package rl import ( "math" ) // Clamp - Clamp float value func Clamp(value, min, max float32) float32 { var res float32 if value < min { res = min } else { res = value } if res > max { return max } return res } // Lerp - Calculate linear interpolation between two floats func Lerp(start, end, amount float32) float32 { return start + amount*(end-start) } // Normalize - Normalize input value within input range func Normalize(value, start, end float32) float32 { return (value - start) / (end - start) } // Remap - Remap input value within input range to output range func Remap(value, inputStart, inputEnd, outputStart, outputEnd float32) float32 { return (value-inputStart)/(inputEnd-inputStart)*(outputEnd-outputStart) + outputStart } // Wrap - Wrap input value from min to max func Wrap(value, min, max float32) float32 { return float32(float64(value) - float64(max-min)*math.Floor(float64((value-min)/(max-min)))) } // FloatEquals - Check whether two given floats are almost equal func FloatEquals(x, y float32) bool { return (math.Abs(float64(x-y)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(x)), math.Abs(float64(y))))) } // Vector2Zero - Vector with components value 0.0 func Vector2Zero() Vector2 { return NewVector2(0.0, 0.0) } // Vector2One - Vector with components value 1.0 func Vector2One() Vector2 { return NewVector2(1.0, 1.0) } // Vector2Add - Add two vectors (v1 + v2) func Vector2Add(v1, v2 Vector2) Vector2 { return NewVector2(v1.X+v2.X, v1.Y+v2.Y) } // Vector2AddValue - Add vector and float value func Vector2AddValue(v Vector2, add float32) Vector2 { return NewVector2(v.X+add, v.Y+add) } // Vector2Subtract - Subtract two vectors (v1 - v2) func Vector2Subtract(v1, v2 Vector2) Vector2 { return NewVector2(v1.X-v2.X, v1.Y-v2.Y) } // Vector2SubtractValue - Subtract vector by float value func Vector2SubtractValue(v Vector2, sub float32) Vector2 { return NewVector2(v.X-sub, v.Y-sub) } // Vector2Length - Calculate vector length func Vector2Length(v Vector2) float32 { return float32(math.Sqrt(float64((v.X * v.X) + (v.Y * v.Y)))) } // Vector2LengthSqr - Calculate vector square length func Vector2LengthSqr(v Vector2) float32 { return v.X*v.X + v.Y*v.Y } // Vector2DotProduct - Calculate two vectors dot product func Vector2DotProduct(v1, v2 Vector2) float32 { return v1.X*v2.X + v1.Y*v2.Y } // Vector2Distance - Calculate distance between two vectors func Vector2Distance(v1, v2 Vector2) float32 { return float32(math.Sqrt(float64((v1.X-v2.X)*(v1.X-v2.X) + (v1.Y-v2.Y)*(v1.Y-v2.Y)))) } // Vector2DistanceSqr - Calculate square distance between two vectors func Vector2DistanceSqr(v1 Vector2, v2 Vector2) float32 { return (v1.X-v2.X)*(v1.X-v2.X) + (v1.Y-v2.Y)*(v1.Y-v2.Y) } // Vector2Angle - Calculate angle from two vectors in radians func Vector2Angle(v1, v2 Vector2) float32 { result := math.Atan2(float64(v2.Y), float64(v2.X)) - math.Atan2(float64(v1.Y), float64(v1.X)) return float32(result) } // Vector2LineAngle - Calculate angle defined by a two vectors line // NOTE: Parameters need to be normalized. Current implementation should be aligned with glm::angle func Vector2LineAngle(start Vector2, end Vector2) float32 { return float32(-math.Atan2(float64(end.Y-start.Y), float64(end.X-start.X))) } // Vector2Scale - Scale vector (multiply by value) func Vector2Scale(v Vector2, scale float32) Vector2 { return NewVector2(v.X*scale, v.Y*scale) } // Vector2Multiply - Multiply vector by vector func Vector2Multiply(v1, v2 Vector2) Vector2 { return NewVector2(v1.X*v2.X, v1.Y*v2.Y) } // Vector2Negate - Negate vector func Vector2Negate(v Vector2) Vector2 { return NewVector2(-v.X, -v.Y) } // Vector2Divide - Divide vector by vector func Vector2Divide(v1, v2 Vector2) Vector2 { return NewVector2(v1.X/v2.X, v1.Y/v2.Y) } // Vector2Normalize - Normalize provided vector func Vector2Normalize(v Vector2) Vector2 { if l := Vector2Length(v); l > 0 { return Vector2Scale(v, 1/l) } return v } // Vector2Transform - Transforms a Vector2 by a given Matrix func Vector2Transform(v Vector2, mat Matrix) Vector2 { var result = Vector2{} var x = v.X var y = v.Y var z float32 result.X = mat.M0*x + mat.M4*y + mat.M8*z + mat.M12 result.Y = mat.M1*x + mat.M5*y + mat.M9*z + mat.M13 return result } // Vector2Lerp - Calculate linear interpolation between two vectors func Vector2Lerp(v1, v2 Vector2, amount float32) Vector2 { return NewVector2(v1.X+amount*(v2.X-v1.X), v1.Y+amount*(v2.Y-v1.Y)) } // Vector2Reflect - Calculate reflected vector to normal func Vector2Reflect(v Vector2, normal Vector2) Vector2 { var result = Vector2{} dotProduct := v.X*normal.X + v.Y*normal.Y // Dot product result.X = v.X - 2.0*normal.X*dotProduct result.Y = v.Y - 2.0*normal.Y*dotProduct return result } // Vector2Rotate - Rotate vector by angle func Vector2Rotate(v Vector2, angle float32) Vector2 { var result = Vector2{} cosres := float32(math.Cos(float64(angle))) sinres := float32(math.Sin(float64(angle))) result.X = v.X*cosres - v.Y*sinres result.Y = v.X*sinres + v.Y*cosres return result } // Vector2MoveTowards - Move Vector towards target func Vector2MoveTowards(v Vector2, target Vector2, maxDistance float32) Vector2 { var result = Vector2{} dx := target.X - v.X dy := target.Y - v.Y value := dx*dx + dy*dy if value == 0 || maxDistance >= 0 && value <= maxDistance*maxDistance { return target } dist := float32(math.Sqrt(float64(value))) result.X = v.X + dx/dist*maxDistance result.Y = v.Y + dy/dist*maxDistance return result } // Vector2Invert - Invert the given vector func Vector2Invert(v Vector2) Vector2 { return NewVector2(1.0/v.X, 1.0/v.Y) } // Vector2Clamp - Clamp the components of the vector between min and max values specified by the given vectors func Vector2Clamp(v Vector2, min Vector2, max Vector2) Vector2 { var result = Vector2{} result.X = float32(math.Min(float64(max.X), math.Max(float64(min.X), float64(v.X)))) result.Y = float32(math.Min(float64(max.Y), math.Max(float64(min.Y), float64(v.Y)))) return result } // Vector2ClampValue - Clamp the magnitude of the vector between two min and max values func Vector2ClampValue(v