration = manifold.Penetration
newManifold.Normal = manifold.Normal
newManifold.Contacts[0] = manifold.Contacts[0]
newManifold.Contacts[1] = manifold.Contacts[1]
newManifold.ContactsCount = manifold.ContactsCount
newManifold.Restitution = manifold.Restitution
newManifold.DynamicFriction = manifold.DynamicFriction
newManifold.StaticFriction = manifold.StaticFriction
}
}
}
// Integrate forces to physics bodies
for i := 0; i < bodiesCount; i++ {
if body := bodies[i]; body != nil {
integrateForces(body)
}
}
// Initialize physics manifolds to solve collisions
for i := 0; i < manifoldsCount; i++ {
if manifold := manifolds[i]; manifold != nil {
initializeManifolds(manifold)
}
}
// Integrate physics collisions impulses to solve collisions
for i := 0; i < collisionIterations; i++ {
for j := 0; j < manifoldsCount; j++ {
if manifold := manifolds[i]; manifold != nil {
integrateImpulses(manifold)
}
}
}
// Integrate velocity to physics bodies
for i := 0; i < bodiesCount; i++ {
if body := bodies[i]; body != nil {
integrateVelocity(body)
}
}
// Correct physics bodies positions based on manifolds collision information
for i := 0; i < manifoldsCount; i++ {
if manifold := manifolds[i]; manifold != nil {
correctPositions(manifold)
}
}
// Clear physics bodies forces
for i := 0; i < bodiesCount; i++ {
if body := bodies[i]; body != nil {
body.Force = rl.Vector2{}
body.Torque = 0
}
}
}
// Update - Runs physics step
func Update() {
// Calculate current time
currentTime = getCurrentTime()
// Calculate current delta time
var delta float32 = currentTime - startTime
// Store the time elapsed since the last frame began
accumulator += delta
// Fixed time stepping loop
for accumulator >= deltaTime {
step()
accumulator -= deltaTime
}
// Record the starting of this frame
startTime = currentTime
}
// SetTimeStep - Sets physics fixed time step in milliseconds. 1.666666 by default
func SetTimeStep(delta float32) {
deltaTime = delta
}
// findAvailableManifoldIndex - Finds a valid index for a new manifold initialization
func findAvailableManifoldIndex() int {
index := -1
for i := 0; i < maxManifolds; i++ {
var currentId int = i
// Check if current id already exist in other physics body
for k := 0; k < manifoldsCount; k++ {
if manifolds[k].ID == currentId {
currentId++
break
}
}
// If it is not used, use it as new physics body id
if currentId == i {
index = i
break
}
}
return index
}
// createManifold - Creates a new physics manifold to solve collision
func createManifold(a *Body, b *Body) *Manifold {
newID := findAvailableManifoldIndex()
if newID < 0 {
return nil
}
// Initialize new manifold with generic values
newManifold := &Manifold{
ID: newID,
BodyA: a,
BodyB: b,
Penetration: 0,
Normal: rl.Vector2{},
Contacts: [2]rl.Vector2{},
ContactsCount: 0,
Restitution: 0.0,
DynamicFriction: 0.0,
StaticFriction: 0.0,
}
// Add new contact to conctas pointers array and update contacts count
manifolds[manifoldsCount] = newManifold
manifoldsCount++
return newManifold
}
// destroyManifold - Unitializes and destroys a physics manifold
func destroyManifold(manifold *Manifold) {
if manifold == nil {
return
}
id := manifold.ID
index := -1
for i := 0; i < manifoldsCount; i++ {
if manifolds[i].ID == id {
index = i
break
}
}
if index < 0 {
return
}
manifolds[index] = nil
// Reorder physics manifolds pointers array and its catched index
for i := index; i < manifoldsCount; i++ {
if (i + 1) < manifoldsCount {
manifolds[i] = manifolds[i+1]
