raylib-go/rres/rres-raylib.h
2023-11-12 12:21:11 +01:00

1094 lines
51 KiB
C

/**********************************************************************************************
*
* rres-raylib v1.2 - rres loaders specific for raylib data structures
*
* CONFIGURATION:
*
* #define RRES_RAYLIB_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define RRES_SUPPORT_COMPRESSION_LZ4
* Support data compression algorithm LZ4, provided by lz4.h/lz4.c library
*
* #define RRES_SUPPORT_ENCRYPTION_AES
* Support data encryption algorithm AES, provided by aes.h/aes.c library
*
* #define RRES_SUPPORT_ENCRYPTION_XCHACHA20
* Support data encryption algorithm XChaCha20-Poly1305,
* provided by monocypher.h/monocypher.c library
*
* DEPENDENCIES:
*
* - raylib.h: Data types definition and data loading from memory functions
* WARNING: raylib.h MUST be included before including rres-raylib.h
* - rres.h: Base implementation of rres specs, required to read rres files and resource chunks
* - lz4.h: LZ4 compression support (optional)
* - aes.h: AES-256 CTR encryption support (optional)
* - monocypher.h: for XChaCha20-Poly1305 encryption support (optional)
*
* VERSION HISTORY:
*
* - 1.2 (15-Apr-2023): Updated to monocypher 4.0.1
* - 1.0 (11-May-2022): Initial implementation release
*
*
* LICENSE: MIT
*
* Copyright (c) 2020-2023 Ramon Santamaria (@raysan5)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
**********************************************************************************************/
#ifndef RRES_RAYLIB_H
#define RRES_RAYLIB_H
#ifndef RRES_H
#include "rres.h"
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Global variables
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
// rres data loading to raylib data structures
// NOTE: Chunk data must be provided uncompressed/unencrypted
RLAPI void *LoadDataFromResource(rresResourceChunk chunk, unsigned int *size); // Load raw data from rres resource chunk
RLAPI char *LoadTextFromResource(rresResourceChunk chunk); // Load text data from rres resource chunk
RLAPI Image LoadImageFromResource(rresResourceChunk chunk); // Load Image data from rres resource chunk
RLAPI Wave LoadWaveFromResource(rresResourceChunk chunk); // Load Wave data from rres resource chunk
RLAPI Font LoadFontFromResource(rresResourceMulti multi); // Load Font data from rres resource multiple chunks
RLAPI Mesh LoadMeshFromResource(rresResourceMulti multi); // Load Mesh data from rres resource multiple chunks
// Unpack resource chunk data (decompres/decrypt data)
// NOTE: Function return 0 on success or other value on failure
RLAPI int UnpackResourceChunk(rresResourceChunk *chunk); // Unpack resource chunk data (decompress/decrypt)
// Set base directory for externally linked data
// NOTE: When resource chunk contains an external link (FourCC: LINK, Type: RRES_DATA_LINK),
// a base directory is required to be prepended to link path
// If not provided, the application path is prepended to link by default
RLAPI void SetBaseDirectory(const char *baseDir); // Set base directory for externally linked data
#if defined(__cplusplus)
}
#endif
#endif // RRES_RAYLIB_H
/***********************************************************************************
*
* RRES RAYLIB IMPLEMENTATION
*
************************************************************************************/
#if defined(RRES_RAYLIB_IMPLEMENTATION)
// Compression/Encryption algorithms supported
// NOTE: They should be the same supported by the rres packaging tool (rrespacker)
// https://github.com/phoboslab/qoi
#include "external/qoi.h" // Compression algorithm: QOI (implementation in raylib)
#if defined(RRES_SUPPORT_COMPRESSION_LZ4)
// https://github.com/lz4/lz4
#include "external/lz4.h" // Compression algorithm: LZ4
#include "external/lz4.c" // Compression algorithm implementation: LZ4
#endif
#if defined(RRES_SUPPORT_ENCRYPTION_AES)
// https://github.com/kokke/tiny-AES-c
#include "external/aes.h" // Encryption algorithm: AES
#include "external/aes.c" // Encryption algorithm implementation: AES
#endif
#if defined(RRES_SUPPORT_ENCRYPTION_XCHACHA20)
// https://github.com/LoupVaillant/Monocypher
#include "external/monocypher.h" // Encryption algorithm: XChaCha20-Poly1305
#include "external/monocypher.c" // Encryption algorithm implementation: XChaCha20-Poly1305
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static const char *baseDir = NULL; // Base directory pointer, used on external linked data loading
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
// Load simple data chunks that are later required by multi-chunk resources
// NOTE: Chunk data must be provided uncompressed/unencrypted
static void *LoadDataFromResourceLink(rresResourceChunk chunk, unsigned int *size); // Load chunk: RRES_DATA_LINK
static void *LoadDataFromResourceChunk(rresResourceChunk chunk, unsigned int *size); // Load chunk: RRES_DATA_RAW
static char *LoadTextFromResourceChunk(rresResourceChunk chunk, unsigned int *codeLang); // Load chunk: RRES_DATA_TEXT
static Image LoadImageFromResourceChunk(rresResourceChunk chunk); // Load chunk: RRES_DATA_IMAGE
static const char *GetExtensionFromProps(unsigned int ext01, unsigned int ext02); // Get file extension from RRES_DATA_RAW properties (unsigned int)
static unsigned int *ComputeMD5(unsigned char *data, int size); // Compute MD5 hash code, returns 4 integers array (static)
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load raw data from rres resource
void *LoadDataFromResource(rresResourceChunk chunk, unsigned int *size)
{
void *rawData = NULL;
// Data can be provided in the resource or linked to an external file
if (rresGetDataType(chunk.info.type) == RRES_DATA_RAW) // Raw data
{
rawData = LoadDataFromResourceChunk(chunk, size);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_LINK) // Link to external file