Vector2, min float32, max float32) Vector2 { var result = v length := v.X*v.X + v.Y*v.Y if length > 0.0 { length = float32(math.Sqrt(float64(length))) if length < min { scale := min / length result.X = v.X * scale result.Y = v.Y * scale } else if length > max { scale := max / length result.X = v.X * scale result.Y = v.Y * scale } } return result } // Vector2Equals - Check whether two given vectors are almost equal func Vector2Equals(p Vector2, q Vector2) bool { return (math.Abs(float64(p.X-q.X)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.X)), math.Abs(float64(q.X)))) && math.Abs(float64(p.Y-q.Y)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Y)), math.Abs(float64(q.Y))))) } // Vector2CrossProduct - Calculate two vectors cross product func Vector2CrossProduct(v1, v2 Vector2) float32 { return v1.X*v2.Y - v1.Y*v2.X } // Vector2Cross - Calculate the cross product of a vector and a value func Vector2Cross(value float32, vector Vector2) Vector2 { return NewVector2(-value*vector.Y, value*vector.X) } // Vector2LenSqr - Returns the len square root of a vector func Vector2LenSqr(vector Vector2) float32 { return vector.X*vector.X + vector.Y*vector.Y } // Vector3Zero - Vector with components value 0.0 func Vector3Zero() Vector3 { return NewVector3(0.0, 0.0, 0.0) } // Vector3One - Vector with components value 1.0 func Vector3One() Vector3 { return NewVector3(1.0, 1.0, 1.0) } // Vector3Add - Add two vectors func Vector3Add(v1, v2 Vector3) Vector3 { return NewVector3(v1.X+v2.X, v1.Y+v2.Y, v1.Z+v2.Z) } // Vector3AddValue - Add vector and float value func Vector3AddValue(v Vector3, add float32) Vector3 { return NewVector3(v.X+add, v.Y+add, v.Z+add) } // Vector3Subtract - Subtract two vectors func Vector3Subtract(v1, v2 Vector3) Vector3 { return NewVector3(v1.X-v2.X, v1.Y-v2.Y, v1.Z-v2.Z) } // Vector3SubtractValue - Subtract vector by float value func Vector3SubtractValue(v Vector3, sub float32) Vector3 { return NewVector3(v.X-sub, v.Y-sub, v.Z-sub) } // Vector3Scale - Scale provided vector func Vector3Scale(v Vector3, scale float32) Vector3 { return NewVector3(v.X*scale, v.Y*scale, v.Z*scale) } // Vector3Multiply - Multiply vector by vector func Vector3Multiply(v1, v2 Vector3) Vector3 { result := Vector3{} result.X = v1.X * v2.X result.Y = v1.Y * v2.Y result.Z = v1.Z * v2.Z return result } // Vector3CrossProduct - Calculate two vectors cross product func Vector3CrossProduct(v1, v2 Vector3) Vector3 { result := Vector3{} result.X = v1.Y*v2.Z - v1.Z*v2.Y result.Y = v1.Z*v2.X - v1.X*v2.Z result.Z = v1.X*v2.Y - v1.Y*v2.X return result } // Vector3Perpendicular - Calculate one vector perpendicular vector func Vector3Perpendicular(v Vector3) Vector3 { min := math.Abs(float64(v.X)) cardinalAxis := NewVector3(1.0, 0.0, 0.0) if math.Abs(float64(v.Y)) < min { min = math.Abs(float64(v.Y)) cardinalAxis = NewVector3(0.0, 1.0, 0.0) } if math.Abs(float64(v.Z)) < min { cardinalAxis = NewVector3(0.0, 0.0, 1.0) } result := Vector3CrossProduct(v, cardinalAxis) return result } // Vector3Length - Calculate vector length func Vector3Length(v Vector3) float32 { return float32(math.Sqrt(float64(v.X*v.X + v.Y*v.Y + v.Z*v.Z))) } // Vector3LengthSqr - Calculate vector square length func Vector3LengthSqr(v Vector3) float32 { return v.X*v.X + v.Y*v.Y + v.Z*v.Z } // Vector3DotProduct - Calculate two vectors dot product func Vector3DotProduct(v1, v2 Vector3) float32 { return v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z } // Vector3Distance - Calculate distance between two vectors func Vector3Distance(v1, v2 Vector3) float32 { dx := v2.X - v1.X dy := v2.Y - v1.Y dz := v2.Z - v1.Z return float32(math.Sqrt(float64(dx*dx + dy*dy + dz*dz))) } // Vector3DistanceSqr - Calculate square distance between two vectors func Vector3DistanceSqr(v1 Vector3, v2 Vector3) float32 { var result float32 dx := v2.X - v1.X dy := v2.Y - v1.Y dz := v2.Z - v1.Z result = dx*dx + dy*dy + dz*dz return result } // Vector3Angle - Calculate angle between two vectors func Vector3Angle(v1 Vector3, v2 Vector3) float32 { var result float32 cross := Vector3{X: v1.Y*v2.Z - v1.Z*v2.Y, Y: v1.Z*v2.X - v1.X*v2.Z, Z: v1.X*v2.Y - v1.Y*v2.X} length := float32(math.Sqrt(float64(cross.X*cross.X + cross.Y*cross.Y + cross.Z*cross.Z))) dot := v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z result = float32(math.Atan2(float64(length), float64(dot))) return result } // Vector3Negate - Negate provided vector (invert direction) func Vector3Negate(v Vector3) Vector3 { return NewVector3(-v.X, -v.Y, -v.Z) } // Vector3Divide - Divide vector by vector func Vector3Divide(v1 Vector3, v2 Vector3) Vector3 { return NewVector3(v1.X/v2.X, v1.Y/v2.Y, v1.Z/v2.Z) } // Vector3Normalize - Normalize provided vector func Vector3Normalize(v Vector3) Vector3 { result := v var length, ilength float32 length = Vector3Length(v) if length == 0 { length = 1.0 } ilength = 1.0 / length result.X *= ilength result.Y *= ilength result.Z *= ilength return result } // Vector3Project - Calculate the projection of the vector v1 on to v2 func Vector3Project(v1, v2 Vector3) Vector3 { result := Vector3{} v1dv2 := (v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z) v2dv2 := (v2.X*v2.X + v2.Y*v2.Y + v2.Z*v2.Z) mag := v1dv2 / v2dv2 result.X = v2.X * mag result.Y = v2.Y * mag result.Z = v2.Z * mag return result } // Vector3Reject - Calculate the rejection of the vector v1 on to v2 func Vector3Reject(v1, v2 Vector3) Vector3 { result := Vector3{} v1dv2 := (v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z) v2dv2 := (v2.X*v2.X + v2.Y*v2.Y + v2.Z*v2.Z) mag := v1dv2 / v2dv2 result.X = v1.X - (v2.X * mag) result.Y = v1.Y - (v2.Y * mag) result.Z = v1.Z - (v2.Z * mag) return result } // Vector3OrthoNormalize - Orthonormalize provided vectors // Makes vectors normalized and orthogonal to each other // Gram-Schmidt function implementation func Vector3OrthoNormalize(v1, v2 *Vector3) { Vector3Normalize(*v1) vn1 := Vector3CrossProduct(*v1, *v2) Vector3Normalize(vn1) vn2 := Vector3CrossProduct(vn1, *v1) *v2 = vn2 } // Vector3Transform - Transforms