}
}
// Update physics manifolds count
manifoldsCount--
}
// solveManifold - Solves a created physics manifold between two physics bodies
func solveManifold(manifold *Manifold) {
switch manifold.BodyA.Shape.Type {
case CircleShape:
switch manifold.BodyB.Shape.Type {
case CircleShape:
solveCircleToCircle(manifold)
case PolygonShape:
solveCircleToPolygon(manifold)
}
case PolygonShape:
switch manifold.BodyB.Shape.Type {
case CircleShape:
solvePolygonToCircle(manifold)
case PolygonShape:
solvePolygonToPolygon(manifold)
}
}
// Update physics body grounded state if normal direction is down and grounded state
// is not set yet in previous manifolds
if !manifold.BodyB.IsGrounded {
manifold.BodyB.IsGrounded = manifold.Normal.Y < 0
}
}
// solveCircleToCircle - Solves collision between two circle shape physics bodies
func solveCircleToCircle(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
// Calculate translational vector, which is normal
var normal rl.Vector2 = rl.Vector2Subtract(bodyB.Position, bodyA.Position)
distSqr := rl.Vector2LenSqr(normal)
radius := bodyA.Shape.Radius + bodyB.Shape.Radius
// Check if circles are not in contact
if distSqr >= radius*radius {
manifold.ContactsCount = 0
return
}
distance := float32(math.Sqrt(float64(distSqr)))
manifold.ContactsCount = 1
if distance == 0 {
manifold.Penetration = bodyA.Shape.Radius
manifold.Normal = rl.NewVector2(1, 0)
manifold.Contacts[0] = bodyA.Position
} else {
manifold.Penetration = radius - distance
// Faster than using normalize() due to sqrt is already performed
manifold.Normal = rl.NewVector2(
normal.X/distance,
normal.Y/distance,
)
manifold.Contacts[0] = rl.NewVector2(
manifold.Normal.X*bodyA.Shape.Radius+bodyA.Position.X,
manifold.Normal.Y*bodyA.Shape.Radius+bodyA.Position.Y,
)
}
// Update physics body grounded state if normal direction is down
if !bodyA.IsGrounded {
bodyA.IsGrounded = manifold.Normal.Y < 0
}
}
// solveCircleToPolygon - Solves collision between a circle to a polygon shape physics bodies
func solveCircleToPolygon(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
solveDifferentShapes(manifold, bodyA, bodyB)
}
// solvePolygonToCircle - Solves collision between a polygon to a circle shape physics bodies
func solvePolygonToCircle(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
solveDifferentShapes(manifold, bodyB, bodyA)
manifold.Normal.X *= -1.0
manifold.Normal.Y *= -1.0
}
// solveDifferentShapes - Solves collision between two different types of shapes
func solveDifferentShapes(manifold *Manifold, bodyA *Body, bodyB *Body) {
manifold.ContactsCount = 0
// Transform circle center to polygon transform space
center := rl.Mat2MultiplyVector2(
rl.Mat2Transpose(bodyB.Shape.Transform),
rl.Vector2Subtract(bodyA.Position, bodyB.Position),
)
// Find edge with minimum penetration
// It is the same concept as using support points in SolvePolygonToPolygon
separation := float32(-math.MaxFloat32)
faceNormal := 0
vertexData := bodyB.Shape.VertexData
for i := 0; i < vertexData.VertexCount; i++ {
currentSeparation := rl.Vector2DotProduct(
vertexData.Normals[i],
rl.Vector2Subtract(center, vertexData.Positions[i]),
)
if currentSeparation > bodyA.Shape.Radius {
return
}
if currentSeparation > separation {
separation = currentSeparation
faceNormal = i
}
}
// Grab face's vertices
nextIndex := getNextIndex(faceNormal, vertexData.VertexCount)
v1 := vertexData.Positions[faceNormal]
v2 := vertexData.Positions[nextIndex]