{
// Get raw data from external linked file
unsigned int dataSize = 0;
void *data = LoadDataFromResourceLink(chunk, &dataSize);
rawData = data;
*size = dataSize;
}
return rawData;
}
// Load text data from rres resource
// NOTE: Text must be NULL terminated
char *LoadTextFromResource(rresResourceChunk chunk)
{
char *text = NULL;
int codeLang = 0;
if (rresGetDataType(chunk.info.type) == RRES_DATA_TEXT) // Text data
{
text = LoadTextFromResourceChunk(chunk, &codeLang);
// TODO: Consider text code language to load shader or code scripts
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_RAW) // Raw text file
{
unsigned int size = 0;
text = LoadDataFromResourceChunk(chunk, &size);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_LINK) // Link to external file
{
// Get raw data from external linked file
unsigned int dataSize = 0;
void *data = LoadDataFromResourceLink(chunk, &dataSize);
text = data;
}
return text;
}
// Load Image data from rres resource
Image LoadImageFromResource(rresResourceChunk chunk)
{
Image image = { 0 };
if (rresGetDataType(chunk.info.type) == RRES_DATA_IMAGE) // Image data
{
image = LoadImageFromResourceChunk(chunk);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_RAW) // Raw image file
{
unsigned int dataSize = 0;
unsigned char *data = LoadDataFromResourceChunk(chunk, &dataSize);
image = LoadImageFromMemory(GetExtensionFromProps(chunk.data.props[1], chunk.data.props[2]), data, dataSize);
RL_FREE(data);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_LINK) // Link to external file
{
// Get raw data from external linked file
unsigned int dataSize = 0;
void *data = LoadDataFromResourceLink(chunk, &dataSize);
// Load image from linked file data
// NOTE: Function checks internally if the file extension is supported to
// properly load the data, if it fails it logs the result and image.data = NULL
image = LoadImageFromMemory(GetFileExtension(chunk.data.raw), data, dataSize);
}
return image;
}
// Load Wave data from rres resource
Wave LoadWaveFromResource(rresResourceChunk chunk)
{
Wave wave = { 0 };
if (rresGetDataType(chunk.info.type) == RRES_DATA_WAVE) // Wave data
{
if ((chunk.info.compType == RRES_COMP_NONE) && (chunk.info.cipherType == RRES_CIPHER_NONE))
{
wave.frameCount = chunk.data.props[0];
wave.sampleRate = chunk.data.props[1];
wave.sampleSize = chunk.data.props[2];
wave.channels = chunk.data.props[3];
unsigned int size = wave.frameCount*wave.sampleSize/8;
wave.data = RL_CALLOC(size, 1);
memcpy(wave.data, chunk.data.raw, size);
}
RRES_LOG("RRES: %c%c%c%c: WARNING: Data must be decompressed/decrypted\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3]);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_RAW) // Raw wave file
{
unsigned int dataSize = 0;
unsigned char *data = LoadDataFromResourceChunk(chunk, &dataSize);
wave = LoadWaveFromMemory(GetExtensionFromProps(chunk.data.props[1], chunk.data.props[2]), data, dataSize);
RL_FREE(data);
}
else if (rresGetDataType(chunk.info.type) == RRES_DATA_LINK) // Link to external file
{
// Get raw data from external linked file
unsigned int dataSize = 0;
void *data = LoadDataFromResourceLink(chunk, &dataSize);
// Load wave from linked file data
// NOTE: Function checks internally if the file extension is supported to
// properly load the data, if it fails it logs the result and wave.data = NULL
wave = LoadWaveFromMemory(GetFileExtension(chunk.data.raw), data, dataSize);
}
return wave;
}
// Load Font data from rres resource
Font LoadFontFromResource(rresResourceMulti multi)
{
Font font = { 0 };
// Font resource consist of (2) chunks:
// - RRES_DATA_FONT_GLYPHS: Basic font and glyphs properties/data
// - RRES_DATA_IMAGE: Image atlas for the font characters
if (multi.count >= 2)
{
if (rresGetDataType(multi.chunks[0].info.type) == RRES_DATA_FONT_GLYPHS)
{
if ((multi.chunks[0].info.compType == RRES_COMP_NONE) && (multi.chunks[0].info.cipherType == RRES_CIPHER_NONE))
{
// Load font basic properties from chunk[0]
font.baseSize = multi.chunks[0].data.props[0]; // Base size (default chars height)
font.glyphCount = multi.chunks[0].data.props[1]; // Number of characters (glyphs)
font.glyphPadding = multi.chunks[0].data.props[2]; // Padding around the chars
font.recs = (Rectangle *)RL_CALLOC(font.glyphCount, sizeof(Rectangle));
font.glyphs = (GlyphInfo *)RL_CALLOC(font.glyphCount, sizeof(GlyphInfo));
for (int i = 0; i < font.glyphCount; i++)
{
// Font glyphs info comes as a data blob
font.recs[i].x = (float)((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].x;
font.recs[i].y = (float)((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].y;
font.recs[i].width = (float)((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].width;
font.recs[i].height = (float)((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].height;
font.glyphs[i].value = ((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].value;
font.glyphs[i].offsetX = ((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].offsetX;
font.glyphs[i].offsetY = ((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].offsetY;
font.glyphs[i].advanceX = ((rresFontGlyphInfo *)multi.chunks[0].data.raw)[i].advanceX;
// NOTE: font.glyphs[i].image is not loaded
}
}
else RRES_LOG("RRES: %s: WARNING: Data must be decompressed/decrypted\n", multi.chunks[0].info.type);
}
// Load font image chunk
if (rresGetDataType(multi.chunks[1].info.type) == RRES_DATA_IMAGE)
{
if ((multi.chunks[0].info.compType == RRES_COMP_NONE) && (multi.chunks[0].info.cipherType == RRES_CIPHER_NONE))
{
Image image = LoadImageFromResourceChunk(multi.chunks[1]);
font.texture = LoadTextureFromImage(image);
UnloadImage(image);
}
else RRES_LOG("RRES: %s: WARNING: Data must be decompressed/decrypted\n", multi.chunks[1].info.type);
}
}
else // One chunk of data: RRES_DATA_RAW or RRES_DATA_LINK?
