1420 lines
41 KiB
Go
1420 lines
41 KiB
Go
// Package physics - 2D Physics library for videogames
|
|
//
|
|
// A port of Victor Fisac's physac engine (https://github.com/raysan5/raylib/blob/master/src/physac.h)
|
|
package physics
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/gen2brain/raylib-go/raylib"
|
|
"github.com/gen2brain/raylib-go/raymath"
|
|
)
|
|
|
|
// ShapeType type
|
|
type ShapeType int
|
|
|
|
// Physics shape types
|
|
const (
|
|
// Circle type
|
|
CircleShape ShapeType = iota
|
|
// Polygon type
|
|
PolygonShape
|
|
)
|
|
|
|
// Polygon type
|
|
type Polygon struct {
|
|
// Current used vertex and normals count
|
|
VertexCount int
|
|
// Polygon vertex positions vectors
|
|
Vertices [maxVertices]rl.Vector2
|
|
// Polygon vertex normals vectors
|
|
Normals [maxVertices]rl.Vector2
|
|
// Vertices transform matrix 2x2
|
|
Transform rl.Mat2
|
|
}
|
|
|
|
// Shape type
|
|
type Shape struct {
|
|
// Physics shape type (circle or polygon)
|
|
Type ShapeType
|
|
// Shape physics body reference
|
|
Body *Body
|
|
// Circle shape radius (used for circle shapes)
|
|
Radius float32
|
|
// Polygon shape vertices position and normals data (just used for polygon shapes)
|
|
VertexData Polygon
|
|
}
|
|
|
|
// Body type
|
|
type Body struct {
|
|
// Enabled dynamics state (collisions are calculated anyway)
|
|
Enabled bool
|
|
// Physics body shape pivot
|
|
Position rl.Vector2
|
|
// Current linear velocity applied to position
|
|
Velocity rl.Vector2
|
|
// Current linear force (reset to 0 every step)
|
|
Force rl.Vector2
|
|
// Current angular velocity applied to orient
|
|
AngularVelocity float32
|
|
// Current angular force (reset to 0 every step)
|
|
Torque float32
|
|
// Rotation in radians
|
|
Orient float32
|
|
// Moment of inertia
|
|
Inertia float32
|
|
// Inverse value of inertia
|
|
InverseInertia float32
|
|
// Physics body mass
|
|
Mass float32
|
|
// Inverse value of mass
|
|
InverseMass float32
|
|
// Friction when the body has not movement (0 to 1)
|
|
StaticFriction float32
|
|
// Friction when the body has movement (0 to 1)
|
|
DynamicFriction float32
|
|
// Restitution coefficient of the body (0 to 1)
|
|
Restitution float32
|
|
// Apply gravity force to dynamics
|
|
UseGravity bool
|
|
// Physics grounded on other body state
|
|
IsGrounded bool
|
|
// Physics rotation constraint
|
|
FreezeOrient bool
|
|
// Physics body shape information (type, radius, vertices, normals)
|
|
Shape Shape
|
|
}
|
|
|
|
// manifold type
|
|
type manifold struct {
|
|
// Manifold first physics body reference
|
|
BodyA *Body
|
|
// Manifold second physics body reference
|
|
BodyB *Body
|
|
// Depth of penetration from collision
|
|
Penetration float32
|
|
// Normal direction vector from 'a' to 'b'
|
|
Normal rl.Vector2
|
|
// Points of contact during collision
|
|
Contacts [2]rl.Vector2
|
|
// Current collision number of contacts
|
|
ContactsCount int
|
|
// Mixed restitution during collision
|
|
Restitution float32
|
|
// Mixed dynamic friction during collision
|
|
DynamicFriction float32
|
|
// Mixed static friction during collision
|
|
StaticFriction float32
|
|
}
|
|
|
|
// Constants
|
|
const (
|
|
maxBodies = 64
|
|
maxManifolds = 4096
|
|
|
|
maxVertices = 24
|
|
circleVertices = 24
|
|
|
|
collisionIterations = 100
|
|
penetrationAllowance = 0.05
|
|
penetrationCorrection = 0.4
|
|
|
|
fltMax = 3.402823466 + 38
|
|
epsilon = 0.000001
|
|
)
|
|
|
|
// Globals
|
|
var (
|
|
// Physics bodies pointers
|
|
bodies []*Body
|
|
|
|
// Physics manifolds pointers
|
|
manifolds []*manifold
|
|
|
|
// Physics world gravity force
|
|
gravityForce rl.Vector2
|
|
|
|
// Delta time used for physics steps, in milliseconds
|
|
deltaTime float32
|
|
)
|
|
|
|
// Init - initializes physics values
|
|
func Init() {
|
|
deltaTime = 1.0 / 60.0 / 10.0 * 1000
|
|
gravityForce = rl.NewVector2(0, 9.81)
|
|
|
|
bodies = make([]*Body, 0, maxBodies)
|
|
manifolds = make([]*manifold, 0, maxManifolds)
|
|
}
|
|
|
|
// Sets physics fixed time step in milliseconds. 1.666666 by default
|
|
func SetPhysicsTimeStep(delta float32) {
|
|
deltaTime = delta
|
|
}
|
|
|
|
// SetGravity - Sets physics global gravity force
|
|
func SetGravity(x, y float32) {
|
|
gravityForce.X = x
|
|
gravityForce.Y = y
|
|
}
|
|
|
|
// NewBodyCircle - Creates a new circle physics body with generic parameters
|
|
func NewBodyCircle(pos rl.Vector2, radius, density float32) *Body {
|
|
return NewBodyPolygon(pos, radius, circleVertices, density)
|
|
}
|
|
|
|
// NewBodyRectangle - Creates a new rectangle physics body with generic parameters
|
|
func NewBodyRectangle(pos rl.Vector2, width, height, density float32) *Body {
|
|
newBody := &Body{}
|
|
|
|
// Initialize new body with generic values
|
|
newBody.Enabled = true
|
|
newBody.Position = pos
|
|
newBody.Velocity = rl.Vector2{}
|
|
newBody.Force = rl.Vector2{}
|
|
newBody.AngularVelocity = 0
|
|
newBody.Torque = 0
|
|
newBody.Orient = 0
|
|
|
|
newBody.Shape = Shape{}
|
|
newBody.Shape.Type = PolygonShape
|
|
newBody.Shape.Body = newBody
|
|
newBody.Shape.VertexData = newRectanglePolygon(pos, rl.NewVector2(width, height))
|
|
|
|
// Calculate centroid and moment of inertia
|
|
center := rl.Vector2{}
|
|
area := float32(0.0)
|
|
inertia := float32(0.0)
|
|
k := float32(1.0) / 3.0
|
|
|
|
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
|
|
// Triangle vertices, third vertex implied as (0, 0)
|
|
p1 := newBody.Shape.VertexData.Vertices[i]
|
|
nextIndex := 0
|
|
if i+1 < newBody.Shape.VertexData.VertexCount {
|
|
nextIndex = i + 1
|
|
}
|
|
p2 := newBody.Shape.VertexData.Vertices[nextIndex]