// Check to see if center is within polygon
if separation < epsilon {
manifold.ContactsCount = 1
var normal rl.Vector2 = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, vertexData.Normals[faceNormal])
manifold.Normal = rl.NewVector2(-normal.X, -normal.Y)
manifold.Contacts[0] = rl.NewVector2(
manifold.Normal.X*bodyA.Shape.Radius+bodyA.Position.X,
manifold.Normal.Y*bodyA.Shape.Radius+bodyA.Position.Y,
)
manifold.Penetration = bodyA.Shape.Radius
return
}
// Determine which voronoi region of the edge center of circle lies within
dot1 := rl.Vector2DotProduct(rl.Vector2Subtract(center, v1), rl.Vector2Subtract(v2, v1))
dot2 := rl.Vector2DotProduct(rl.Vector2Subtract(center, v2), rl.Vector2Subtract(v1, v2))
manifold.Penetration = bodyA.Shape.Radius - separation
switch {
case dot1 <= 0: // Closest to v1
if rl.Vector2Distance(center, v1) > bodyA.Shape.Radius*bodyA.Shape.Radius {
return
}
manifold.ContactsCount = 1
var normal rl.Vector2 = rl.Vector2Subtract(v1, center)
normal = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, normal)
normalize(&normal)
manifold.Normal = normal
v1 = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, v1)
v1 = rl.Vector2Add(v1, bodyB.Position)
manifold.Contacts[0] = v1
case dot2 <= 0: // Closest to v2
if rl.Vector2Distance(center, v2) > bodyA.Shape.Radius*bodyA.Shape.Radius {
return
}
manifold.ContactsCount = 1
var normal rl.Vector2 = rl.Vector2Subtract(v2, center)
v2 = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, v2)
v2 = rl.Vector2Add(v2, bodyB.Position)
manifold.Contacts[0] = v2
normal = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, normal)
normalize(&normal)
manifold.Normal = normal
default: // Closest to face
var normal rl.Vector2 = vertexData.Normals[faceNormal]
if rl.Vector2DotProduct(rl.Vector2Subtract(center, v1), normal) > bodyA.Shape.Radius {
return
}
normal = rl.Mat2MultiplyVector2(bodyB.Shape.Transform, normal)
manifold.Normal = rl.NewVector2(-normal.X, -normal.Y)
manifold.Contacts[0] = rl.NewVector2(
manifold.Normal.X*bodyA.Shape.Radius+bodyA.Position.X,
manifold.Normal.Y*bodyA.Shape.Radius+bodyA.Position.Y,
)
manifold.ContactsCount = 1
}
}
// solvePolygonToPolygon - Solves collision between two polygons shape physics bodies
func solvePolygonToPolygon(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
shapeA, shapeB := bodyA.Shape, bodyB.Shape
manifold.ContactsCount = 0
// Check for separating axis with A shape's face planes
faceA, penetrationA := findAxisLeastPenetration(shapeA, shapeB)
if penetrationA >= 0 {
return
}
// Check for separating axis with B shape's face planes
faceB, penetrationB := findAxisLeastPenetration(shapeB, shapeA)
if penetrationB >= 0 {
return
}
referenceIndex := 0
flip := false // Always point from A shape to B shape
var refPoly Shape // Reference
var incPoly Shape // Incident
// Determine which shape contains reference face
if biasGreaterThan(penetrationA, penetrationB) {
refPoly = shapeA
incPoly = shapeB
referenceIndex = faceA
} else {
refPoly = shapeB
incPoly = shapeA
referenceIndex = faceB
flip = true
}
// World space incident face
var incidentFace [2]rl.Vector2
findIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex)
// Setup reference face vertices
refData := refPoly.VertexData
v1 := refData.Positions[referenceIndex]
referenceIndex = getNextIndex(referenceIndex, refData.VertexCount)
v2 := refData.Positions[referenceIndex]
// Transform vertices to world space