{
if (rresGetDataType(multi.chunks[0].info.type) == RRES_DATA_RAW) // Raw font file
{
unsigned int dataSize = 0;
unsigned char *rawData = LoadDataFromResourceChunk(multi.chunks[0], &dataSize);
font = LoadFontFromMemory(GetExtensionFromProps(multi.chunks[0].data.props[1], multi.chunks[0].data.props[2]), rawData, dataSize, 32, NULL, 0);
RL_FREE(rawData);
}
if (rresGetDataType(multi.chunks[0].info.type) == RRES_DATA_LINK) // Link to external font file
{
// Get raw data from external linked file
unsigned int dataSize = 0;
void *rawData = LoadDataFromResourceLink(multi.chunks[0], &dataSize);
// Load image from linked file data
// NOTE 1: Loading font at 32px base size and default charset (95 glyphs)
// NOTE 2: Function checks internally if the file extension is supported to
// properly load the data, if it fails it logs the result and font.texture.id = 0
font = LoadFontFromMemory(GetFileExtension(multi.chunks[0].data.raw), rawData, dataSize, 32, NULL, 0);
RRES_FREE(rawData);
}
}
return font;
}
// Load Mesh data from rres resource
// NOTE: We try to load vertex data following raylib structure constraints,
// in case data does not fit raylib Mesh structure, it is not loaded
Mesh LoadMeshFromResource(rresResourceMulti multi)
{
Mesh mesh = { 0 };
// TODO: Support externally linked mesh resource?
// Mesh resource consist of (n) chunks:
for (unsigned int i = 0; i < multi.count; i++)
{
if ((multi.chunks[0].info.compType == RRES_COMP_NONE) && (multi.chunks[0].info.cipherType == RRES_CIPHER_NONE))
{
// NOTE: raylib only supports vertex arrays with same vertex count,
// rres.chunks[0] defined vertexCount will be the reference for the following chunks
// The only exception to vertexCount is the mesh.indices array
if (mesh.vertexCount == 0) mesh.vertexCount = multi.chunks[0].data.props[0];
// Verify chunk type and vertex count
if (rresGetDataType(multi.chunks[i].info.type) == RRES_DATA_VERTEX)
{
// In case vertex count do not match we skip that resource chunk
if ((multi.chunks[i].data.props[1] != RRES_VERTEX_ATTRIBUTE_INDEX) && (multi.chunks[i].data.props[0] != mesh.vertexCount)) continue;
// NOTE: We are only loading raylib supported rresVertexFormat and raylib expected components count
switch (multi.chunks[i].data.props[1]) // Check rresVertexAttribute value
{
case RRES_VERTEX_ATTRIBUTE_POSITION:
{
// raylib expects 3 components per vertex and float vertex format
if ((multi.chunks[i].data.props[2] == 3) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_FLOAT))
{
mesh.vertices = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
memcpy(mesh.vertices, multi.chunks[i].data.raw, mesh.vertexCount*3*sizeof(float));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute position not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_TEXCOORD1:
{
// raylib expects 2 components per vertex and float vertex format
if ((multi.chunks[i].data.props[2] == 2) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_FLOAT))
{
mesh.texcoords = (float *)RL_CALLOC(mesh.vertexCount*2, sizeof(float));
memcpy(mesh.texcoords, multi.chunks[i].data.raw, mesh.vertexCount*2*sizeof(float));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute texcoord1 not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_TEXCOORD2:
{
// raylib expects 2 components per vertex and float vertex format
if ((multi.chunks[i].data.props[2] == 2) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_FLOAT))
{
mesh.texcoords2 = (float *)RL_CALLOC(mesh.vertexCount*2, sizeof(float));
memcpy(mesh.texcoords2, multi.chunks[i].data.raw, mesh.vertexCount*2*sizeof(float));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute texcoord2 not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_TEXCOORD3:
{
RRES_LOG("RRES: WARNING: MESH: Vertex attribute texcoord3 not supported\n");
} break;
case RRES_VERTEX_ATTRIBUTE_TEXCOORD4:
{
RRES_LOG("RRES: WARNING: MESH: Vertex attribute texcoord4 not supported\n");
} break;
case RRES_VERTEX_ATTRIBUTE_NORMAL:
{
// raylib expects 3 components per vertex and float vertex format
if ((multi.chunks[i].data.props[2] == 3) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_FLOAT))
{
mesh.normals = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
memcpy(mesh.normals, multi.chunks[i].data.raw, mesh.vertexCount*3*sizeof(float));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute normal not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_TANGENT:
{
// raylib expects 4 components per vertex and float vertex format
if ((multi.chunks[i].data.props[2] == 4) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_FLOAT))
{
mesh.tangents = (float *)RL_CALLOC(mesh.vertexCount*4, sizeof(float));
memcpy(mesh.tangents, multi.chunks[i].data.raw, mesh.vertexCount*4*sizeof(float));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute tangent not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_COLOR:
{
// raylib expects 4 components per vertex and unsigned char vertex format