a Vector3 by a given Matrix func Vector3Transform(v Vector3, mat Matrix) Vector3 { result := Vector3{} x := v.X y := v.Y z := v.Z result.X = mat.M0*x + mat.M4*y + mat.M8*z + mat.M12 result.Y = mat.M1*x + mat.M5*y + mat.M9*z + mat.M13 result.Z = mat.M2*x + mat.M6*y + mat.M10*z + mat.M14 return result } // Vector3RotateByQuaternion - Transform a vector by quaternion rotation func Vector3RotateByQuaternion(v Vector3, q Quaternion) Vector3 { var result Vector3 result.X = v.X*(q.X*q.X+q.W*q.W-q.Y*q.Y-q.Z*q.Z) + v.Y*(2*q.X*q.Y-2*q.W*q.Z) + v.Z*(2*q.X*q.Z+2*q.W*q.Y) result.Y = v.X*(2*q.W*q.Z+2*q.X*q.Y) + v.Y*(q.W*q.W-q.X*q.X+q.Y*q.Y-q.Z*q.Z) + v.Z*(-2*q.W*q.X+2*q.Y*q.Z) result.Z = v.X*(-2*q.W*q.Y+2*q.X*q.Z) + v.Y*(2*q.W*q.X+2*q.Y*q.Z) + v.Z*(q.W*q.W-q.X*q.X-q.Y*q.Y+q.Z*q.Z) return result } // Vector3RotateByAxisAngle - Rotates a vector around an axis func Vector3RotateByAxisAngle(v Vector3, axis Vector3, angle float32) Vector3 { // Using Euler-Rodrigues Formula // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula result := v // Vector3Normalize(axis); length := float32(math.Sqrt(float64(axis.X*axis.X + axis.Y*axis.Y + axis.Z*axis.Z))) if length == 0.0 { length = 1.0 } ilength := 1.0 / length axis.X *= ilength axis.Y *= ilength axis.Z *= ilength angle /= 2.0 a := float32(math.Sin(float64(angle))) b := axis.X * a c := axis.Y * a d := axis.Z * a a = float32(math.Cos(float64(angle))) w := NewVector3(b, c, d) // Vector3CrossProduct(w, v) wv := NewVector3(w.Y*v.Z-w.Z*v.Y, w.Z*v.X-w.X*v.Z, w.X*v.Y-w.Y*v.X) // Vector3CrossProduct(w, wv) wwv := NewVector3(w.Y*wv.Z-w.Z*wv.Y, w.Z*wv.X-w.X*wv.Z, w.X*wv.Y-w.Y*wv.X) // Vector3Scale(wv, 2*a) a *= 2 wv.X *= a wv.Y *= a wv.Z *= a // Vector3Scale(wwv, 2) wwv.X *= 2 wwv.Y *= 2 wwv.Z *= 2 result.X += wv.X result.Y += wv.Y result.Z += wv.Z result.X += wwv.X result.Y += wwv.Y result.Z += wwv.Z return result } // Vector3Lerp - Calculate linear interpolation between two vectors func Vector3Lerp(v1, v2 Vector3, amount float32) Vector3 { result := Vector3{} result.X = v1.X + amount*(v2.X-v1.X) result.Y = v1.Y + amount*(v2.Y-v1.Y) result.Z = v1.Z + amount*(v2.Z-v1.Z) return result } // Vector3Reflect - Calculate reflected vector to normal func Vector3Reflect(vector, normal Vector3) Vector3 { // I is the original vector // N is the normal of the incident plane // R = I - (2*N*( DotProduct[ I,N] )) result := Vector3{} dotProduct := Vector3DotProduct(vector, normal) result.X = vector.X - (2.0*normal.X)*dotProduct result.Y = vector.Y - (2.0*normal.Y)*dotProduct result.Z = vector.Z - (2.0*normal.Z)*dotProduct return result } // Vector3Min - Return min value for each pair of components func Vector3Min(vec1, vec2 Vector3) Vector3 { result := Vector3{} result.X = float32(math.Min(float64(vec1.X), float64(vec2.X))) result.Y = float32(math.Min(float64(vec1.Y), float64(vec2.Y))) result.Z = float32(math.Min(float64(vec1.Z), float64(vec2.Z))) return result } // Vector3Max - Return max value for each pair of components func Vector3Max(vec1, vec2 Vector3) Vector3 { result := Vector3{} result.X = float32(math.Max(float64(vec1.X), float64(vec2.X))) result.Y = float32(math.Max(float64(vec1.Y), float64(vec2.Y))) result.Z = float32(math.Max(float64(vec1.Z), float64(vec2.Z))) return result } // Vector3Barycenter - Barycenter coords for p in triangle abc func Vector3Barycenter(p, a, b, c Vector3) Vector3 { v0 := Vector3Subtract(b, a) v1 := Vector3Subtract(c, a) v2 := Vector3Subtract(p, a) d00 := Vector3DotProduct(v0, v0) d01 := Vector3DotProduct(v0, v1) d11 := Vector3DotProduct(v1, v1) d20 := Vector3DotProduct(v2, v0) d21 := Vector3DotProduct(v2, v1) denom := d00*d11 - d01*d01 result := Vector3{} result.Y = (d11*d20 - d01*d21) / denom result.Z = (d00*d21 - d01*d20) / denom result.X = 1.0 - (result.Z + result.Y) return result } // Vector3Unproject - Projects a Vector3 from screen space into object space // NOTE: We are avoiding calling other raymath functions despite available func Vector3Unproject(source Vector3, projection Matrix, view Matrix) Vector3 { var result = Vector3{} // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it var matViewProj = Matrix{ // MatrixMultiply(view, projection); M0: view.M0*projection.M0 + view.M1*projection.M4 + view.M2*projection.M8 + view.M3*projection.M12, M4: view.M0*projection.M1 + view.M1*projection.M5 + view.M2*projection.M9 + view.M3*projection.M13, M8: view.M0*projection.M2 + view.M1*projection.M6 + view.M2*projection.M10 + view.M3*projection.M14, M12: view.M0*projection.M3 + view.M1*projection.M7 + view.M2*projection.M11 + view.M3*projection.M15, M1: view.M4*projection.M0 + view.M5*projection.M4 + view.M6*projection.M8 + view.M7*projection.M12, M5: view.M4*projection.M1 + view.M5*projection.M5 + view.M6*projection.M9 + view.M7*projection.M13, M9: view.M4*projection.M2 + view.M5*projection.M6 + view.M6*projection.M10 + view.M7*projection.M14, M13: view.M4*projection.M3 + view.M5*projection.M7 + view.M6*projection.M11 + view.M7*projection.M15, M2: view.M8*projection.M0 + view.M9*projection.M4 + view.M10*projection.M8 + view.M11*projection.M12, M6: view.M8*projection.M1 + view.M9*projection.M5 + view.M10*projection.M9 + view.M11*projection.M13, M10: view.M8*projection.M2 + view.M9*projection.M6 + view.M10*projection.M10 + view.M11*projection.M14, M14: view.M8*projection.M3 + view.M9*projection.M7 + view.M10*projection.M11 + view.M11*projection.M15, M3: view.M12*projection.M0 + view.M13*projection.M4 + view.M14*projection.M8 + view.M15*projection.M12, M7: view.M12*projection.M1 + view.M13*projection.M5 + view.M14*projection.M9 + view.M15*projection.M13, M11: view.M12*projection.M2 + view.M13*projection.M6 + view.M14*projection.M10 + view.M15*projection.M14, M15: view.M12*projection.M3 + view.M13*projection.M7 + view.M14*projection.M11 + view.M15*projection.M15} // Calculate inverted matrix -> MatrixInvert(matViewProj); // Cache the matrix values (speed optimization) var a00 = matViewProj.M0 var a01 = matViewProj.M1 var a02 = matViewProj.M2 var a03 = matViewProj.M3 var a10 = matViewProj.M4 var a11 = matViewProj.M5 var a12 = matViewProj.M6 var a13 = matViewProj.M7 var a20 = matViewProj.M8 var a21 = matViewProj.M9 var a22 = matViewProj.M10 var a23 = matViewProj.M11 var a30 = matViewProj.M12 var a31 = matViewProj.M13 var a32 = matViewProj.M14 var a33 = matViewProj.M15 var b00 = a00*a11 - a01*a10 var b01 = a00*a12 - a02*a10 var b02 = a00*a13 - a03*a10 var b03 = a01*a12 - a02*a11 var b04 = a01*a13 - a03*a11 var b05 = a02*a13 - a03*a12 var b06 = a20*a31 - a21*a30 var b07 = a20*a32 - a22*a30 var b08 = a20*a33 - a23*a30 var b09 = a21*a32 - a22*a31 var b10 = a21*a33 - a23*a31 var b11 = a22*a33 - a23*a32 // Calculate the invert determinant (inlined to avoid double-caching) var invDet = 1.0 / (b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06) var matViewProjInv = Matrix{ M0: (a11*b11 - a12*b10 + a13*b09) * invDet, M4: (-a01*b11 + a02*b10 - a03*b09) * invDet, M8: (a31*b05 - a32*b04 + a33*b03) * invDet, M12: (-a21*b05 + a22*b04 - a23*b03) * invDet, M1: (-a10*b11 + a12*b08 - a13*b07) * invDet, M5: (a00*b11 - a02*b08 + a03*b07) * invDet, M9: (-a30*b05 + a32*b02 - a33*b01) * invDet, M13: (a20*b05 - a22*b02 + a23*b01) * invDet, M2: (a10*b10 - a11*b08 + a13*b06) * invDet, M6: (-a00*b10 + a01*b08 - a03*b06) * invDet, M10: (a30*b04 - a31*b02 + a33*b00) * invDet, M14: (-a20*b04 + a21*b02 - a23*b00) * invDet, M3: (-a10*b09 + a11*b07 - a12*b06) * invDet, M7: (a00*b09 - a01*b07 + a02*b06) * invDet, M11: (-a30*b03 + a31*b01 - a32*b00) * invDet, M15: (a20*b03 - a21*b01 + a22*b00) * invDet} // Create quaternion from source point var quat = Quaternion{X: source.X, Y: source.Y, Z: source.Z, W: 1.0} // Multiply quat point by unprojecte matrix var qtransformed = Quaternion{ // QuaternionTransform(quat, matViewProjInv) X: matViewProjInv.M0*quat.X + matViewProjInv.M4*quat.Y + matViewProjInv.M8*quat.Z + matViewProjInv.M12*quat.W, Y: matViewProjInv.M1*quat.X + matViewProjInv.M5*quat.Y + matViewProjInv.M9*quat.Z + matViewProjInv.M13*quat.W, Z: matViewProjInv.M2*quat.X + matViewProjInv.M6*quat.Y + matViewProjInv.M10*quat.Z + matViewProjInv.M14*quat.W, W: matViewProjInv.M3*quat.X + matViewProjInv.M7*quat.Y + matViewProjInv.M11*quat.Z + matViewProjInv.M15*quat.W} // Normalized world points in vectors result.X = qtransformed.X / qtransformed.W result.Y = qtransformed.Y / qtransformed.W result.Z = qtransformed.Z / qtransformed.W return result } // Vector3ToFloatV - Get Vector3 as float array func Vector3ToFloatV(v Vector3) [3]float32 { var result [3]float32 result[0] = v.X result[1] = v.Y result[2] = v.Z return result } // Vector3Invert - Invert the given vector func Vector3Invert(v Vector3) Vector3 { return NewVector3(1.0/v.X, 1.0/v.Y, 1.0/v.Z) } // Vector3Clamp - Clamp the components of the vector between min and max values specified by the given vectors func Vector3Clamp(v Vector3, min Vector3, max Vector3) Vector3 { var result = Vector3{} result.X = float32(math.Min(float64(max.X), math.Max(float64(min.X), float64(v.X)))) result.Y = float32(math.Min(float64(max.Y), math.Max(float64(min.Y), float64(v.Y)))) result.Z = float32(math.Min(float64(max.Z), math.Max(float64(min.Z), float64(v.Z)))) return result } // Vector3ClampValue - Clamp the magnitude of the vector between two values func Vector3ClampValue(v Vector3, min float32, max float32) Vector3 { var result = v length := v.X*v.X + v.Y*v.Y + v.Z*v.Z if length > 0.0 { length = float32(math.Sqrt(float64(length))) if length < min { scale := min / length result.X = v.X * scale result.Y = v.Y * scale result.Z = v.Z * scale } else if length > max { scale := max / length result.X = v.X * scale result.Y = v.Y * scale result.Z = v.Z * scale } } return result } // Vector3Equals - Check whether two given vectors are almost equal func Vector3Equals(p Vector3, q Vector3) bool { return (math.Abs(float64(p.X-q.X)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.X)), math.Abs(float64(q.X)))) && math.Abs(float64(p.Y-q.Y)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Y)), math.Abs(float64(q.Y)))) && math.Abs(float64(p.Z-q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z))))) } // Vector3Refract - Compute the direction of a refracted ray // // v: normalized direction of the incoming ray // n: normalized normal vector of the interface of two optical media // r: ratio of the refractive index of the medium from where the ray comes to the refractive index of the medium on the other side of the surface func Vector3Refract(v Vector3, n Vector3, r float32) Vector3 { var result = Vector3{} dot := v.X*n.X + v.Y*n.Y + v.Z*n.Z d := 1.0 - r*r*(1.0-dot*dot) if d >= 0.0 { d = float32(math.Sqrt(float64(d))) v.X = r*v.X - (r*dot+d)*n.X v.Y = r*v.Y - (r*dot+d)*n.Y v.Z = r*v.Z - (r*dot+d)*n.Z result = v } return result } // Mat2Radians - Creates a matrix 2x2 from a given radians value func Mat2Radians(radians float32) Mat2 { c := float32(math.Cos(float64(radians))) s := float32(math.Sin(float64(radians))) return NewMat2(c, -s, s, c) } // Mat2Set - Set values from radians to a created matrix 2x2 func Mat2Set(matrix *Mat2, radians float32) { cos := float32(math.Cos(float64(radians))) sin := float32(math.Sin(float64(radians))) matrix.M00 = cos matrix.M01 = -sin matrix.M10 = sin matrix.M11 = cos } // Mat2Transpose - Returns the transpose of a given matrix 2x2 func Mat2Transpose(matrix Mat2) Mat2 { return NewMat2(matrix.M00, matrix.M10, matrix.M01, matrix.M11) } // Mat2MultiplyVector2 - Multiplies a vector by a matrix 2x2 func Mat2MultiplyVector2(matrix Mat2, vector Vector2) Vector2 { return NewVector2(matrix.M00*vector.X+matrix.M01*vector.Y, matrix.M10*vector.X+matrix.M11*vector.Y) } // MatrixDeterminant - Compute matrix determinant func MatrixDeterminant(mat Matrix) float32 { var result float32 a00 := mat.M0 a01 := mat.M1 a02 := mat.M2 a03 := mat.M3 a10 := mat.M4 a11 := mat.M5 a12 := mat.M6 a13 := mat.M7 a20 := mat.M8 a21 := mat.M9 a22 := mat.M10 a23 := mat.M11 a30 := mat.M12 a31 := mat.M13 a32 := mat.M14 a33 := mat.M15 result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33 return result } // MatrixTrace - Returns the trace of