v1 = rl.Mat2MultiplyVector2(refPoly.Transform, v1)
v1 = rl.Vector2Add(v1, refPoly.Body.Position)
v2 = rl.Mat2MultiplyVector2(refPoly.Transform, v2)
v2 = rl.Vector2Add(v2, refPoly.Body.Position)
// Calculate reference face side normal in world space
sidePlaneNormal := rl.Vector2Subtract(v2, v1)
normalize(&sidePlaneNormal)
// Orthogonalize
refFaceNormal := rl.NewVector2(sidePlaneNormal.Y, -sidePlaneNormal.X)
refC := rl.Vector2DotProduct(refFaceNormal, v1)
negSide := rl.Vector2DotProduct(sidePlaneNormal, v1) * float32(-1)
posSide := rl.Vector2DotProduct(sidePlaneNormal, v2)
// Clip incident face to reference face side planes (due to floating point error, possible to not have required points
if clip(rl.NewVector2(-sidePlaneNormal.X, -sidePlaneNormal.Y), negSide, &incidentFace[0], &incidentFace[1]) < 2 {
return
}
if clip(sidePlaneNormal, posSide, &incidentFace[0], &incidentFace[1]) < 2 {
return
}
// Flip normal if required
if flip {
manifold.Normal = rl.NewVector2(-refFaceNormal.X, -refFaceNormal.Y)
} else {
manifold.Normal = refFaceNormal
}
// Keep points behind reference face
currentPoint := 0 // Clipped points behind reference face
separation := rl.Vector2DotProduct(refFaceNormal, incidentFace[0]) - refC
if separation <= 0 {
manifold.Contacts[currentPoint] = incidentFace[0]
manifold.Penetration = -separation
currentPoint++
} else {
manifold.Penetration = 0
}
separation = rl.Vector2DotProduct(refFaceNormal, incidentFace[1]) - refC
if separation <= 0 {
manifold.Contacts[currentPoint] = incidentFace[1]
manifold.Penetration += -separation
currentPoint++
// Calculate total penetration average
manifold.Penetration /= float32(currentPoint)
}
manifold.ContactsCount = currentPoint
}
// integrateForces - Integrates physics forces into velocity
func integrateForces(body *Body) {
if body == nil || body.InverseMass == 0 || !body.Enabled {
return
}
body.Velocity.X += body.Force.X * body.InverseMass * (deltaTime / 2.0)
body.Velocity.Y += body.Force.Y * body.InverseMass * (deltaTime / 2.0)
if body.UseGravity {
body.Velocity.X += gravityForce.X * (deltaTime / 1000 / 2.0)
body.Velocity.Y += gravityForce.Y * (deltaTime / 1000 / 2.0)
}
if !body.FreezeOrient {
body.AngularVelocity += body.Torque * body.InverseInertia * (deltaTime / 2.0)
}
}
// initializeManifolds - Initializes physics manifolds to solve collisions
func initializeManifolds(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
// // Calculate average restitution, static and dynamic friction
manifold.Restitution = float32(math.Sqrt(float64(bodyA.Restitution * bodyB.Restitution)))
manifold.StaticFriction = float32(math.Sqrt(float64(bodyA.StaticFriction * bodyB.StaticFriction)))
manifold.DynamicFriction = float32(math.Sqrt(float64(bodyA.DynamicFriction * bodyB.DynamicFriction)))
for i := 0; i < manifold.ContactsCount; i++ {
// Caculate radius from center of mass to contact
radiusA := rl.Vector2Subtract(manifold.Contacts[i], bodyA.Position)
radiusB := rl.Vector2Subtract(manifold.Contacts[i], bodyB.Position)
crossA := rl.Vector2Cross(bodyA.AngularVelocity, radiusA)
crossB := rl.Vector2Cross(bodyB.AngularVelocity, radiusB)
radiusV := rl.NewVector2(
bodyB.Velocity.X+crossB.X-bodyA.Velocity.X-crossA.X,
bodyB.Velocity.Y+crossB.Y-bodyA.Velocity.Y-crossA.Y,
)
// Determine if we should perform a resting collision or not;
// The idea is if the only thing moving this object is gravity, then the collision should be