if ((multi.chunks[i].data.props[2] == 4) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_UBYTE))
{
mesh.colors = (unsigned char *)RL_CALLOC(mesh.vertexCount*4, sizeof(unsigned char));
memcpy(mesh.colors, multi.chunks[i].data.raw, mesh.vertexCount*4*sizeof(unsigned char));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute color not valid, componentCount/vertexFormat do not fit\n");
} break;
case RRES_VERTEX_ATTRIBUTE_INDEX:
{
// raylib expects 1 components per index and unsigned short vertex format
if ((multi.chunks[i].data.props[2] == 1) && (multi.chunks[i].data.props[3] == RRES_VERTEX_FORMAT_USHORT))
{
mesh.indices = (unsigned short *)RL_CALLOC(multi.chunks[i].data.props[0], sizeof(unsigned short));
memcpy(mesh.indices, multi.chunks[i].data.raw, multi.chunks[i].data.props[0]*sizeof(unsigned short));
}
else RRES_LOG("RRES: WARNING: MESH: Vertex attribute index not valid, componentCount/vertexFormat do not fit\n");
} break;
default: break;
}
}
}
else RRES_LOG("RRES: WARNING: Vertex provided data must be decompressed/decrypted\n");
}
return mesh;
}
// Unpack compressed/encrypted data from resource chunk
// In case data could not be processed by rres.h, it is just copied in chunk.data.raw for processing here
// NOTE 1: Function return 0 on success or an error code on failure
// NOTE 2: Data corruption CRC32 check has already been performed by rresLoadResourceMulti() on rres.h
int UnpackResourceChunk(rresResourceChunk *chunk)
{
int result = 0;
bool updateProps = false;
// Result error codes:
// 0 - No error, decompression/decryption successful
// 1 - Encryption algorithm not supported
// 2 - Invalid password on decryption
// 3 - Compression algorithm not supported
// 4 - Error on data decompression
// NOTE 1: If data is compressed/encrypted the properties are not loaded by rres.h because
// it's up to the user to process the data; *chunk must be properly updated by this function
// NOTE 2: rres-raylib should support the same algorithms and libraries used by rrespacker tool
void *unpackedData = NULL;
// STEP 1. Data decryption
//-------------------------------------------------------------------------------------
unsigned char *decryptedData = NULL;
switch (chunk->info.cipherType)
{
case RRES_CIPHER_NONE: decryptedData = chunk->data.raw; break;
#if defined(RRES_SUPPORT_ENCRYPTION_AES)
case RRES_CIPHER_AES:
{
// WARNING: Implementation dependant!
// rrespacker tool appends (salt[16] + MD5[16]) to encrypted data for convenience,
// Actually, chunk->info.packedSize considers those additional elements
// Get some memory for the possible message output
decryptedData = (unsigned char *)RL_CALLOC(chunk->info.packedSize - 16 - 16, 1);
if (decryptedData != NULL) memcpy(decryptedData, chunk->data.raw, chunk->info.packedSize - 16 - 16);
// Required variables for key stretching
uint8_t key[32] = { 0 }; // Encryption key
uint8_t salt[16] = { 0 }; // Key stretching salt
// Retrieve salt from chunk packed data
// salt is stored at the end of packed data, before nonce and MAC: salt[16] + MD5[16]
memcpy(salt, ((unsigned char *)chunk->data.raw) + (chunk->info.packedSize - 16 - 16), 16);
// Key stretching configuration
crypto_argon2_config config = {
.algorithm = CRYPTO_ARGON2_I, // Algorithm: Argon2i
.nb_blocks = 16384, // Blocks: 16 MB
.nb_passes = 3, // Iterations
.nb_lanes = 1 // Single-threaded
};
crypto_argon2_inputs inputs = {
.pass = (const uint8_t *)rresGetCipherPassword(), // User password
.pass_size = strlen(rresGetCipherPassword()), // Password length
.salt = salt, // Salt for the password
.salt_size = 16
};
crypto_argon2_extras extras = { 0 }; // Extra parameters unused
void *workArea = RL_MALLOC(config.nb_blocks*1024); // Key stretching work area
// Generate strong encryption key, generated from user password using Argon2i algorithm (256 bit)
crypto_argon2(key, 32, workArea, config, inputs, extras);
// Wipe key generation secrets, they are no longer needed
crypto_wipe(salt, 16);
RL_FREE(workArea);
// Required variables for decryption and message authentication
unsigned int md5[4] = { 0 }; // Message Authentication Code generated on encryption
// Retrieve MD5 from chunk packed data
// NOTE: MD5 is stored at the end of packed data, after salt: salt[16] + MD5[16]
memcpy(md5, ((unsigned char *)chunk->data.raw) + (chunk->info.packedSize - 16), 4*sizeof(unsigned int));
// Message decryption, requires key
struct AES_ctx ctx = { 0 };
AES_init_ctx(&ctx, key);
AES_CTR_xcrypt_buffer(&ctx, (uint8_t *)decryptedData, chunk->info.packedSize - 16 - 16); // AES Counter mode, stream cipher
// Verify MD5 to check if data decryption worked
unsigned int decryptMD5[4] = { 0 };
unsigned int *md5Ptr = ComputeMD5(decryptedData, chunk->info.packedSize - 16 - 16);
for (int i = 0; i < 4; i++) decryptMD5[i] = md5Ptr[i];
// Wipe secrets if they are no longer needed
crypto_wipe(key, 32);
if (memcmp(decryptMD5, md5, 4*sizeof(unsigned int)) == 0) // Decrypted successfully!