the matrix (sum of the values along the diagonal) func MatrixTrace(mat Matrix) float32 { return mat.M0 + mat.M5 + mat.M10 + mat.M15 } // MatrixTranspose - Transposes provided matrix func MatrixTranspose(mat Matrix) Matrix { var result Matrix result.M0 = mat.M0 result.M1 = mat.M4 result.M2 = mat.M8 result.M3 = mat.M12 result.M4 = mat.M1 result.M5 = mat.M5 result.M6 = mat.M9 result.M7 = mat.M13 result.M8 = mat.M2 result.M9 = mat.M6 result.M10 = mat.M10 result.M11 = mat.M14 result.M12 = mat.M3 result.M13 = mat.M7 result.M14 = mat.M11 result.M15 = mat.M15 return result } // MatrixInvert - Invert provided matrix func MatrixInvert(mat Matrix) Matrix { var result Matrix a00 := mat.M0 a01 := mat.M1 a02 := mat.M2 a03 := mat.M3 a10 := mat.M4 a11 := mat.M5 a12 := mat.M6 a13 := mat.M7 a20 := mat.M8 a21 := mat.M9 a22 := mat.M10 a23 := mat.M11 a30 := mat.M12 a31 := mat.M13 a32 := mat.M14 a33 := mat.M15 b00 := a00*a11 - a01*a10 b01 := a00*a12 - a02*a10 b02 := a00*a13 - a03*a10 b03 := a01*a12 - a02*a11 b04 := a01*a13 - a03*a11 b05 := a02*a13 - a03*a12 b06 := a20*a31 - a21*a30 b07 := a20*a32 - a22*a30 b08 := a20*a33 - a23*a30 b09 := a21*a32 - a22*a31 b10 := a21*a33 - a23*a31 b11 := a22*a33 - a23*a32 // Calculate the invert determinant (inlined to avoid double-caching) invDet := 1.0 / (b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06) result.M0 = (a11*b11 - a12*b10 + a13*b09) * invDet result.M1 = (-a01*b11 + a02*b10 - a03*b09) * invDet result.M2 = (a31*b05 - a32*b04 + a33*b03) * invDet result.M3 = (-a21*b05 + a22*b04 - a23*b03) * invDet result.M4 = (-a10*b11 + a12*b08 - a13*b07) * invDet result.M5 = (a00*b11 - a02*b08 + a03*b07) * invDet result.M6 = (-a30*b05 + a32*b02 - a33*b01) * invDet result.M7 = (a20*b05 - a22*b02 + a23*b01) * invDet result.M8 = (a10*b10 - a11*b08 + a13*b06) * invDet result.M9 = (-a00*b10 + a01*b08 - a03*b06) * invDet result.M10 = (a30*b04 - a31*b02 + a33*b00) * invDet result.M11 = (-a20*b04 + a21*b02 - a23*b00) * invDet result.M12 = (-a10*b09 + a11*b07 - a12*b06) * invDet result.M13 = (a00*b09 - a01*b07 + a02*b06) * invDet result.M14 = (-a30*b03 + a31*b01 - a32*b00) * invDet result.M15 = (a20*b03 - a21*b01 + a22*b00) * invDet return result } // MatrixIdentity - Returns identity matrix func MatrixIdentity() Matrix { return NewMatrix( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0) } // MatrixNormalize - Normalize provided matrix func MatrixNormalize(mat Matrix) Matrix { var result Matrix det := MatrixDeterminant(mat) result.M0 /= det result.M1 /= det result.M2 /= det result.M3 /= det result.M4 /= det result.M5 /= det result.M6 /= det result.M7 /= det result.M8 /= det result.M9 /= det result.M10 /= det result.M11 /= det result.M12 /= det result.M13 /= det result.M14 /= det result.M15 /= det return result } // MatrixAdd - Add two matrices func MatrixAdd(left, right Matrix) Matrix { result := MatrixIdentity() result.M0 = left.M0 + right.M0 result.M1 = left.M1 + right.M1 result.M2 = left.M2 + right.M2 result.M3 = left.M3 + right.M3 result.M4 = left.M4 + right.M4 result.M5 = left.M5 + right.M5 result.M6 = left.M6 + right.M6 result.M7 = left.M7 + right.M7 result.M8 = left.M8 + right.M8 result.M9 = left.M9 + right.M9 result.M10 = left.M10 + right.M10 result.M11 = left.M11 + right.M11 result.M12 = left.M12 + right.M12 result.M13 = left.M13 + right.M13 result.M14 = left.M14 + right.M14 result.M15 = left.M15 + right.M15 return result } // MatrixSubtract - Subtract two matrices (left - right) func MatrixSubtract(left, right Matrix) Matrix { result := MatrixIdentity() result.M0 = left.M0 - right.M0 result.M1 = left.M1 - right.M1 result.M2 = left.M2 - right.M2 result.M3 = left.M3 - right.M3 result.M4 = left.M4 - right.M4 result.M5 = left.M5 - right.M5 result.M6 = left.M6 - right.M6 result.M7 = left.M7 - right.M7 result.M8 = left.M8 - right.M8 result.M9 = left.M9 - right.M9 result.M10 = left.M10 - right.M10 result.M11 = left.M11 - right.M11 result.M12 = left.M12 - right.M12 result.M13 = left.M13 - right.M13 result.M14 = left.M14 - right.M14 result.M15 = left.M15 - right.M15 return result } // MatrixMultiply - Returns two matrix multiplication func MatrixMultiply(left, right Matrix) Matrix { var result Matrix result.M0 = left.M0*right.M0 + left.M1*right.M4 + left.M2*right.M8 + left.M3*right.M12 result.M1 = left.M0*right.M1 + left.M1*right.M5 + left.M2*right.M9 + left.M3*right.M13 result.M2 = left.M0*right.M2 + left.M1*right.M6 + left.M2*right.M10 + left.M3*right.M14 result.M3 = left.M0*right.M3 + left.M1*right.M7 + left.M2*right.M11 + left.M3*right.M15 result.M4 = left.M4*right.M0 + left.M5*right.M4 + left.M6*right.M8 + left.M7*right.M12 result.M5 = left.M4*right.M1 + left.M5*right.M5 + left.M6*right.M9 + left.M7*right.M13 result.M6 = left.M4*right.M2 + left.M5*right.M6 + left.M6*right.M10 + left.M7*right.M14 result.M7 = left.M4*right.M3 + left.M5*right.M7 + left.M6*right.M11 + left.M7*right.M15 result.M8 = left.M8*right.M0 + left.M9*right.M4 + left.M10*right.M8 + left.M11*right.M12 result.M9 = left.M8*right.M1 + left.M9*right.M5 + left.M10*right.M9 + left.M11*right.M13 result.M10 = left.M8*right.M2 + left.M9*right.M6 + left.M10*right.M10 + left.M11*right.M14 result.M11 = left.M8*right.M3 + left.M9*right.M7 + left.M10*right.M11 + left.M11*right.M15 result.M12 = left.M12*right.M0 + left.M13*right.M4 + left.M14*right.M8 + left.M15*right.M12 result.M13 = left.M12*right.M1 + left.M13*right.M5 + left.M14*right.M9 + left.M15*right.M13 result.M14 = left.M12*right.M2 + left.M13*right.M6 + left.M14*right.M10 + left.M15*right.M14 result.M15 = left.M12*right.M3 + left.M13*right.M7 + left.M14*right.M11 + left.M15*right.M15 return result } // MatrixTranslate - Returns translation matrix func MatrixTranslate(x, y, z float32) Matrix { return NewMatrix( 1.0, 0.0, 0.0, x, 0.0, 1.0, 0.0, y, 0.0, 0.0, 1.0, z, 0, 0, 0, 1.0) } // MatrixRotate - Returns rotation matrix for an angle around an specified axis (angle in radians) func MatrixRotate(axis Vector3, angle float32) Matrix { var result Matrix mat := MatrixIdentity() x := axis.X y := axis.Y z := axis.Z