// performed without any restitution
rad := rl.NewVector2(gravityForce.X*deltaTime/1000, gravityForce.Y*deltaTime/1000)
if rl.Vector2LenSqr(radiusV) < (rl.Vector2LenSqr(rad) + epsilon) {
manifold.Restitution = 0
}
}
}
// integrateImpulses - Integrates physics collisions impulses to solve collisions
func integrateImpulses(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
// Early out and positional correct if both objects have infinite mass
if math.Abs(float64(bodyA.InverseMass+bodyB.InverseMass)) <= epsilon {
bodyA.Velocity = rl.Vector2{}
bodyB.Velocity = rl.Vector2{}
return
}
for i := 0; i < manifold.ContactsCount; i++ {
// Calculate radius from center of mass to contact
radiusA := rl.Vector2Subtract(manifold.Contacts[i], bodyA.Position)
radiusB := rl.Vector2Subtract(manifold.Contacts[i], bodyB.Position)
// Calculate relative velocity
radiusV := rl.NewVector2(
bodyB.Velocity.X+rl.Vector2Cross(bodyB.AngularVelocity, radiusB).X-
bodyA.Velocity.X-rl.Vector2Cross(bodyA.AngularVelocity, radiusA).X,
bodyB.Velocity.Y+rl.Vector2Cross(bodyB.AngularVelocity, radiusB).Y-
bodyA.Velocity.Y-rl.Vector2Cross(bodyA.AngularVelocity, radiusA).Y,
)
// Relative velocity along the normal
contactVelocity := rl.Vector2DotProduct(radiusV, manifold.Normal)
// Do not resolve if velocities are separating
if contactVelocity > 0 {
return
}
raCrossN := rl.Vector2CrossProduct(radiusA, manifold.Normal)
rbCrossN := rl.Vector2CrossProduct(radiusB, manifold.Normal)
inverseMassSum := bodyA.InverseMass + bodyB.InverseMass +
(raCrossN*raCrossN)*bodyA.InverseInertia + (rbCrossN*rbCrossN)*bodyB.InverseInertia
// Calculate impulse scalar value
impulse := -(manifold.Restitution + 1.0) * contactVelocity
impulse /= inverseMassSum
impulse /= float32(manifold.ContactsCount)
// Apply impulse to each physics body
impulseV := rl.NewVector2(manifold.Normal.X*impulse, manifold.Normal.Y*impulse)
if bodyA.Enabled {
bodyA.Velocity.X += bodyA.InverseMass * (-impulseV.X)
bodyA.Velocity.Y += bodyA.InverseMass * (-impulseV.Y)
if !bodyA.FreezeOrient {
bodyA.AngularVelocity += bodyA.InverseInertia *
rl.Vector2CrossProduct(radiusA, rl.NewVector2(-impulseV.X, -impulseV.Y))
}
}
if bodyB.Enabled {
bodyB.Velocity.X += bodyB.InverseMass * impulseV.X
bodyB.Velocity.Y += bodyB.InverseMass * impulseV.Y
if !bodyB.FreezeOrient {
bodyB.AngularVelocity += bodyB.InverseInertia * rl.Vector2CrossProduct(radiusB, impulseV)
}
}
// Apply friction impulse to each physics body
radiusV.X = 0 +
bodyB.Velocity.X + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).X -
bodyA.Velocity.X - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).X
radiusV.Y = 0 +
bodyB.Velocity.Y + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).Y -
bodyA.Velocity.Y - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
tangent := rl.NewVector2(
radiusV.X-manifold.Normal.X*rl.Vector2DotProduct(radiusV, manifold.Normal),
radiusV.Y-manifold.Normal.Y*rl.Vector2DotProduct(radiusV, manifold.Normal),
)
normalize(&tangent)
// Calculate impulse tangent magnitude
impulseTangent := -rl.Vector2DotProduct(radiusV, tangent)
impulseTangent /= inverseMassSum
impulseTangent /= float32(manifold.ContactsCount)
absImpulseTangent := float32(math.Abs(float64(impulseTangent)))
// Don't apply tiny friction impulses
if absImpulseTangent <= epsilon {
return
}
// Apply coulumb's law
var tangentImpulse rl.Vector2
if absImpulseTangent < impulse*manifold.StaticFriction {