{
chunk->info.packedSize -= (16 + 16); // We remove additional data size from packed size (salt[16] + MD5[16])
RRES_LOG("RRES: %c%c%c%c: Data decrypted successfully (AES)\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
else
{
result = 2; // Data was not decrypted as expected, wrong password or message corrupted
RRES_LOG("RRES: WARNING: %c%c%c%c: Data decryption failed, wrong password or corrupted data\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
} break;
#endif
#if defined(RRES_SUPPORT_ENCRYPTION_XCHACHA20)
case RRES_CIPHER_XCHACHA20_POLY1305:
{
// WARNING: Implementation dependant!
// rrespacker tool appends (salt[16] + nonce[24] + MAC[16]) to encrypted data for convenience,
// Actually, chunk->info.packedSize considers those additional elements
// Get some memory for the possible message output
decryptedData = (unsigned char *)RL_CALLOC(chunk->info.packedSize - 16 - 24 - 16, 1);
// Required variables for key stretching
uint8_t key[32] = { 0 }; // Encryption key
uint8_t salt[16] = { 0 }; // Key stretching salt
// Retrieve salt from chunk packed data
// salt is stored at the end of packed data, before nonce and MAC: salt[16] + nonce[24] + MAC[16]
memcpy(salt, ((unsigned char *)chunk->data.raw) + (chunk->info.packedSize - 16 - 24 - 16), 16);
// Key stretching configuration
crypto_argon2_config config = {
.algorithm = CRYPTO_ARGON2_I, // Algorithm: Argon2i
.nb_blocks = 16384, // Blocks: 16 MB
.nb_passes = 3, // Iterations
.nb_lanes = 1 // Single-threaded
};
crypto_argon2_inputs inputs = {
.pass = (const uint8_t *)rresGetCipherPassword(), // User password
.pass_size = strlen(rresGetCipherPassword()), // Password length
.salt = salt, // Salt for the password
.salt_size = 16
};
crypto_argon2_extras extras = { 0 }; // Extra parameters unused
void *workArea = RL_MALLOC(config.nb_blocks*1024); // Key stretching work area
// Generate strong encryption key, generated from user password using Argon2i algorithm (256 bit)
crypto_argon2(key, 32, workArea, config, inputs, extras);
// Wipe key generation secrets, they are no longer needed
crypto_wipe(salt, 16);
RL_FREE(workArea);
// Required variables for decryption and message authentication
uint8_t nonce[24] = { 0 }; // nonce used on encryption, unique to processed file
uint8_t mac[16] = { 0 }; // Message Authentication Code generated on encryption
// Retrieve nonce and MAC from chunk packed data
// nonce and MAC are stored at the end of packed data, after salt: salt[16] + nonce[24] + MAC[16]
memcpy(nonce, ((unsigned char *)chunk->data.raw) + (chunk->info.packedSize - 16 - 24), 24);
memcpy(mac, ((unsigned char *)chunk->data.raw) + (chunk->info.packedSize - 16), 16);
// Message decryption requires key, nonce and MAC
int decryptResult = crypto_aead_unlock(decryptedData, mac, key, nonce, NULL, 0, chunk->data.raw, (chunk->info.packedSize - 16 - 24 - 16));
// Wipe secrets if they are no longer needed
crypto_wipe(nonce, 24);
crypto_wipe(key, 32);
if (decryptResult == 0) // Decrypted successfully!