|
|
|
|
D := raymath.Vector2CrossProduct(p1, p2)
|
|
triangleArea := D / 2
|
|
|
|
area += triangleArea
|
|
|
|
// Use area to weight the centroid average, not just vertex position
|
|
center.X += triangleArea * k * (p1.X + p2.X)
|
|
center.Y += triangleArea * k * (p1.Y + p2.Y)
|
|
|
|
intx2 := p1.X*p1.X + p2.X*p1.X + p2.X*p2.X
|
|
inty2 := p1.Y*p1.Y + p2.Y*p1.Y + p2.Y*p2.Y
|
|
inertia += (0.25 * k * D) * (intx2 + inty2)
|
|
}
|
|
|
|
center.X *= 1.0 / area
|
|
center.Y *= 1.0 / area
|
|
|
|
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
|
|
// NOTE: this is not really necessary
|
|
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
|
|
newBody.Shape.VertexData.Vertices[i].X -= center.X
|
|
newBody.Shape.VertexData.Vertices[i].Y -= center.Y
|
|
}
|
|
|
|
newBody.Mass = density * area
|
|
newBody.Inertia = density * inertia
|
|
newBody.StaticFriction = 0.4
|
|
newBody.DynamicFriction = 0.2
|
|
newBody.Restitution = 0
|
|
newBody.UseGravity = true
|
|
newBody.IsGrounded = false
|
|
newBody.FreezeOrient = false
|
|
|
|
if newBody.Mass != 0 {
|
|
newBody.InverseMass = 1.0 / newBody.Mass
|
|
}
|
|
|
|
if newBody.Inertia != 0 {
|
|
newBody.InverseInertia = 1.0 / newBody.Inertia
|
|
}
|
|
|
|
// Add new body to bodies pointers
|
|
bodies = append(bodies, newBody)
|
|
|
|
return newBody
|
|
}
|
|
|
|
// NewBodyPolygon - Creates a new polygon physics body with generic parameters
|
|
func NewBodyPolygon(pos rl.Vector2, radius float32, sides int, density float32) *Body {
|
|
newBody := &Body{}
|
|
|
|
// Initialize new body with generic values
|
|
newBody.Enabled = true
|
|
newBody.Position = pos
|
|
newBody.Velocity = rl.Vector2{}
|
|
newBody.Force = rl.Vector2{}
|
|
newBody.AngularVelocity = 0
|
|
newBody.Torque = 0
|
|
newBody.Orient = 0
|
|
|
|
newBody.Shape = Shape{}
|
|
newBody.Shape.Type = PolygonShape
|
|
newBody.Shape.Body = newBody
|
|
newBody.Shape.VertexData = newRandomPolygon(radius, sides)
|
|
|
|
// Calculate centroid and moment of inertia
|
|
center := rl.Vector2{}
|
|
area := float32(0.0)
|
|
inertia := float32(0.0)
|
|
alpha := float32(1.0) / 3.0
|
|
|
|
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
|
|
// Triangle vertices, third vertex implied as (0, 0)
|
|
position1 := newBody.Shape.VertexData.Vertices[i]
|
|
nextIndex := 0
|
|
if i+1 < newBody.Shape.VertexData.VertexCount {
|
|
nextIndex = i + 1
|
|
}
|
|
position2 := newBody.Shape.VertexData.Vertices[nextIndex]
|
|
|
|
cross := raymath.Vector2CrossProduct(position1, position2)
|
|
triangleArea := cross / 2
|
|
|
|
area += triangleArea
|
|
|
|
// Use area to weight the centroid average, not just vertex position
|
|
center.X += triangleArea * alpha * (position1.X + position2.X)
|
|
center.Y += triangleArea * alpha * (position1.Y + position2.Y)
|
|
|
|
intx2 := position1.X*position1.X + position2.X*position1.X + position2.X*position2.X
|
|
inty2 := position1.Y*position1.Y + position2.Y*position1.Y + position2.Y*position2.Y
|
|
inertia += (0.25 * alpha * cross) * (intx2 + inty2)
|
|
}
|
|
|
|
center.X *= 1.0 / area
|
|
center.Y *= 1.0 / area
|
|
|
|
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
|
|
// Note: this is not really necessary
|
|
for i := 0; i < newBody.Shape.VertexData.VertexCount; i++ {
|
|
newBody.Shape.VertexData.Vertices[i].X -= center.X
|
|
newBody.Shape.VertexData.Vertices[i].Y -= center.Y
|
|
}
|
|
|
|
newBody.Mass = density * area
|
|
newBody.Inertia = density * inertia
|
|
newBody.StaticFriction = 0.4
|
|
newBody.DynamicFriction = 0.2
|
|
newBody.Restitution = 0
|
|
newBody.UseGravity = true
|
|
newBody.IsGrounded = false
|
|
newBody.FreezeOrient = false
|
|
|
|
if newBody.Mass != 0 {
|
|
newBody.InverseMass = 1.0 / newBody.Mass
|
|
}
|
|
|
|
if newBody.Inertia != 0 {
|
|
newBody.InverseInertia = 1.0 / newBody.Inertia
|
|
}
|
|
|
|
// Add new body to bodies pointers
|
|
bodies = append(bodies, newBody)
|
|
|
|
return newBody
|
|
}
|
|
|
|
// GetBodies - Returns the slice of created physics bodies
|
|
func GetBodies() []*Body {
|
|
return bodies
|
|
}
|
|
|
|
// GetBodiesCount - Returns the current amount of created physics bodies
|
|
func GetBodiesCount() int {
|
|
return len(bodies)
|
|
}
|
|
|
|
// GetBody - Returns a physics body of the bodies pool at a specific index
|
|
func GetBody(index int) *Body {
|
|
var body *Body
|
|
|
|
if index < len(bodies) {
|
|
body = bodies[index]
|
|
} else {
|
|
rl.TraceLog(rl.LogDebug, "[PHYSAC] physics body index is out of bounds")
|
|
}
|
|
|
|
return body
|
|
}
|
|
|
|
// GetShapeType - Returns the physics body shape type (Circle or Polygon)
|
|
func GetShapeType(index int) ShapeType {
|
|
var result ShapeType
|
|
|
|
if index < len(bodies) {
|
|
result = bodies[index].Shape.Type
|
|
} else {
|
|
rl.TraceLog(rl.LogDebug, "[PHYSAC] physics body index is out of bounds")
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// GetShapeVerticesCount - Returns the amount of vertices of a physics body shape
|
|
func GetShapeVerticesCount(index int) int {
|
|
result := 0
|
|
|
|
if index < len(bodies) {
|
|
switch bodies[index].Shape.Type {
|
|
case CircleShape:
|
|
result = circleVertices
|
|
break
|
|
case PolygonShape:
|
|
result = bodies[index].Shape.VertexData.VertexCount
|
|
break
|
|
}
|
|
} else {
|
|
rl.TraceLog(rl.LogDebug, "[PHYSAC] physics body index is out of bounds")
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// DestroyBody - Unitializes and destroys a physics body
|
|
func DestroyBody(body *Body) bool {
|
|
for index, b := range bodies {
|
|
if b == body {
|
|
// Free body allocated memory
|
|
bodies = append(bodies[:index], bodies[index+1:]...)