tangentImpulse = rl.NewVector2(tangent.X*impulseTangent, tangent.Y*impulseTangent)
} else {
tangentImpulse = rl.NewVector2(
tangent.X*(-impulse)*manifold.DynamicFriction,
tangent.Y*(-impulse)*manifold.DynamicFriction,
)
}
// Apply friction impulse
if bodyA.Enabled {
bodyA.Velocity.X += bodyA.InverseMass * (-tangentImpulse.X)
bodyA.Velocity.Y += bodyA.InverseMass * (-tangentImpulse.Y)
if !bodyA.FreezeOrient {
bodyA.AngularVelocity += bodyA.InverseInertia *
rl.Vector2CrossProduct(radiusA, rl.NewVector2(-tangentImpulse.X, -tangentImpulse.Y))
}
}
if bodyB.Enabled {
bodyB.Velocity.X += bodyB.InverseMass * tangentImpulse.X
bodyB.Velocity.Y += bodyB.InverseMass * tangentImpulse.Y
if !bodyB.FreezeOrient {
bodyB.AngularVelocity += bodyB.InverseInertia * rl.Vector2CrossProduct(radiusB, tangentImpulse)
}
}
}
}
// integrateVelocity - Integrates physics velocity into position and forces
func integrateVelocity(body *Body) {
if body == nil || !body.Enabled {
return
}
body.Position.X += body.Velocity.X * deltaTime
body.Position.Y += body.Velocity.Y * deltaTime
if !body.FreezeOrient {
body.Orient += body.AngularVelocity * deltaTime
}
rl.Mat2Set(&body.Shape.Transform, body.Orient)
integrateForces(body)
}
// correctPositions - Corrects physics bodies positions based on manifolds collision information
func correctPositions(manifold *Manifold) {
bodyA, bodyB := manifold.BodyA, manifold.BodyB
if bodyA == nil || bodyB == nil {
return
}
corrCoeff := float32(math.Max(float64(manifold.Penetration-penetrationAllowance), 0)) /
(bodyA.InverseMass + bodyB.InverseMass) * penetrationCorrection
correction := rl.NewVector2(corrCoeff*manifold.Normal.X, corrCoeff*manifold.Normal.Y)
if bodyA.Enabled {
bodyA.Position.X -= correction.X * bodyA.InverseMass
bodyA.Position.Y -= correction.Y * bodyA.InverseMass
}
if bodyB.Enabled {
bodyB.Position.X += correction.X * bodyB.InverseMass
bodyB.Position.Y += correction.Y * bodyB.InverseMass
}
}
// getSupport - Returns the extreme point along a direction within a polygon
func getSupport(shape Shape, dir rl.Vector2) rl.Vector2 {
bestProjection := float32(-math.MaxFloat32)
bestVertex := rl.Vector2{}
for i := 0; i < shape.VertexData.VertexCount; i++ {
vertex := shape.VertexData.Positions[i]
projection := rl.Vector2DotProduct(vertex, dir)
if projection > bestProjection {
bestVertex = vertex
bestProjection = projection
}
}
return bestVertex
}
// findAxisLeastPenetration - Finds polygon shapes axis least penetration
func findAxisLeastPenetration(shapeA Shape, shapeB Shape) (int, float32) {
bestIndex := 0
bestDistance := float32(-math.MaxFloat32)
dataA := shapeA.VertexData
for i := 0; i < dataA.VertexCount; i++ {
// Retrieve a face normal from A shape
normal := dataA.Normals[i]
transNormal := rl.Mat2MultiplyVector2(shapeA.Transform, normal)
// Transform face normal into B shape's model space
buT := rl.Mat2Transpose(shapeB.Transform)
normal = rl.Mat2MultiplyVector2(buT, transNormal)
// Retrieve vertex on face from A shape, transform into B shape's model space
support := getSupport(shapeB, rl.NewVector2(-normal.X, -normal.Y))
// Retrieve vertex on face from A shape, transform into B shape's model space
vertex := dataA.Positions[i]
vertex = rl.Mat2MultiplyVector2(shapeA.Transform, vertex)
vertex = rl.Vector2Add(vertex, shapeA.Body.Position)
vertex = rl.Vector2Subtract(vertex, shapeB.Body.Position)
vertex = rl.Mat2MultiplyVector2(buT, vertex)
// Compute penetration distance in B shape's model space