{
chunk->info.packedSize -= (16 + 24 + 16); // We remove additional data size from packed size
RRES_LOG("RRES: %c%c%c%c: Data decrypted successfully (XChaCha20)\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
else if (decryptResult == -1)
{
result = 2; // Wrong password or message corrupted
RRES_LOG("RRES: WARNING: %c%c%c%c: Data decryption failed, wrong password or corrupted data\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
} break;
#endif
default:
{
result = 1; // Decryption algorithm not supported
RRES_LOG("RRES: WARNING: %c%c%c%c: Chunk data encryption algorithm not supported\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
} break;
}
if ((result == 0) && (chunk->info.cipherType != RRES_CIPHER_NONE))
{
// Data is not encrypted any more, register it
chunk->info.cipherType = RRES_CIPHER_NONE;
updateProps = true;
}
// STEP 2: Data decompression (if decryption was successful)
//-------------------------------------------------------------------------------------
unsigned char *uncompData = NULL;
if (result == 0)
{
switch (chunk->info.compType)
{
case RRES_COMP_NONE: unpackedData = decryptedData; break;
case RRES_COMP_DEFLATE:
{
int uncompDataSize = 0;
// TODO: WARNING: Possible issue with allocators: RL_CALLOC() vs RRES_CALLOC()
uncompData = DecompressData(decryptedData, chunk->info.packedSize, &uncompDataSize);
if ((uncompData != NULL) && (uncompDataSize > 0)) // Decompression successful
{
unpackedData = uncompData;
chunk->info.packedSize = uncompDataSize;
RRES_LOG("RRES: %c%c%c%c: Data decompressed successfully (DEFLATE)\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
else
{
result = 4; // Decompression process failed
RRES_LOG("RRES: WARNING: %c%c%c%c: Chunk data decompression failed\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
// Security check, uncompDataSize must match the provided chunk->baseSize
if (uncompDataSize != chunk->info.baseSize) RRES_LOG("RRES: WARNING: Decompressed data could be corrupted, unexpected size\n");
} break;
#if defined(RRES_SUPPORT_COMPRESSION_LZ4)
case RRES_COMP_LZ4:
{
int uncompDataSize = 0;
uncompData = (unsigned char *)RRES_CALLOC(chunk->info.baseSize, 1);
uncompDataSize = LZ4_decompress_safe(decryptedData, uncompData, chunk->info.packedSize, chunk->info.baseSize);
if ((uncompData != NULL) && (uncompDataSize > 0)) // Decompression successful
{
unpackedData = uncompData;
chunk->info.packedSize = uncompDataSize;
RRES_LOG("RRES: %c%c%c%c: Data decompressed successfully (LZ4)\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
else
{
result = 4; // Decompression process failed
RRES_LOG("RRES: WARNING: %c%c%c%c: Chunk data decompression failed\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
// WARNING: Decompression could be successful but not the original message size returned
if (uncompDataSize != chunk->info.baseSize) RRES_LOG("RRES: WARNING: Decompressed data could be corrupted, unexpected size\n");
} break;
#endif
case RRES_COMP_QOI:
{
int uncompDataSize = 0;
qoi_desc desc = { 0 };
// TODO: WARNING: Possible issue with allocators: QOI_MALLOC() vs RRES_MALLOC()
uncompData = qoi_decode(decryptedData, chunk->info.packedSize, &desc, 0);
uncompDataSize = (desc.width*desc.height*desc.channels) + 20; // Add the 20 bytes of (propCount + props[4])
if ((uncompData != NULL) && (uncompDataSize > 0)) // Decompression successful
{
unpackedData = uncompData;
chunk->info.packedSize = uncompDataSize;
RRES_LOG("RRES: %c%c%c%c: Data decompressed successfully (QOI)\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
else
{
result = 4; // Decompression process failed
RRES_LOG("RRES: WARNING: %c%c%c%c: Chunk data decompression failed\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
}
if (uncompDataSize != chunk->info.baseSize) RRES_LOG("RRES: WARNING: Decompressed data could be corrupted, unexpected size\n");
} break;
default:
{
result = 3;
RRES_LOG("RRES: WARNING: %c%c%c%c: Chunk data compression algorithm not supported\n", chunk->info.type[0], chunk->info.type[1], chunk->info.type[2], chunk->info.type[3]);
} break;
}
}
if ((result == 0) && (chunk->info.compType != RRES_COMP_NONE))
{
// Data is not encrypted any more, register it
chunk->info.compType = RRES_COMP_NONE;
updateProps = true;
}
// Update chunk->data.propCount and chunk->data.props if required
if (updateProps && (unpackedData != NULL))
{
// Data is decompressed/decrypted into chunk->data.raw but data.propCount and data.props[] are still empty,
// they must be filled with the just updated chunk->data.raw (that contains everything)
chunk->data.propCount = ((int *)unpackedData)[0];
if (chunk->data.propCount > 0)
{
chunk->data.props = (unsigned int *)RRES_CALLOC(chunk->data.propCount, sizeof(int));
for (unsigned int i = 0; i < chunk->data.propCount; i++) chunk->data.props[i] = ((int *)unpackedData)[1 + i];
}
// Move chunk->data.raw pointer (chunk->data.propCount*sizeof(int)) positions