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// Update - Physics steps calculations (dynamics, collisions and position corrections)
|
|
func Update() {
|
|
deltaTime = rl.GetFrameTime() * 1000
|
|
|
|
// Clear previous generated collisions information
|
|
for _, m := range manifolds {
|
|
destroyManifold(m)
|
|
}
|
|
|
|
// Reset physics bodies grounded state
|
|
for _, b := range bodies {
|
|
b.IsGrounded = false
|
|
}
|
|
|
|
// Generate new collision information
|
|
bodiesCount := len(bodies)
|
|
for i := 0; i < bodiesCount; i++ {
|
|
|
|
bodyA := bodies[i]
|
|
|
|
for j := i + 1; j < bodiesCount; j++ {
|
|
|
|
bodyB := bodies[j]
|
|
|
|
if (bodyA.InverseMass == 0) && (bodyB.InverseMass == 0) {
|
|
continue
|
|
}
|
|
|
|
var m *manifold
|
|
if bodyA.Shape.Type == PolygonShape && bodyB.Shape.Type == CircleShape {
|
|
m = newManifold(bodyB, bodyA)
|
|
} else {
|
|
m = newManifold(bodyA, bodyB)
|
|
}
|
|
|
|
m.solveManifold()
|
|
|
|
if m.ContactsCount > 0 {
|
|
// Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
|
|
newManifold := newManifold(bodyA, bodyB)
|
|
newManifold.Penetration = m.Penetration
|
|
newManifold.Normal = m.Normal
|
|
newManifold.Contacts[0] = m.Contacts[0]
|
|
newManifold.Contacts[1] = m.Contacts[1]
|
|
newManifold.ContactsCount = m.ContactsCount
|
|
newManifold.Restitution = m.Restitution
|
|
newManifold.DynamicFriction = m.DynamicFriction
|
|
newManifold.StaticFriction = m.StaticFriction
|
|
}
|
|
}
|
|
}
|
|
|
|
// Integrate forces to physics bodies
|
|
for _, b := range bodies {
|
|
b.integrateForces()
|
|
}
|
|
|
|
// Initialize physics manifolds to solve collisions
|
|
for _, m := range manifolds {
|
|
m.initializeManifolds()
|
|
}
|
|
|
|
// Integrate physics collisions impulses to solve collisions
|
|
manifoldsCount := len(manifolds)
|
|
for i := 0; i < collisionIterations; i++ {
|
|
for j := 0; j < manifoldsCount; j++ {
|
|
if i < manifoldsCount {
|
|
manifolds[i].integrateImpulses()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Integrate velocity to physics bodies
|
|
for _, b := range bodies {
|
|
b.integrateVelocity()
|
|
}
|
|
|
|
// Correct physics bodies positions based on manifolds collision information
|
|
for _, m := range manifolds {
|
|
m.correctPositions()
|
|
}
|
|
|
|
// Clear physics bodies forces
|
|
for _, b := range bodies {
|
|
b.Force = rl.Vector2{}
|
|
b.Torque = 0
|
|
}
|
|
}
|
|
|
|
// Reset - Destroys created physics bodies and manifolds
|
|
func Reset() {
|
|
bodies = make([]*Body, 0, maxBodies)
|
|
manifolds = make([]*manifold, 0, maxManifolds)
|
|
}
|
|
|
|
// Close - Unitializes physics pointers
|
|
func Close() {
|
|
// Unitialize physics manifolds dynamic memory allocations
|
|
for _, m := range manifolds {
|
|
destroyManifold(m)
|
|
}
|
|
|
|
// Unitialize physics bodies dynamic memory allocations
|
|
for _, b := range bodies {
|
|
DestroyBody(b)
|
|
}
|
|
}
|
|
|
|
// AddForce - Adds a force to a physics body
|
|
func (b *Body) AddForce(force rl.Vector2) {
|
|
b.Force = raymath.Vector2Add(b.Force, force)
|
|
}
|
|
|
|
// AddTorque - Adds an angular force to a physics body
|
|
func (b *Body) AddTorque(amount float32) {
|
|
b.Torque += amount
|
|
}
|
|
|
|
// Shatter - Shatters a polygon shape physics body to little physics bodies with explosion force
|
|
func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|
if b.Shape.Type != PolygonShape {
|
|
return
|
|
}
|
|
|
|
vertexData := b.Shape.VertexData
|
|
collision := false
|
|
|
|
for i := 0; i < vertexData.VertexCount; i++ {
|
|
positionA := b.Position
|
|
positionB := raymath.Mat2MultiplyVector2(vertexData.Transform, raymath.Vector2Add(b.Position, vertexData.Vertices[i]))
|
|
|
|
nextIndex := 0
|
|
if i+1 < vertexData.VertexCount {
|
|
nextIndex = i + 1
|
|
}
|
|
|
|
positionC := raymath.Mat2MultiplyVector2(vertexData.Transform, raymath.Vector2Add(b.Position, vertexData.Vertices[nextIndex]))
|
|
|
|
// Check collision between each triangle
|
|
alpha := ((positionB.Y-positionC.Y)*(position.X-positionC.X) + (positionC.X-positionB.X)*(position.Y-positionC.Y)) /
|
|
((positionB.Y-positionC.Y)*(positionA.X-positionC.X) + (positionC.X-positionB.X)*(positionA.Y-positionC.Y))
|
|
|
|
beta := ((positionC.Y-positionA.Y)*(position.X-positionC.X) + (positionA.X-positionC.X)*(position.Y-positionC.Y)) /
|
|
((positionB.Y-positionC.Y)*(positionA.X-positionC.X) + (positionC.X-positionB.X)*(positionA.Y-positionC.Y))
|
|
|
|
gamma := 1.0 - alpha - beta
|
|
|
|
if alpha > 0 && beta > 0 && gamma > 0 {
|
|
collision = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if collision {
|
|
count := vertexData.VertexCount
|
|
bodyPos := b.Position
|
|
|
|
vertices := make([]rl.Vector2, count)
|
|
trans := vertexData.Transform
|
|
for i := 0; i < count; i++ {
|
|
vertices[i] = vertexData.Vertices[i]
|
|
}
|
|
|
|
// Destroy shattered physics body
|
|
DestroyBody(b)
|
|
|
|
for i := 0; i < count; i++ {
|
|
nextIndex := 0
|
|
if i+1 < count {
|
|
nextIndex = i + 1
|
|
}
|
|
|
|
center := triangleBarycenter(vertices[i], vertices[nextIndex], rl.NewVector2(0, 0))
|
|
center = raymath.Vector2Add(bodyPos, center)
|
|
offset := raymath.Vector2Subtract(center, bodyPos)
|
|
|
|
newBody := NewBodyPolygon(center, 10, 3, 10) // Create polygon physics body with relevant values
|
|
|
|
newData := Polygon{}
|
|
newData.VertexCount = 3
|
|
newData.Transform = trans
|
|
|
|
newData.Vertices[0] = raymath.Vector2Subtract(vertices[i], offset)
|
|
newData.Vertices[1] = raymath.Vector2Subtract(vertices[nextIndex], offset)
|
|
newData.Vertices[2] = raymath.Vector2Subtract(position, center)
|
|
|
|
// Separate vertices to avoid unnecessary physics collisions
|
|
newData.Vertices[0].X *= 0.95
|
|
newData.Vertices[0].Y *= 0.95
|
|
newData.Vertices[1].X *= 0.95
|
|
newData.Vertices[1].Y *= 0.95
|
|
newData.Vertices[2].X *= 0.95
|
|
newData.Vertices[2].Y *= 0.95
|
|
|
|
// Calculate polygon faces normals
|
|
for j := 0; j < newData.VertexCount; j++ {
|
|
nextVertex := 0
|
|
if j+1 < newData.VertexCount {
|
|
nextVertex = j + 1
|
|
}
|
|
|
|
face := raymath.Vector2Subtract(newData.Vertices[nextVertex], newData.Vertices[j])
|
|
|
|
newData.Normals[j] = rl.NewVector2(face.Y, -face.X)
|
|
normalize(&newData.Normals[j])
|
|
}
|
|
|
|
// Apply computed vertex data to new physics body shape
|
|
newBody.Shape.VertexData = newData
|
|
|
|
// Calculate centroid and moment of inertia
|
|
center = rl.NewVector2(0, 0)
|
|
area := float32(0.0)
|
|
inertia := float32(0.0)
|
|
k := float32(1.0) / 3.0