distance := rl.Vector2DotProduct(normal, rl.Vector2Subtract(support, vertex))
// Store greatest distance
if distance > bestDistance {
bestDistance = distance
bestIndex = i
}
}
return bestIndex, float32(bestDistance)
}
// findIncidentFace - Finds two polygon shapes incident face
func findIncidentFace(v0 *rl.Vector2, v1 *rl.Vector2, ref Shape, inc Shape, index int) {
refData := ref.VertexData
incData := inc.VertexData
refNormal := refData.Normals[index]
// Calculate normal in incident's frame of reference
refNormal = rl.Mat2MultiplyVector2(ref.Transform, refNormal) // To world space
refNormal = rl.Mat2MultiplyVector2(rl.Mat2Transpose(inc.Transform), refNormal) // To incident's model space
// Find most anti-normal face on polygon
incidentFace := 0
minDot := float32(math.MaxFloat32)
for i := 0; i < incData.VertexCount; i++ {
dot := rl.Vector2DotProduct(refNormal, incData.Normals[i])
if dot < minDot {
minDot = dot
incidentFace = i
}
}
// Assign face vertices for incident face
*v0 = rl.Mat2MultiplyVector2(inc.Transform, incData.Positions[incidentFace])
*v0 = rl.Vector2Add(*v0, inc.Body.Position)
incidentFace = getNextIndex(incidentFace, incData.VertexCount)
*v1 = rl.Mat2MultiplyVector2(inc.Transform, incData.Positions[incidentFace])
*v1 = rl.Vector2Add(*v1, inc.Body.Position)
}
// clip - Calculates clipping based on a normal and two faces
func clip(normal rl.Vector2, clip float32, faceA *rl.Vector2, faceB *rl.Vector2) int {
sp := 0
out := [2]rl.Vector2{*faceA, *faceB}
// Retrieve distances from each endpoint to the line
distanceA := rl.Vector2DotProduct(normal, *faceA) - clip
distanceB := rl.Vector2DotProduct(normal, *faceB) - clip
// If negative (behind plane)
if distanceA <= 0 {
out[sp] = *faceA
sp++
}
if distanceB <= 0 {
out[sp] = *faceB
sp++
}
// If the points are on different sides of the plane
if distanceA*distanceB < 0 {
// Push intersection point
alpha := distanceA / (distanceA - distanceB)
out[sp] = *faceA
delta := rl.Vector2Subtract(*faceB, *faceA)
delta.X *= alpha
delta.Y *= alpha
out[sp] = rl.Vector2Add(out[sp], delta)
sp++
}
// Assign the new converted values
*faceA = out[0]
*faceB = out[1]
return sp
}
// biasGreaterThan - Checks if values are between bias range
func biasGreaterThan(valueA float32, valueB float32) bool {
return valueA >= (valueB*0.95 + valueA*0.01)
}
// triangleBarycenter - Returns the barycenter of a triangle given by 3 points
func triangleBarycenter(v1 rl.Vector2, v2 rl.Vector2, v3 rl.Vector2) rl.Vector2 {
return rl.NewVector2(
(v1.X+v2.X+v3.X)/3,
(v1.Y+v2.Y+v3.Y)/3,
)
}
// initTimer - Initializes hi-resolution MONOTONIC timer
func initTimer() {
rand.Seed(getTimeCount())
frequency = 1000000000
startTime = getCurrentTime() // Get current time
}
// getTimeCount - Gets hi-res MONOTONIC time measure in nanoseconds
func getTimeCount() int64 {
return time.Since(baseTime).Nanoseconds()
}
// getCurrentTime - Gets current time measure in milliseconds
func getCurrentTime() float32 {
return float32(getTimeCount()) / float32(frequency) * 1000
}
// normalize - Returns the normalized values of a vector
func normalize(vector *rl.Vector2) {
aux := *vector
length := float32(math.Sqrt(float64(aux.X*aux.X + aux.Y*aux.Y)))
if length == 0 {
length = 1.0
}
ilength := 1.0 / length
vector.X *= ilength
vector.Y *= ilength
}
func getNextIndex(i, count int) int {
if i+1 < count {
return i + 1
}
return 0
}
func safeDiv(a, b float32) float32 {
if b == 0 {
return 0
}
return a / b
}