void *raw = RRES_CALLOC(chunk->info.baseSize - 20, 1);
if (raw != NULL) memcpy(raw, ((unsigned char *)unpackedData) + 20, chunk->info.baseSize - 20);
RRES_FREE(chunk->data.raw);
chunk->data.raw = raw;
RL_FREE(unpackedData);
}
return result;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Load data chunk: RRES_DATA_LINK
static void *LoadDataFromResourceLink(rresResourceChunk chunk, unsigned int *size)
{
unsigned char fullFilePath[2048] = { 0 };
void *data = NULL;
*size = 0;
// Get external link filepath
unsigned char *linkFilePath = RL_CALLOC(chunk.data.props[0], 1);
if (linkFilePath != NULL) memcpy(linkFilePath, chunk.data.raw, chunk.data.props[0]);
// Get base directory to append filepath if not provided by user
if (baseDir == NULL) baseDir = GetApplicationDirectory();
strcpy(fullFilePath, baseDir);
strcat(fullFilePath, linkFilePath);
RRES_LOG("RRES: %c%c%c%c: Data file linked externally: %s\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3], linkFilePath);
if (FileExists(fullFilePath))
{
// Load external file as raw data
// NOTE: We check if file is a text file to allow automatic line-endings processing
if (IsFileExtension(linkFilePath, ".txt;.md;.vs;.fs;.info;.c;.h;.json;.xml;.glsl")) // Text file
{
data = LoadFileText(fullFilePath);
*size = TextLength(data);
}
else data = LoadFileData(fullFilePath, size);
if ((data != NULL) && (*size > 0)) RRES_LOG("RRES: %c%c%c%c: External linked file loaded successfully\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3]);
}
else RRES_LOG("RRES: WARNING: [%s] Linked external file could not be found\n", linkFilePath);
return data;
}
// Load data chunk: RRES_DATA_RAW
// NOTE: This chunk can be used raw files embedding or other binary blobs
static void *LoadDataFromResourceChunk(rresResourceChunk chunk, unsigned int *size)
{
void *rawData = NULL;
if ((chunk.info.compType == RRES_COMP_NONE) && (chunk.info.cipherType == RRES_CIPHER_NONE))
{
rawData = RL_CALLOC(chunk.data.props[0], 1);
if (rawData != NULL) memcpy(rawData, chunk.data.raw, chunk.data.props[0]);
*size = chunk.data.props[0];
}
else RRES_LOG("RRES: %c%c%c%c: WARNING: Data must be decompressed/decrypted\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3]);
return rawData;
}
// Load data chunk: RRES_DATA_TEXT
// NOTE: This chunk can be used for shaders or other text data elements (materials?)
static char *LoadTextFromResourceChunk(rresResourceChunk chunk, unsigned int *codeLang)
{
void *text = NULL;
if ((chunk.info.compType == RRES_COMP_NONE) && (chunk.info.cipherType == RRES_CIPHER_NONE))
{
text = (char *)RL_CALLOC(chunk.data.props[0] + 1, 1); // We add NULL terminator, just in case
if (text != NULL) memcpy(text, chunk.data.raw, chunk.data.props[0]);
// TODO: We got some extra text properties, in case they could be useful for users:
// chunk.props[1]:rresTextEncoding, chunk.props[2]:rresCodeLang, chunk. props[3]:cultureCode
*codeLang = chunk.data.props[2];
//chunks.props[3]:cultureCode could be useful for localized text
}
else RRES_LOG("RRES: %c%c%c%c: WARNING: Data must be decompressed/decrypted\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3]);
return text;
}
// Load data chunk: RRES_DATA_IMAGE
// NOTE: Many data types use images data in some way (font, material...)
static Image LoadImageFromResourceChunk(rresResourceChunk chunk)
{
Image image = { 0 };
if ((chunk.info.compType == RRES_COMP_NONE) && (chunk.info.cipherType == RRES_CIPHER_NONE))
{
image.width = chunk.data.props[0];
image.height = chunk.data.props[1];
int format = chunk.data.props[2];
// Assign equivalent pixel formats for our engine
// NOTE: In this case rresPixelFormat defined values match raylib PixelFormat values
switch (format)
{
case RRES_PIXELFORMAT_UNCOMP_GRAYSCALE: image.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE; break;
case RRES_PIXELFORMAT_UNCOMP_GRAY_ALPHA: image.format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA; break;
case RRES_PIXELFORMAT_UNCOMP_R5G6B5: image.format = PIXELFORMAT_UNCOMPRESSED_R5G6B5; break;
case RRES_PIXELFORMAT_UNCOMP_R8G8B8: image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8; break;
case RRES_PIXELFORMAT_UNCOMP_R5G5B5A1: image.format = PIXELFORMAT_UNCOMPRESSED_R5G5B5A1; break;
case RRES_PIXELFORMAT_UNCOMP_R4G4B4A4: image.format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4; break;
case RRES_PIXELFORMAT_UNCOMP_R8G8B8A8: image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8; break;
case RRES_PIXELFORMAT_UNCOMP_R32: image.format = PIXELFORMAT_UNCOMPRESSED_R32; break;
case RRES_PIXELFORMAT_UNCOMP_R32G32B32: image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32; break;
case RRES_PIXELFORMAT_UNCOMP_R32G32B32A32: image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32A32; break;
case RRES_PIXELFORMAT_COMP_DXT1_RGB: image.format = PIXELFORMAT_COMPRESSED_DXT1_RGB; break;
case RRES_PIXELFORMAT_COMP_DXT1_RGBA: image.format = PIXELFORMAT_COMPRESSED_DXT1_RGBA; break;