|
|
|
|
for j := 0; j < newBody.Shape.VertexData.VertexCount; j++ {
|
|
// Triangle vertices, third vertex implied as (0, 0)
|
|
p1 := newBody.Shape.VertexData.Vertices[j]
|
|
nextVertex := 0
|
|
if j+1 < newBody.Shape.VertexData.VertexCount {
|
|
nextVertex = j + 1
|
|
}
|
|
p2 := newBody.Shape.VertexData.Vertices[nextVertex]
|
|
|
|
D := raymath.Vector2CrossProduct(p1, p2)
|
|
triangleArea := D / 2
|
|
|
|
area += triangleArea
|
|
|
|
// Use area to weight the centroid average, not just vertex position
|
|
center.X += triangleArea * k * (p1.X + p2.X)
|
|
center.Y += triangleArea * k * (p1.Y + p2.Y)
|
|
|
|
intx2 := p1.X*p1.X + p2.X*p1.X + p2.X*p2.X
|
|
inty2 := p1.Y*p1.Y + p2.Y*p1.Y + p2.Y*p2.Y
|
|
inertia += (0.25 * k * D) * (intx2 + inty2)
|
|
}
|
|
|
|
center.X *= 1.0 / area
|
|
center.Y *= 1.0 / area
|
|
|
|
newBody.Mass = area
|
|
newBody.Inertia = inertia
|
|
|
|
if newBody.Mass != 0 {
|
|
newBody.InverseMass = 1.0 / newBody.Mass
|
|
}
|
|
|
|
if newBody.Inertia != 0 {
|
|
newBody.InverseInertia = 1.0 / newBody.Inertia
|
|
}
|
|
|
|
// Calculate explosion force direction
|
|
pointA := newBody.Position
|
|
pointB := raymath.Vector2Subtract(newData.Vertices[1], newData.Vertices[0])
|
|
pointB.X /= 2
|
|
pointB.Y /= 2
|
|
forceDirection := raymath.Vector2Subtract(raymath.Vector2Add(pointA, raymath.Vector2Add(newData.Vertices[0], pointB)), newBody.Position)
|
|
normalize(&forceDirection)
|
|
forceDirection.X *= force
|
|
forceDirection.Y *= force
|
|
|
|
// Apply force to new physics body
|
|
newBody.AddForce(forceDirection)
|
|
}
|
|
}
|
|
}
|
|
|
|
// GetShapeVertex - Returns transformed position of a body shape (body position + vertex transformed position)
|
|
func (b *Body) GetShapeVertex(vertex int) rl.Vector2 {
|
|
position := rl.Vector2{}
|
|
|
|
switch b.Shape.Type {
|
|
case CircleShape:
|
|
position.X = b.Position.X + float32(math.Cos(360/float64(circleVertices)*float64(vertex)*rl.Deg2rad))*b.Shape.Radius
|
|
position.Y = b.Position.Y + float32(math.Sin(360/float64(circleVertices)*float64(vertex)*rl.Deg2rad))*b.Shape.Radius
|
|
break
|
|
case PolygonShape:
|
|
position = raymath.Vector2Add(b.Position, raymath.Mat2MultiplyVector2(b.Shape.VertexData.Transform, b.Shape.VertexData.Vertices[vertex]))
|
|
break
|
|
}
|
|
|
|
return position
|
|
}
|
|
|
|
// SetRotation - Sets physics body shape transform based on radians parameter
|
|
func (b *Body) SetRotation(radians float32) {
|
|
b.Orient = radians
|
|
|
|
if b.Shape.Type == PolygonShape {
|
|
b.Shape.VertexData.Transform = raymath.Mat2Radians(radians)
|
|
}
|
|
}
|
|
|
|
// integrateVelocity - Integrates physics velocity into position and forces
|
|
func (b *Body) integrateVelocity() {
|
|
if !b.Enabled {
|
|
return
|
|
}
|
|
|
|
b.Position.X += b.Velocity.X * deltaTime
|
|
b.Position.Y += b.Velocity.Y * deltaTime
|
|
|
|
if !b.FreezeOrient {
|
|
b.Orient += b.AngularVelocity * deltaTime
|
|
}
|
|
|
|
raymath.Mat2Set(&b.Shape.VertexData.Transform, b.Orient)
|
|
|
|
b.integrateForces()
|
|
}
|
|
|
|
// integrateForces - Integrates physics forces into velocity
|
|
func (b *Body) integrateForces() {
|
|
if b.InverseMass == 0 || !b.Enabled {
|
|
return
|
|
}
|
|
|
|
b.Velocity.X += (b.Force.X * b.InverseMass) * (deltaTime / 2)
|
|
b.Velocity.Y += (b.Force.Y * b.InverseMass) * (deltaTime / 2)
|
|
|
|
if b.UseGravity {
|
|
b.Velocity.X += gravityForce.X * (deltaTime / 1000 / 2)
|
|
b.Velocity.Y += gravityForce.Y * (deltaTime / 1000 / 2)
|
|
}
|
|
|
|
if !b.FreezeOrient {
|
|
b.AngularVelocity += b.Torque * b.InverseInertia * (deltaTime / 2)
|
|
}
|
|
}
|
|
|
|
// newRandomPolygon - Creates a random polygon shape with max vertex distance from polygon pivot
|
|
func newRandomPolygon(radius float32, sides int) Polygon {
|
|
data := Polygon{}
|
|
data.VertexCount = sides
|
|
|
|
orient := rl.GetRandomValue(0, 360)
|
|
data.Transform = raymath.Mat2Radians(float32(orient) * rl.Deg2rad)
|
|
|
|
// Calculate polygon vertices positions
|
|
for i := 0; i < data.VertexCount; i++ {
|
|
data.Vertices[i].X = float32(math.Cos(360/float64(sides)*float64(i)*rl.Deg2rad)) * radius
|
|
data.Vertices[i].Y = float32(math.Sin(360/float64(sides)*float64(i)*rl.Deg2rad)) * radius
|
|
}
|
|
|
|
// Calculate polygon faces normals
|
|
for i := 0; i < data.VertexCount; i++ {
|
|
nextIndex := 0
|
|
if i+1 < sides {
|
|
nextIndex = i + 1
|
|
}
|
|
|
|
face := raymath.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
|
|
|
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
|
|
normalize(&data.Normals[i])
|
|
}
|
|
|
|
return data
|
|
}
|
|
|
|
// newRectanglePolygon - Creates a rectangle polygon shape based on a min and max positions
|
|
func newRectanglePolygon(pos, size rl.Vector2) Polygon {
|
|
data := Polygon{}
|
|
|
|
data.VertexCount = 4
|
|
data.Transform = raymath.Mat2Radians(0)
|
|
|
|
// Calculate polygon vertices positions
|
|
data.Vertices[0] = rl.NewVector2(pos.X+size.X/2, pos.Y-size.Y/2)
|
|
data.Vertices[1] = rl.NewVector2(pos.X+size.X/2, pos.Y+size.Y/2)
|
|
data.Vertices[2] = rl.NewVector2(pos.X-size.X/2, pos.Y+size.Y/2)
|
|
data.Vertices[3] = rl.NewVector2(pos.X-size.X/2, pos.Y-size.Y/2)
|
|
|
|
// Calculate polygon faces normals
|
|
for i := 0; i < data.VertexCount; i++ {
|
|
nextIndex := 0
|
|
if i+1 < data.VertexCount {
|
|
nextIndex = i + 1
|
|
}
|
|
face := raymath.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
|
|
|
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
|
|
normalize(&data.Normals[i])
|
|
}
|
|
|
|
return data
|
|
}
|
|
|
|
// newManifold - Creates a new physics manifold to solve collision
|
|
func newManifold(a, b *Body) *manifold {
|
|
newManifold := &manifold{}
|
|
|
|
// Initialize new manifold with generic values
|
|
newManifold.BodyA = a
|
|
newManifold.BodyB = b
|
|
newManifold.Penetration = 0
|
|
newManifold.Normal = rl.Vector2{}
|
|
newManifold.Contacts[0] = rl.Vector2{}
|
|
newManifold.Contacts[1] = rl.Vector2{}
|
|
newManifold.ContactsCount = 0
|
|
newManifold.Restitution = 0
|
|
newManifold.DynamicFriction = 0
|
|
newManifold.StaticFriction = 0
|
|
|
|
// Add new manifold to manifolds pointers
|
|
manifolds = append(manifolds, newManifold)
|
|
|
|
return newManifold
|
|
}
|
|
|
|
// destroyManifold - Unitializes and destroys a physics manifold
|
|
func destroyManifold(manifold *manifold) bool {
|
|
for index, m := range manifolds {
|
|
if m == manifold {
|
|
// Free manifold allocated memory
|
|
manifolds = append(manifolds[:index], manifolds[index+1:]...)