length := float32(math.Sqrt(float64(x*x + y*y + z*z))) if length != 1.0 && length != 0.0 { length = 1.0 / length x *= length y *= length z *= length } sinres := float32(math.Sin(float64(angle))) cosres := float32(math.Cos(float64(angle))) t := 1.0 - cosres // Cache some matrix values (speed optimization) a00 := mat.M0 a01 := mat.M1 a02 := mat.M2 a03 := mat.M3 a10 := mat.M4 a11 := mat.M5 a12 := mat.M6 a13 := mat.M7 a20 := mat.M8 a21 := mat.M9 a22 := mat.M10 a23 := mat.M11 // Construct the elements of the rotation matrix b00 := x*x*t + cosres b01 := y*x*t + z*sinres b02 := z*x*t - y*sinres b10 := x*y*t - z*sinres b11 := y*y*t + cosres b12 := z*y*t + x*sinres b20 := x*z*t + y*sinres b21 := y*z*t - x*sinres b22 := z*z*t + cosres // Perform rotation-specific matrix multiplication result.M0 = a00*b00 + a10*b01 + a20*b02 result.M1 = a01*b00 + a11*b01 + a21*b02 result.M2 = a02*b00 + a12*b01 + a22*b02 result.M3 = a03*b00 + a13*b01 + a23*b02 result.M4 = a00*b10 + a10*b11 + a20*b12 result.M5 = a01*b10 + a11*b11 + a21*b12 result.M6 = a02*b10 + a12*b11 + a22*b12 result.M7 = a03*b10 + a13*b11 + a23*b12 result.M8 = a00*b20 + a10*b21 + a20*b22 result.M9 = a01*b20 + a11*b21 + a21*b22 result.M10 = a02*b20 + a12*b21 + a22*b22 result.M11 = a03*b20 + a13*b21 + a23*b22 result.M12 = mat.M12 result.M13 = mat.M13 result.M14 = mat.M14 result.M15 = mat.M15 return result } // MatrixRotateX - Returns x-rotation matrix (angle in radians) func MatrixRotateX(angle float32) Matrix { result := MatrixIdentity() cosres := float32(math.Cos(float64(angle))) sinres := float32(math.Sin(float64(angle))) result.M5 = cosres result.M6 = -sinres result.M9 = sinres result.M10 = cosres return result } // MatrixRotateY - Returns y-rotation matrix (angle in radians) func MatrixRotateY(angle float32) Matrix { result := MatrixIdentity() cosres := float32(math.Cos(float64(angle))) sinres := float32(math.Sin(float64(angle))) result.M0 = cosres result.M2 = sinres result.M8 = -sinres result.M10 = cosres return result } // MatrixRotateZ - Returns z-rotation matrix (angle in radians) func MatrixRotateZ(angle float32) Matrix { result := MatrixIdentity() cosres := float32(math.Cos(float64(angle))) sinres := float32(math.Sin(float64(angle))) result.M0 = cosres result.M1 = -sinres result.M4 = sinres result.M5 = cosres return result } // MatrixRotateXYZ - Get xyz-rotation matrix (angles in radians) func MatrixRotateXYZ(ang Vector3) Matrix { result := MatrixIdentity() cosz := float32(math.Cos(float64(-ang.Z))) sinz := float32(math.Sin(float64(-ang.Z))) cosy := float32(math.Cos(float64(-ang.Y))) siny := float32(math.Sin(float64(-ang.Y))) cosx := float32(math.Cos(float64(-ang.X))) sinx := float32(math.Sin(float64(-ang.X))) result.M0 = cosz * cosy result.M4 = (cosz * siny * sinx) - (sinz * cosx) result.M8 = (cosz * siny * cosx) + (sinz * sinx) result.M1 = sinz * cosy result.M5 = (sinz * siny * sinx) + (cosz * cosx) result.M9 = (sinz * siny * cosx) - (cosz * sinx) result.M2 = -siny result.M6 = cosy * sinx result.M10 = cosy * cosx return result } // MatrixRotateZYX - Get zyx-rotation matrix // NOTE: Angle must be provided in radians func MatrixRotateZYX(angle Vector3) Matrix { var result = Matrix{} var cz = float32(math.Cos(float64(angle.Z))) var sz = float32(math.Sin(float64(angle.Z))) var cy = float32(math.Cos(float64(angle.Y))) var sy = float32(math.Sin(float64(angle.Y))) var cx = float32(math.Cos(float64(angle.X))) var sx = float32(math.Sin(float64(angle.X))) result.M0 = cz * cy result.M4 = cz*sy*sx - cx*sz result.M8 = sz*sx + cz*cx*sy result.M12 = float32(0) result.M1 = cy * sz result.M5 = cz*cx + sz*sy*sx result.M9 = cx*sz*sy - cz*sx result.M13 = float32(0) result.M2 = -sy result.M6 = cy * sx result.M10 = cy * cx result.M14 = float32(0) result.M3 = float32(0) result.M7 = float32(0) result.M11 = float32(0) result.M15 = float32(1) return result } // MatrixScale - Returns scaling matrix func MatrixScale(x, y, z float32) Matrix { result := NewMatrix( x, 0.0, 0.0, 0.0, 0.0, y, 0.0, 0.0, 0.0, 0.0, z, 0.0, 0.0, 0.0, 0.0, 1.0) return result } // MatrixFrustum - Returns perspective projection matrix func MatrixFrustum(left, right, bottom, top, near, far float32) Matrix { var result Matrix rl := right - left tb := top - bottom fn := far - near result.M0 = (near * 2.0) / rl result.M1 = 0.0 result.M2 = 0.0 result.M3 = 0.0 result.M4 = 0.0 result.M5 = (near * 2.0) / tb result.M6 = 0.0 result.M7 = 0.0 result.M8 = right + left/rl result.M9 = top + bottom/tb result.M10 = -(far + near) / fn result.M11 = -1.0 result.M12 = 0.0 result.M13 = 0.0 result.M14 = -(far * near * 2.0) / fn result.M15 = 0.0 return result } // MatrixPerspective - Returns perspective projection matrix func MatrixPerspective(fovy, aspect, near, far float32) Matrix { top := near * float32(math.Tan(float64(fovy*Pi)/360.0)) right := top * aspect return MatrixFrustum(-right, right, -top, top, near, far) } // MatrixOrtho - Returns orthographic projection matrix func MatrixOrtho(left, right, bottom, top, near, far float32) Matrix { var result Matrix rl := right - left tb := top - bottom fn := far - near result.M0 = 2.0 / rl result.M1 = 0.0 result.M2 = 0.0 result.M3 = 0.0 result.M4 = 0.0 result.M5 = 2.0 / tb result.M6 = 0.0 result.M7 = 0.0 result.M8 = 0.0 result.M9 = 0.0 result.M10 = -2.0 / fn result.M11 = 0.0 result.M12 = -(left + right) / rl result.M13 = -(top + bottom) / tb result.M14 = -(far + near) / fn result.M15 = 1.0 return result } // MatrixLookAt - Returns camera look-at matrix (view matrix) func MatrixLookAt(eye, target, up Vector3) Matrix { var result Matrix z := Vector3Subtract(eye, target) z = Vector3Normalize(z) x := Vector3CrossProduct(up, z) x = Vector3Normalize(x) y := Vector3CrossProduct(z, x) y = Vector3Normalize(y) result.M0 = x.X result.M1 = x.Y result.M2 = x.Z result.M3 = -((x.X * eye.X) + (x.Y * eye.Y) + (x.Z * eye.Z)) result.M4 = y.X result.M5 = y.Y result.M6 = y.Z result.M7 = -((y.X * eye.X) + (y.Y * eye.Y) + (y.Z * eye.Z)) result.M8 = z.X result.M9 = z.Y result.M10 = z.Z result.M11 = -((z.X * eye.X) + (z.Y * eye.Y) + (z.Z * eye.Z)) result.M12 = 0.0 result.M13 = 0.0 result.M14 = 0.0 result.M15 = 1.0 return result } // MatrixToFloatV - Get float array of matrix data func MatrixToFloatV(mat Matrix) [16]float32 { var result [16]float32 result[0] = mat.M0 result[1] = mat.M1 result[2] = mat.M2 result[3] = mat.M3 result[4] = mat.M4 result[5] = mat.M5 result[6] = mat.M6 result[7] = mat.M7 result[8] = mat.M8 result[9] = mat.M9 result[10] = mat.M10 result[11] = mat.M11 result[12] = mat.M12 result[13] = mat.M13 result[14] = mat.M14 result[15] = mat.M15 return result } // MatrixToFloat - Converts Matrix to float32 slice func MatrixToFloat(mat Matrix) []float32 { data := make([]float32, 16) data[0] = mat.M0 data[1] = mat.M4 data[2] = mat.M8 data[3] = mat.M12 data[4] = mat.M1 data[5] = mat.M5 data[6] = mat.M9 data[7] = mat.M13 data[8] = mat.M2 data[9] = mat.M6 data[10] = mat.M10 data[11] = mat.M14 data[12] = mat.M3 data[13] = mat.M7 data[14] = mat.M11 data[15] = mat.M15 return data } // QuaternionAdd - Add two quaternions func QuaternionAdd(q1 Quaternion, q2 Quaternion) Quaternion { var result = Quaternion{X: q1.X + q2.X, Y: q1.Y + q2.Y, Z: q1.Z + q2.Z, W: q1.W + q2.W} return result } // QuaternionAddValue - Add quaternion and float value func QuaternionAddValue(q Quaternion, add float32) Quaternion { var result = Quaternion{X: q.X + add, Y: q.Y + add, Z: q.Z + add, W: q.W + add} return result } // QuaternionSubtract - Subtract two quaternions func QuaternionSubtract(q1 Quaternion, q2 Quaternion) Quaternion { var result = Quaternion{X: q1.X - q2.X, Y: q1.Y - q2.Y, Z: q1.Z - q2.Z, W: q1.W - q2.W} return result } // QuaternionSubtractValue - Subtract quaternion and float value func QuaternionSubtractValue(q Quaternion, sub float32) Quaternion { var result = Quaternion{X: q.X - sub, Y: q.Y - sub, Z: q.Z - sub, W: q.W - sub} return result } // QuaternionIdentity - Get identity quaternion func QuaternionIdentity() Quaternion { var result = Quaternion{W: 1.0} return result } // QuaternionLength - Compute the length of a quaternion func QuaternionLength(quat Quaternion) float32 { return float32(math.Sqrt(float64(quat.X*quat.X + quat.Y*quat.Y + quat.Z*quat.Z + quat.W*quat.W))) } // QuaternionNormalize - Normalize provided quaternion func QuaternionNormalize(q Quaternion) Quaternion { result := q length := QuaternionLength(q) if length != 0.0 { result.X /= length result.Y /= length result.Z /= length result.W /= length } return result } // QuaternionInvert - Invert provided quaternion func QuaternionInvert(quat Quaternion) Quaternion { result := quat length := QuaternionLength(quat) lengthSq := length * length if lengthSq != 0.0 { i := 1.0 / lengthSq result.X *= -i result.Y *= -i result.Z *= -i result.W *= i } return result } // QuaternionMultiply - Calculate two quaternion multiplication func QuaternionMultiply(q1, q2 Quaternion) Quaternion { var result Quaternion qax := q1.X qay := q1.Y qaz := q1.Z qaw := q1.W qbx := q2.X qby := q2.Y qbz := q2.Z qbw := q2.W result.X = qax*qbw + qaw*qbx + qay*qbz - qaz*qby result.Y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz result.Z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx result.W = qaw*qbw - qax*qbx - qay*qby - qaz*qbz return result } // QuaternionScale - Scale quaternion by float value func QuaternionScale(q Quaternion, mul float32) Quaternion { var result = Quaternion{} result.X = q.X * mul result.Y = q.Y * mul result.Z = q.Z * mul result.W = q.W * mul return result } // QuaternionDivide - Divide two quaternions func QuaternionDivide(q1 Quaternion, q2 Quaternion) Quaternion { var result = Quaternion{X: q1.X / q2.X, Y: q1.Y / q2.Y, Z: q1.Z / q2.Z, W: q1.W / q2.W} return result } // QuaternionLerp - Calculate linear interpolation between two quaternions func QuaternionLerp(q1 Quaternion, q2 Quaternion, amount float32) Quaternion { var result = Quaternion{} result.X = q1.X + amount*(q2.X-q1.X) result.Y = q1.Y + amount*(q2.Y-q1.Y) result.Z = q1.Z + amount*(q2.Z-q1.Z) result.W = q1.W + amount*(q2.W-q1.W) return result } // QuaternionNlerp - Calculate slerp-optimized interpolation between two quaternions func QuaternionNlerp(q1 Quaternion, q2 Quaternion, amount float32) Quaternion { var result = Quaternion{} // QuaternionLerp(q1, q2, amount) result.X = q1.X + amount*(q2.X-q1.X) result.Y = q1.Y + amount*(q2.Y-q1.Y) result.Z = q1.Z + amount*(q2.Z-q1.Z) result.W = q1.W + amount*(q2.W-q1.W) // QuaternionNormalize(q); q := result length := float32(math.Sqrt(float64(q.X*q.X + q.Y*q.Y + q.Z*q.Z + q.W*q.W))) if length == 0.0 { length = 1.0 } ilength := 1.0 / length result.X = q.X * ilength result.Y = q.Y * ilength result.Z = q.Z * ilength result.W = q.W * ilength return result } // QuaternionSlerp - Calculates spherical linear interpolation between two quaternions func QuaternionSlerp(q1, q2 Quaternion, amount float32) Quaternion { var result Quaternion cosHalfTheta := q1.X*q2.X + q1.Y*q2.Y + q1.Z*q2.Z + q1.W*q2.W if math.Abs(float64(cosHalfTheta)) >= 1.0 { result = q1 } else { halfTheta := float32(math.Acos(float64(cosHalfTheta))) sinHalfTheta := float32(math.Sqrt(float64(1.0 - cosHalfTheta*cosHalfTheta))) if math.Abs(float64(sinHalfTheta)) < 0.001 { result.X = q1.X*0.5 + q2.X*0.5 result.Y = q1.Y*0.5 + q2.Y*0.5 result.Z = q1.Z*0.5 + q2.Z*0.5 result.W = q1.W*0.5 + q2.W*0.5 } else { ratioA := float32(math.Sin(float64((1-amount)*halfTheta))) / sinHalfTheta ratioB := float32(math.Sin(float64(amount*halfTheta))) / sinHalfTheta result.X = q1.X*ratioA + q2.X*ratioB result.Y = q1.Y*ratioA + q2.Y*ratioB result.Z = q1.Z*ratioA + q2.Z*ratioB result.W = q1.W*ratioA + q2.W*ratioB } } return result } // QuaternionFromVector3ToVector3 - Calculate quaternion based on the rotation from one vector to another func QuaternionFromVector3ToVector3(from Vector3, to Vector3) Quaternion { var result = Quaternion{} cos2Theta := from.X*to.X + from.Y*to.Y + from.Z*to.Z // Vector3DotProduct(from, to) cross := Vector3{X: from.Y*to.Z - from.Z*to.Y, Y: from.Z*to.X - from.X*to.Z, Z: from.X*to.Y - from.Y*to.X} // Vector3CrossProduct(from, to) result.X = cross.X result.Y = cross.Y result.Z = cross.Z result.W = 1.0 + cos2Theta // QuaternionNormalize(q); // NOTE: Normalize to essentially nlerp the original and identity to 0.5 q := result length := float32(math.Sqrt(float64(q.X*q.X + q.Y*q.Y + q.Z*q.Z + q.W*q.W))) if length == 0.0 { length = 1.0 } ilength := 1.0 / length result.X = q.X * ilength result.Y = q.Y * ilength result.Z = q.Z * ilength result.W = q.W * ilength return result } // QuaternionFromMatrix - Returns a quaternion for a given rotation matrix func QuaternionFromMatrix(matrix Matrix) Quaternion { var result Quaternion trace := MatrixTrace(matrix) if trace > 0.0 { s := float32(math.Sqrt(float64(trace+1)) * 2.0) invS := 1.0 / s result.W = s * 0.25 result.X = (matrix.M6 - matrix.M9) * invS result.Y = (matrix.M8 - matrix.M2) * invS result.Z = (matrix.M1 - matrix.M4) * invS } else { m00 := matrix.M0 m11 := matrix.M5 m22 := matrix.M10 if m00 > m11 && m00 > m22 { s := float32(math.Sqrt(float64(1.0+m00-m11-m22)) * 2.0) invS := 1.0 / s result.W = (matrix.M6 - matrix.M9) * invS result.X = s * 0.25 result.Y = (matrix.M4 + matrix.M1) * invS result.Z = (matrix.M8 + matrix.M2) * invS } else if m11 > m22 { s := float32(math.Sqrt(float64(1.0+m11-m00-m22)) * 2.0) invS := 1.0 / s result.W = (matrix.M8 - matrix.M2) * invS result.X = (matrix.M4 + matrix.M1) * invS result.Y = s * 0.25 result.Z = (matrix.M9 + matrix.M6) * invS } else { s := float32(math.Sqrt(float64(1.0+m22-m00-m11)) * 2.0) invS := 1.0 / s result.W = (matrix.M1 - matrix.M4) * invS result.X = (matrix.M8 + matrix.M2) * invS result.Y = (matrix.M9 + matrix.M6) * invS result.Z = s * 0.25 } } return result } // QuaternionToMatrix - Returns a matrix for a given quaternion func QuaternionToMatrix(q Quaternion) Matrix { var result Matrix x := q.X y := q.Y z := q.Z w := q.W x2 := x + x y2 := y + y z2 := z + z xx := x * x2 xy := x * y2 xz := x * z2 yy := y * y2 yz := y * z2 zz := z * z2 wx := w * x2 wy := w * y2 wz := w * z2 result.M0 = 1.0 - (yy + zz) result.M1 = xy - wz result.M2 = xz + wy result.M3 = 0.0 result.M4 = xy + wz result.M5 = 1.0 - (xx + zz) result.M6 = yz - wx result.M7 = 0.0 result.M8 = xz - wy result.M9 = yz + wx result.M10 = 1.0 - (xx + yy) result.M11 = 0.0 result.M12 = 0.0 result.M13 = 0.0 result.M14 = 0.0 result.M15 = 1.0 return result } // QuaternionFromAxisAngle - Returns rotation quaternion for an angle and axis func QuaternionFromAxisAngle(axis Vector3, angle float32) Quaternion { result := NewQuaternion(0.0, 0.0, 0.0, 1.0) if Vector3Length(axis) != 0.0 { angle *= 0.5 } axis = Vector3Normalize(axis) sinres := float32(math.Sin(float64(angle))) cosres := float32(math.Cos(float64(angle))) result.X = axis.X * sinres result.Y = axis.Y * sinres result.Z = axis.Z * sinres result.W = cosres result = QuaternionNormalize(result) return result } // QuaternionToAxisAngle - Returns the rotation angle and axis for a given quaternion func QuaternionToAxisAngle(q Quaternion, outAxis *Vector3, outAngle *float32) { if math.Abs(float64(q.W)) > 1.0 { q = QuaternionNormalize(q) } resAxis := NewVector3(0.0, 0.0, 0.0) resAngle := 2.0 * float32(math.Acos(float64(q.W))) den := float32(math.Sqrt(float64(1.0 - q.W*q.W))) if den > 0.0001 { resAxis.X = q.X / den resAxis.Y = q.Y / den resAxis.Z = q.Z / den } else { // This occurs when the angle is zero. // Not a problem: just set an arbitrary normalized axis. resAxis.X = 1.0 } *outAxis = resAxis *outAngle = resAngle } // QuaternionFromEuler - Get the quaternion equivalent to Euler angles // NOTE: Rotation order is ZYX func QuaternionFromEuler(pitch, yaw, roll float32) Quaternion { var result Quaternion x0 := float32(math.Cos(float64(pitch * 0.5))) x1 := float32(math.Sin(float64(pitch * 0.5))) y0 := float32(math.Cos(float64(yaw * 0.5))) y1 := float32(math.Sin(float64(yaw * 0.5))) z0 := float32(math.Cos(float64(roll * 0.5))) z1 := float32(math.Sin(float64(roll * 0.5))) result.X = x1*y0*z0 - x0*y1*z1 result.Y = x0*y1*z0 + x1*y0*z1 result.Z = x0*y0*z1 - x1*y1*z0 result.W = x0*y0*z0 + x1*y1*z1 return result } // QuaternionToEuler - Get the Euler angles equivalent to quaternion (roll, pitch, yaw) // NOTE: Angles are returned in a Vector3 struct in radians func QuaternionToEuler(q Quaternion) Vector3 { var result Vector3 // Roll (x-axis rotation) x0 := 2.0 * (q.W*q.X + q.Y*q.Z) x1 := 1.0 - 2.0*(q.X*q.X+q.Y*q.Y) result.X = float32(math.Atan2(float64(x0), float64(x1))) // Pitch (y-axis rotation) y0 := 2.0 * (q.W*q.Y - q.Z*q.X) y0 = Clamp(y0, -1.0, 1.0) result.Y = float32(math.Asin(float64(y0))) // Yaw (z-axis rotation) z0 := 2.0 * (q.W*q.Z + q.X*q.Y) z1 := 1.0 - 2.0*(q.Y*q.Y+q.Z*q.Z) result.Z = float32(math.Atan2(float64(z0), float64(z1))) return result } // QuaternionTransform - Transform a quaternion given a transformation matrix func QuaternionTransform(q Quaternion, mat Matrix) Quaternion { var result Quaternion x := q.X y := q.Y z := q.Z w := q.W result.X = mat.M0*x + mat.M4*y + mat.M8*z + mat.M12*w result.Y = mat.M1*x + mat.M5*y + mat.M9*z + mat.M13*w result.Z = mat.M2*x + mat.M6*y + mat.M10*z + mat.M14*w result.W = mat.M3*x + mat.M7*y + mat.M11*z + mat.M15*w return result } // QuaternionEquals - Check whether two given quaternions are almost equal func QuaternionEquals(p, q Quaternion) bool { return (math.Abs(float64(p.X-q.X)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.X)), math.Abs(float64(q.X)))) && math.Abs(float64(p.Y-q.Y)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Y)), math.Abs(float64(q.Y)))) && math.Abs(float64(p.Z-q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z)))) && math.Abs(float64(p.W-q.W)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.W)), math.Abs(float64(q.W)))) || math.Abs(float64(p.X+q.X)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.X)), math.Abs(float64(q.X)))) && math.Abs(float64(p.Y+q.Y)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Y)), math.Abs(float64(q.Y)))) && math.Abs(float64(p.Z+q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z)))) && math.Abs(float64(p.W+q.W)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.W)), math.Abs(float64(q.W))))) }