case RRES_PIXELFORMAT_COMP_DXT3_RGBA: image.format = PIXELFORMAT_COMPRESSED_DXT3_RGBA; break;
case RRES_PIXELFORMAT_COMP_DXT5_RGBA: image.format = PIXELFORMAT_COMPRESSED_DXT5_RGBA; break;
case RRES_PIXELFORMAT_COMP_ETC1_RGB: image.format = PIXELFORMAT_COMPRESSED_ETC1_RGB; break;
case RRES_PIXELFORMAT_COMP_ETC2_RGB: image.format = PIXELFORMAT_COMPRESSED_ETC2_RGB; break;
case RRES_PIXELFORMAT_COMP_ETC2_EAC_RGBA: image.format = PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA; break;
case RRES_PIXELFORMAT_COMP_PVRT_RGB: image.format = PIXELFORMAT_COMPRESSED_PVRT_RGB; break;
case RRES_PIXELFORMAT_COMP_PVRT_RGBA: image.format = PIXELFORMAT_COMPRESSED_PVRT_RGBA; break;
case RRES_PIXELFORMAT_COMP_ASTC_4x4_RGBA: image.format = PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA; break;
case RRES_PIXELFORMAT_COMP_ASTC_8x8_RGBA: image.format = PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA; break;
default: break;
}
image.mipmaps = chunk.data.props[3];
// Image data size can be computed from image properties
unsigned int size = GetPixelDataSize(image.width, image.height, image.format);
// NOTE: Computed image data must match the data size of the chunk processed (minus propCount + props[4] size)
if (size == (chunk.info.baseSize - 20))
{
image.data = RL_CALLOC(size, 1);
if (image.data != NULL) memcpy(image.data, chunk.data.raw, size);
}
else RRES_LOG("RRES: WARNING: IMGE: Chunk data size do not match expected image data size\n");
}
else RRES_LOG("RRES: %c%c%c%c: WARNING: Data must be decompressed/decrypted\n", chunk.info.type[0], chunk.info.type[1], chunk.info.type[2], chunk.info.type[3]);
return image;
}
// Get file extension from RRES_DATA_RAW properties (unsigned int)
static const char *GetExtensionFromProps(unsigned int ext01, unsigned int ext02)
{
static char extension[8] = { 0 };
memset(extension, 0, 8);
// Convert file extension provided as 2 unsigned int properties, to a char[] array
// NOTE: Extension is defined as 2 unsigned int big-endian values (4 bytes each),
// starting with a dot, i.e 0x2e706e67 => ".png"
extension[0] = (unsigned char)((ext01 & 0xff000000) >> 24);
extension[1] = (unsigned char)((ext01 & 0x00ff0000) >> 16);
extension[2] = (unsigned char)((ext01 & 0x0000ff00) >> 8);
extension[3] = (unsigned char)(ext01 & 0x000000ff);
extension[4] = (unsigned char)((ext02 & 0xff000000) >> 24);
extension[5] = (unsigned char)((ext02 & 0x00ff0000) >> 16);
extension[6] = (unsigned char)((ext02 & 0x0000ff00) >> 8);
extension[7] = (unsigned char)(ext02 & 0x000000ff);
return extension;
}
// Compute MD5 hash code, returns 4 integers array (static)
static unsigned int *ComputeMD5(unsigned char *data, int size)
{
#define LEFTROTATE(x, c) (((x) << (c)) | ((x) >> (32 - (c))))
static unsigned int hash[4] = { 0 };
// NOTE: All variables are unsigned 32 bit and wrap modulo 2^32 when calculating
// r specifies the per-round shift amounts
unsigned int r[] = {
7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21
};
// Use binary integer part of the sines of integers (in radians) as constants// Initialize variables:
unsigned int k[] = {
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
hash[0] = 0x67452301;
hash[1] = 0xefcdab89;
hash[2] = 0x98badcfe;
hash[3] = 0x10325476;
// Pre-processing: adding a single 1 bit
// Append '1' bit to message
// NOTE: The input bytes are considered as bits strings,
// where the first bit is the most significant bit of the byte
// Pre-processing: padding with zeros
// Append '0' bit until message length in bit 448 (mod 512)
// Append length mod (2 pow 64) to message
int newDataSize = ((((size + 8)/64) + 1)*64) - 8;
unsigned char *msg = RL_CALLOC(newDataSize + 64, 1); // Also appends "0" bits (we alloc also 64 extra bytes...)
memcpy(msg, data, size);
msg[size] = 128; // Write the "1" bit
unsigned int bitsLen = 8*size;
memcpy(msg + newDataSize, &bitsLen, 4); // We append the len in bits at the end of the buffer
// Process the message in successive 512-bit chunks for each 512-bit chunk of message
for (int offset = 0; offset < newDataSize; offset += (512/8))
{
// Break chunk into sixteen 32-bit words w[j], 0 <= j <= 15
unsigned int *w = (unsigned int *)(msg + offset);
// Initialize hash value for this chunk
unsigned int a = hash[0];
unsigned int b = hash[1];
unsigned int c = hash[2];
unsigned int d = hash[3];
for (int i = 0; i < 64; i++)
{
unsigned int f, g;
if (i < 16)
{
f = (b & c) | ((~b) & d);
g = i;
}
else if (i < 32)
{
f = (d & b) | ((~d) & c);
g = (5*i + 1)%16;
}
else if (i < 48)
{
f = b ^ c ^ d;
g = (3*i + 5)%16;
}
else
{
f = c ^ (b | (~d));
g = (7*i)%16;
}
unsigned int temp = d;
d = c;
c = b;
b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
a = temp;
}
// Add chunk's hash to result so far
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
}
RL_FREE(msg);
return hash;
}
#endif // RRES_RAYLIB_IMPLEMENTATION