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// solveManifold - Solves a created physics manifold between two physics bodies
|
|
func (m *manifold) solveManifold() {
|
|
switch m.BodyA.Shape.Type {
|
|
case CircleShape:
|
|
switch m.BodyB.Shape.Type {
|
|
case CircleShape:
|
|
m.solveCircleToCircle()
|
|
break
|
|
case PolygonShape:
|
|
m.solveCircleToPolygon()
|
|
break
|
|
}
|
|
case PolygonShape:
|
|
switch m.BodyB.Shape.Type {
|
|
case CircleShape:
|
|
m.solvePolygonToCircle()
|
|
break
|
|
case PolygonShape:
|
|
m.solvePolygonToPolygon()
|
|
break
|
|
}
|
|
}
|
|
|
|
// Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
|
|
if !m.BodyB.IsGrounded {
|
|
m.BodyB.IsGrounded = (m.Normal.Y < 0)
|
|
}
|
|
}
|
|
|
|
// solveCircleToCircle - Solves collision between two circle shape physics bodies
|
|
func (m *manifold) solveCircleToCircle() {
|
|
bodyA := m.BodyA
|
|
bodyB := m.BodyB
|
|
|
|
// Calculate translational vector, which is normal
|
|
normal := raymath.Vector2Subtract(bodyB.Position, bodyA.Position)
|
|
|
|
distSqr := raymath.Vector2LenSqr(normal)
|
|
radius := bodyA.Shape.Radius + bodyB.Shape.Radius
|
|
|
|
// Check if circles are not in contact
|
|
if distSqr >= radius*radius {
|
|
m.ContactsCount = 0
|
|
return
|
|
}
|
|
|
|
distance := float32(math.Sqrt(float64(distSqr)))
|
|
m.ContactsCount = 1
|
|
|
|
if distance == 0 {
|
|
m.Penetration = bodyA.Shape.Radius
|
|
m.Normal = rl.NewVector2(1, 0)
|
|
m.Contacts[0] = bodyA.Position
|
|
} else {
|
|
m.Penetration = radius - distance
|
|
m.Normal = rl.NewVector2(normal.X/distance, normal.Y/distance) // Faster than using normalize() due to sqrt is already performed
|
|
m.Contacts[0] = rl.NewVector2(m.Normal.X*bodyA.Shape.Radius+bodyA.Position.X, m.Normal.Y*bodyA.Shape.Radius+bodyA.Position.Y)
|
|
}
|
|
|
|
// Update physics body grounded state if normal direction is down
|
|
if !bodyA.IsGrounded {
|
|
bodyA.IsGrounded = (m.Normal.Y < 0)
|
|
}
|
|
}
|
|
|
|
// solveCircleToPolygon - Solves collision between a circle to a polygon shape physics bodies
|
|
func (m *manifold) solveCircleToPolygon() {
|
|
m.ContactsCount = 0
|
|
|
|
// Transform circle center to polygon transform space
|
|
center := m.BodyA.Position
|
|
center = raymath.Mat2MultiplyVector2(raymath.Mat2Transpose(m.BodyB.Shape.VertexData.Transform), raymath.Vector2Subtract(center, m.BodyB.Position))
|
|
|
|
// Find edge with minimum penetration
|
|
// It is the same concept as using support points in solvePolygonToPolygon
|
|
separation := float32(-fltMax)
|
|
faceNormal := 0
|
|
vertexData := m.BodyB.Shape.VertexData
|
|
|
|
for i := 0; i < vertexData.VertexCount; i++ {
|
|
currentSeparation := raymath.Vector2DotProduct(vertexData.Normals[i], raymath.Vector2Subtract(center, vertexData.Vertices[i]))
|
|
|
|
if currentSeparation > m.BodyA.Shape.Radius {
|
|
return
|
|
}
|
|
|
|
if currentSeparation > separation {
|
|
separation = currentSeparation
|
|
faceNormal = i
|
|
}
|
|
}
|
|
|
|
// Grab face's vertices
|
|
v1 := vertexData.Vertices[faceNormal]
|
|
nextIndex := 0
|
|
if faceNormal+1 < vertexData.VertexCount {
|
|
nextIndex = faceNormal + 1
|
|
}
|
|
v2 := vertexData.Vertices[nextIndex]
|
|
|
|
// Check to see if center is within polygon
|
|
if separation < epsilon {
|
|
m.ContactsCount = 1
|
|
normal := raymath.Mat2MultiplyVector2(vertexData.Transform, vertexData.Normals[faceNormal])
|
|
m.Normal = rl.NewVector2(-normal.X, -normal.Y)
|
|
m.Contacts[0] = rl.NewVector2(m.Normal.X*m.BodyA.Shape.Radius+m.BodyA.Position.X, m.Normal.Y*m.BodyA.Shape.Radius+m.BodyA.Position.Y)
|
|
m.Penetration = m.BodyA.Shape.Radius
|
|
return
|
|
}
|
|
|
|
// Determine which voronoi region of the edge center of circle lies within
|
|
dot1 := raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v1), raymath.Vector2Subtract(v2, v1))
|
|
dot2 := raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v2), raymath.Vector2Subtract(v1, v2))
|
|
m.Penetration = m.BodyA.Shape.Radius - separation
|
|
|
|
if dot1 <= 0 { // Closest to v1
|
|
if raymath.Vector2Distance(center, v1) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
|
return
|
|
}
|
|
|
|
m.ContactsCount = 1
|
|
normal := raymath.Vector2Subtract(v1, center)
|
|
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
|
normalize(&normal)
|
|
m.Normal = normal
|
|
v1 = raymath.Mat2MultiplyVector2(vertexData.Transform, v1)
|
|
v1 = raymath.Vector2Add(v1, m.BodyB.Position)
|
|
m.Contacts[0] = v1
|
|
} else if dot2 <= 0 { // Closest to v2
|
|
if raymath.Vector2Distance(center, v2) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
|
return
|
|
}
|
|
|
|
m.ContactsCount = 1
|
|
normal := raymath.Vector2Subtract(v2, center)
|
|
v2 = raymath.Mat2MultiplyVector2(vertexData.Transform, v2)
|
|
v2 = raymath.Vector2Add(v2, m.BodyB.Position)
|
|
m.Contacts[0] = v2
|
|
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
|
normalize(&normal)
|
|
m.Normal = normal
|
|
} else { // Closest to face
|
|
normal := vertexData.Normals[faceNormal]
|
|
|
|
if raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v1), normal) > m.BodyA.Shape.Radius {
|
|
return
|
|
}
|
|
|
|
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
|
m.Normal = rl.NewVector2(-normal.X, -normal.Y)
|
|
m.Contacts[0] = rl.NewVector2(m.Normal.X*m.BodyA.Shape.Radius+m.BodyA.Position.X, m.Normal.Y*m.BodyA.Shape.Radius+m.BodyA.Position.Y)
|
|
m.ContactsCount = 1
|
|
}
|
|
}
|
|
|
|
// solvePolygonToCircle - Solves collision between a polygon to a circle shape physics bodies
|
|
func (m *manifold) solvePolygonToCircle() {
|
|
bodyA := m.BodyA
|
|
bodyB := m.BodyB
|
|
|
|
m.BodyA = bodyB
|
|
m.BodyB = bodyA
|
|
|
|
m.solveCircleToPolygon()
|
|
|
|
m.Normal.X *= -1
|
|
m.Normal.Y *= -1
|
|
}
|
|
|
|
// solvePolygonToPolygon - Solves collision between two polygons shape physics bodies
|
|
func (m *manifold) solvePolygonToPolygon() {
|
|
bodyA := m.BodyA.Shape
|
|
bodyB := m.BodyB.Shape
|
|
m.ContactsCount = 0
|
|
|
|
// Check for separating axis with A shape's face planes
|
|
faceA, penetrationA := findAxisLeastPenetration(bodyA, bodyB)
|
|
if penetrationA >= 0 {
|
|
return
|
|
}
|
|
|
|
// Check for separating axis with B shape's face planes
|
|
faceB, penetrationB := findAxisLeastPenetration(bodyB, bodyA)
|
|
if penetrationB >= 0 {
|
|
return
|
|
}
|
|
|
|
referenceIndex := 0
|
|
flip := false // Always point from A shape to B shape
|
|
|
|
refPoly := Shape{} // Reference
|
|
incPoly := Shape{} // Incident
|
|
|
|
// Determine which shape contains reference face
|
|
if biasGreaterThan(penetrationA, penetrationB) {
|
|
refPoly = bodyA
|
|
incPoly = bodyB
|
|
referenceIndex = faceA
|
|
} else {
|
|
refPoly = bodyB
|
|
incPoly = bodyA
|
|
referenceIndex = faceB
|
|
flip = true
|
|
}
|
|
|
|
// World space incident face
|
|
incidentFace0 := rl.Vector2{}
|
|
incidentFace1 := rl.Vector2{}
|
|
findIncidentFace(&incidentFace0, &incidentFace1, refPoly, incPoly, referenceIndex)
|
|
|
|
// Setup reference face vertices
|
|
refData := refPoly.VertexData
|
|
v1 := refData.Vertices[referenceIndex]
|
|
if referenceIndex+1 < refData.VertexCount {
|
|
referenceIndex = referenceIndex + 1
|
|
} else {
|
|
referenceIndex = 0
|
|
}
|
|
v2 := refData.Vertices[referenceIndex]
|
|
|
|
// Transform vertices to world space
|
|
v1 = raymath.Mat2MultiplyVector2(refData.Transform, v1)
|
|
v1 = raymath.Vector2Add(v1, refPoly.Body.Position)
|
|
v2 = raymath.Mat2MultiplyVector2(refData.Transform, v2)
|
|
v2 = raymath.Vector2Add(v2, refPoly.Body.Position)
|
|
|
|
// Calculate reference face side normal in world space
|
|
sidePlaneNormal := raymath.Vector2Subtract(v2, v1)
|
|
normalize(&sidePlaneNormal)
|
|
|
|
// Orthogonalize
|
|
refFaceNormal := rl.NewVector2(sidePlaneNormal.Y, -sidePlaneNormal.X)
|
|
refC := raymath.Vector2DotProduct(refFaceNormal, v1)
|
|
negSide := raymath.Vector2DotProduct(sidePlaneNormal, v1) * -1
|
|
posSide := raymath.Vector2DotProduct(sidePlaneNormal, v2)
|
|
|
|
// clip incident face to reference face side planes (due to floating point error, possible to not have required points
|
|
if clip(rl.NewVector2(-sidePlaneNormal.X, -sidePlaneNormal.Y), negSide, &incidentFace0, &incidentFace1) < 2 {
|
|
return
|
|
}
|
|
if clip(sidePlaneNormal, posSide, &incidentFace0, &incidentFace1) < 2 {
|
|
return
|
|
}
|
|
|
|
// Flip normal if required
|
|
if flip {
|
|
m.Normal = rl.NewVector2(-refFaceNormal.X, -refFaceNormal.Y)
|
|
} else {
|
|
m.Normal = refFaceNormal
|
|
}
|
|
|
|
// Keep points behind reference face
|
|
currentPoint := 0 // clipped points behind reference face
|
|
separation := raymath.Vector2DotProduct(refFaceNormal, incidentFace0) - refC
|
|
if separation <= 0 {
|
|
m.Contacts[currentPoint] = incidentFace0
|
|
m.Penetration = -separation
|
|
currentPoint++
|
|
} else {
|
|
m.Penetration = 0
|
|
}
|
|
|
|
separation = raymath.Vector2DotProduct(refFaceNormal, incidentFace1) - refC
|
|
|
|
if separation <= 0 {
|
|
m.Contacts[currentPoint] = incidentFace1
|
|
m.Penetration += -separation
|
|
currentPoint++
|
|
|
|
// Calculate total penetration average
|
|
m.Penetration /= float32(currentPoint)
|
|
}
|
|
|
|
m.ContactsCount = currentPoint
|
|
}
|
|
|
|
// initializeManifolds - Initializes physics manifolds to solve collisions
|
|
func (m *manifold) initializeManifolds() {
|
|
bodyA := m.BodyA
|
|
bodyB := m.BodyB
|
|
|
|
// Calculate average restitution, static and dynamic friction
|
|
m.Restitution = float32(math.Sqrt(float64(bodyA.Restitution * bodyB.Restitution)))
|
|
m.StaticFriction = float32(math.Sqrt(float64(bodyA.StaticFriction * bodyB.StaticFriction)))
|
|
m.DynamicFriction = float32(math.Sqrt(float64(bodyA.DynamicFriction * bodyB.DynamicFriction)))
|
|
|
|
for i := 0; i < 2; i++ {
|
|
// Caculate radius from center of mass to contact
|
|
radiusA := raymath.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
|
radiusB := raymath.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
|
|
|
crossA := raymath.Vector2Cross(bodyA.AngularVelocity, radiusA)
|
|
crossB := raymath.Vector2Cross(bodyB.AngularVelocity, radiusB)
|
|
|
|
radiusV := rl.Vector2{}
|
|
radiusV.X = bodyB.Velocity.X + crossB.X - bodyA.Velocity.X - crossA.X
|
|
radiusV.Y = bodyB.Velocity.Y + crossB.Y - bodyA.Velocity.Y - crossA.Y
|
|
|
|
// Determine if we should perform a resting collision or not;
|
|
// The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
|
|
if raymath.Vector2LenSqr(radiusV) < (raymath.Vector2LenSqr(rl.NewVector2(gravityForce.X*deltaTime/1000, gravityForce.Y*deltaTime/1000)) + epsilon) {
|
|
m.Restitution = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// integrateImpulses - Integrates physics collisions impulses to solve collisions
|
|
func (m *manifold) integrateImpulses() {
|
|
bodyA := m.BodyA
|
|
bodyB := m.BodyB
|
|
|
|
// Early out and positional correct if both objects have infinite mass
|
|
if math.Abs(float64(bodyA.InverseMass+bodyB.InverseMass)) <= epsilon {
|
|
bodyA.Velocity = rl.Vector2{}
|
|
bodyB.Velocity = rl.Vector2{}
|
|
return
|
|
}
|
|
|
|
for i := 0; i < m.ContactsCount; i++ {
|
|
// Calculate radius from center of mass to contact
|
|
radiusA := raymath.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
|
radiusB := raymath.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
|
|
|
// Calculate relative velocity
|
|
radiusV := rl.Vector2{}
|
|
radiusV.X = bodyB.Velocity.X + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
|
radiusV.Y = bodyB.Velocity.Y + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
|
|
|
// Relative velocity along the normal
|
|
contactVelocity := raymath.Vector2DotProduct(radiusV, m.Normal)
|
|
|
|
// Do not resolve if velocities are separating
|
|
if contactVelocity > 0 {
|
|
return
|
|
}
|
|
|
|
raCrossN := raymath.Vector2CrossProduct(radiusA, m.Normal)
|
|
rbCrossN := raymath.Vector2CrossProduct(radiusB, m.Normal)
|
|
|
|
inverseMassSum := bodyA.InverseMass + bodyB.InverseMass + (raCrossN*raCrossN)*bodyA.InverseInertia + (rbCrossN*rbCrossN)*bodyB.InverseInertia
|
|
|
|
// Calculate impulse scalar value
|
|
impulse := -(1.0 + m.Restitution) * contactVelocity
|
|
impulse /= inverseMassSum
|
|
impulse /= float32(m.ContactsCount)
|
|
|
|
// Apply impulse to each physics body
|
|
impulseV := rl.NewVector2(m.Normal.X*impulse, m.Normal.Y*impulse)
|
|
|
|
if bodyA.Enabled {
|
|
bodyA.Velocity.X += bodyA.InverseMass * (-impulseV.X)
|
|
bodyA.Velocity.Y += bodyA.InverseMass * (-impulseV.Y)
|
|
if !bodyA.FreezeOrient {
|
|
bodyA.AngularVelocity += bodyA.InverseInertia * raymath.Vector2CrossProduct(radiusA, rl.NewVector2(-impulseV.X, -impulseV.Y))
|
|
}
|
|
}
|
|
|
|
if bodyB.Enabled {
|
|
bodyB.Velocity.X += bodyB.InverseMass * (impulseV.X)
|
|
bodyB.Velocity.Y += bodyB.InverseMass * (impulseV.Y)
|
|
if !bodyB.FreezeOrient {
|
|
bodyB.AngularVelocity += bodyB.InverseInertia * raymath.Vector2CrossProduct(radiusB, impulseV)
|
|
}
|
|
}
|
|
|
|
// Apply friction impulse to each physics body
|
|
radiusV.X = bodyB.Velocity.X + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
|
radiusV.Y = bodyB.Velocity.Y + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
|
|
|
tangent := rl.NewVector2(radiusV.X-(m.Normal.X*raymath.Vector2DotProduct(radiusV, m.Normal)), radiusV.Y-(m.Normal.Y*raymath.Vector2DotProduct(radiusV, m.Normal)))
|
|
normalize(&tangent)
|
|
|
|
// Calculate impulse tangent magnitude
|
|
impulseTangent := -(raymath.Vector2DotProduct(radiusV, tangent))
|
|
impulseTangent /= inverseMassSum
|
|
impulseTangent /= float32(m.ContactsCount)
|
|
|
|
absImpulseTangent := float32(math.Abs(float64(impulseTangent)))
|
|
|
|
// Don't apply tiny friction impulses
|
|
if absImpulseTangent <= epsilon {
|
|
return
|
|
}
|
|
|
|
// Apply coulumb's law
|
|
tangentImpulse := rl.Vector2{}
|
|
if absImpulseTangent < impulse*m.StaticFriction {
|
|
tangentImpulse = rl.NewVector2(tangent.X*impulseTangent, tangent.Y*impulseTangent)
|
|
} else {
|
|
tangentImpulse = rl.NewVector2(tangent.X*-impulse*m.DynamicFriction, tangent.Y*-impulse*m.DynamicFriction)
|
|
}
|
|
|
|
// Apply friction impulse
|
|
if bodyA.Enabled {
|
|
bodyA.Velocity.X += bodyA.InverseMass * (-tangentImpulse.X)
|
|
bodyA.Velocity.Y += bodyA.InverseMass * (-tangentImpulse.Y)
|
|
|
|
if !bodyA.FreezeOrient {
|
|
bodyA.AngularVelocity += bodyA.InverseInertia * raymath.Vector2CrossProduct(radiusA, rl.NewVector2(-tangentImpulse.X, -tangentImpulse.Y))
|
|
}
|
|
}
|
|
|
|
if bodyB.Enabled {
|
|
bodyB.Velocity.X += bodyB.InverseMass * (tangentImpulse.X)
|
|
bodyB.Velocity.Y += bodyB.InverseMass * (tangentImpulse.Y)
|
|
|
|
if !bodyB.FreezeOrient {
|
|
bodyB.AngularVelocity += bodyB.InverseInertia * raymath.Vector2CrossProduct(radiusB, tangentImpulse)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// correctPositions - Corrects physics bodies positions based on manifolds collision information
|
|
func (m *manifold) correctPositions() {
|
|
bodyA := m.BodyA
|
|
bodyB := m.BodyB
|
|
|
|
correction := rl.Vector2{}
|
|
correction.X = float32(math.Max(float64(m.Penetration-penetrationAllowance), 0)) / (bodyA.InverseMass + bodyB.InverseMass) * m.Normal.X * penetrationCorrection
|
|
correction.Y = float32(math.Max(float64(m.Penetration-penetrationAllowance), 0)) / (bodyA.InverseMass + bodyB.InverseMass) * m.Normal.Y * penetrationCorrection
|
|
|
|
if bodyA.Enabled {
|
|
bodyA.Position.X -= correction.X * bodyA.InverseMass
|
|
bodyA.Position.Y -= correction.Y * bodyA.InverseMass
|
|
}
|
|
|
|
if bodyB.Enabled {
|
|
bodyB.Position.X += correction.X * bodyB.InverseMass
|
|
bodyB.Position.Y += correction.Y * bodyB.InverseMass
|
|
}
|
|
}
|
|
|
|
// getSupport - Returns the extreme point along a direction within a polygon
|
|
func getSupport(shape Shape, dir rl.Vector2) rl.Vector2 {
|
|
bestProjection := float32(-fltMax)
|
|
bestVertex := rl.Vector2{}
|
|
|
|
for i := 0; i < shape.VertexData.VertexCount; i++ {
|
|
vertex := shape.VertexData.Vertices[i]
|
|
projection := raymath.Vector2DotProduct(vertex, dir)
|
|
|
|
if projection > bestProjection {
|
|
bestVertex = vertex
|
|
bestProjection = projection
|
|
}
|
|
}
|
|
|
|
return bestVertex
|
|
}
|
|
|
|
// findAxisLeastPenetration - Finds polygon shapes axis least penetration
|
|
func findAxisLeastPenetration(shapeA, shapeB Shape) (int, float32) {
|
|
bestIndex := 0
|
|
bestDistance := float32(-fltMax)
|
|
|
|
dataA := shapeA.VertexData
|
|
dataB := shapeB.VertexData
|
|
|
|
for i := 0; i < dataA.VertexCount; i++ {
|
|
// Retrieve a face normal from A shape
|
|
normal := dataA.Normals[i]
|
|
transNormal := raymath.Mat2MultiplyVector2(dataA.Transform, normal)
|
|
|
|
// Transform face normal into B shape's model space
|
|
buT := raymath.Mat2Transpose(dataB.Transform)
|
|
normal = raymath.Mat2MultiplyVector2(buT, transNormal)
|
|
|
|
// Retrieve support point from B shape along -n
|
|
support := getSupport(shapeB, rl.NewVector2(-normal.X, -normal.Y))
|
|
|
|
// Retrieve vertex on face from A shape, transform into B shape's model space
|
|
vertex := dataA.Vertices[i]
|
|
vertex = raymath.Mat2MultiplyVector2(dataA.Transform, vertex)
|
|
vertex = raymath.Vector2Add(vertex, shapeA.Body.Position)
|
|
vertex = raymath.Vector2Subtract(vertex, shapeB.Body.Position)
|
|
vertex = raymath.Mat2MultiplyVector2(buT, vertex)
|
|
|
|
// Compute penetration distance in B shape's model space
|
|
distance := raymath.Vector2DotProduct(normal, raymath.Vector2Subtract(support, vertex))
|
|
|
|
// Store greatest distance
|
|
if distance > bestDistance {
|
|
bestDistance = distance
|
|
bestIndex = i
|
|
}
|
|
}
|
|
|
|
return bestIndex, bestDistance
|
|
}
|
|
|
|
// findIncidentFace - Finds two polygon shapes incident face
|
|
func findIncidentFace(v0, v1 *rl.Vector2, ref, inc Shape, index int) {
|
|
refData := ref.VertexData
|
|
incData := inc.VertexData
|
|
|
|
referenceNormal := refData.Normals[index]
|
|
|
|
// Calculate normal in incident's frame of reference
|
|
referenceNormal = raymath.Mat2MultiplyVector2(refData.Transform, referenceNormal) // To world space
|
|
referenceNormal = raymath.Mat2MultiplyVector2(raymath.Mat2Transpose(incData.Transform), referenceNormal) // To incident's model space
|
|
|
|
// Find most anti-normal face on polygon
|
|
incidentFace := 0
|
|
minDot := float32(fltMax)
|
|
|
|
for i := 0; i < incData.VertexCount; i++ {
|
|
dot := raymath.Vector2DotProduct(referenceNormal, incData.Normals[i])
|
|
|
|
if dot < minDot {
|
|
minDot = dot
|
|
incidentFace = i
|
|
}
|
|
}
|
|
|
|
// Assign face vertices for incident face
|
|
*v0 = raymath.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
|
*v0 = raymath.Vector2Add(*v0, inc.Body.Position)
|
|
|
|
if incidentFace+1 < incData.VertexCount {
|
|
incidentFace = incidentFace + 1
|
|
} else {
|
|
incidentFace = 0
|
|
}
|
|
|
|
*v1 = raymath.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
|
*v1 = raymath.Vector2Add(*v1, inc.Body.Position)
|
|
}
|
|
|
|
// clip - Calculates clipping based on a normal and two faces
|
|
func clip(normal rl.Vector2, clip float32, faceA, faceB *rl.Vector2) int {
|
|
sp := 0
|
|
|
|
out := make([]rl.Vector2, 2)
|
|
out[0] = *faceA
|
|
out[1] = *faceB
|
|
|
|
// Retrieve distances from each endpoint to the line
|
|
distanceA := raymath.Vector2DotProduct(normal, *faceA) - clip
|
|
distanceB := raymath.Vector2DotProduct(normal, *faceB) - clip
|
|
|
|
// If negative (behind plane)
|
|
if distanceA <= 0 {
|
|
out[sp] = *faceA
|
|
sp += 1
|
|
}
|
|
if distanceB <= 0 {
|
|
out[sp] = *faceB
|
|
sp += 1
|
|
}
|
|
|
|
// If the points are on different sides of the plane
|
|
if distanceA*distanceB < 0 {
|
|
// Push intersection point
|
|
alpha := distanceA / (distanceA - distanceB)
|
|
out[sp] = *faceA
|
|
delta := raymath.Vector2Subtract(*faceB, *faceA)
|
|
delta.X *= alpha
|
|
delta.Y *= alpha
|
|
out[sp] = raymath.Vector2Add(out[sp], delta)
|
|
sp++
|
|
}
|
|
|
|
// Assign the new converted values
|
|
*faceA = out[0]
|
|
*faceB = out[1]
|
|
|
|
return sp
|
|
}
|
|
|
|
// biasGreaterThan - Check if values are between bias range
|
|
func biasGreaterThan(valueA, valueB float32) bool {
|
|
return valueA >= (valueB*0.95 + valueA*0.01)
|
|
}
|
|
|
|
// triangleBarycenter - Returns the barycenter of a triangle given by 3 points
|
|
func triangleBarycenter(v1, v2, v3 rl.Vector2) rl.Vector2 {
|
|
result := rl.Vector2{}
|
|
|
|
result.X = (v1.X + v2.X + v3.X) / 3
|
|
result.Y = (v1.Y + v2.Y + v3.Y) / 3
|
|
|
|
return result
|
|
}
|
|
|
|
// normalize - Normalize provided vector
|
|
func normalize(v *rl.Vector2) {
|
|
var length, ilength float32
|
|
|
|
aux := *v
|
|
length = float32(math.Sqrt(float64(aux.X*aux.X + aux.Y*aux.Y)))
|
|
|
|
if length == 0 {
|
|
length = 1.0
|
|
}
|
|
|
|
ilength = 1.0 / length
|
|
|
|
v.X *= ilength
|
|
v.Y *= ilength
|
|
}
|