Merge pull request #438 from anasrar/master

feat(raymath): `MatrixDecompose`
This commit is contained in:
Milan Nikolic 2024-10-24 08:05:13 +02:00 committed by GitHub
commit f2ab1b0c35
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 108 additions and 0 deletions

View file

@ -1792,3 +1792,56 @@ func QuaternionEquals(p, q Quaternion) bool {
math.Abs(float64(p.Z+q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z)))) && math.Abs(float64(p.Z+q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z)))) &&
math.Abs(float64(p.W+q.W)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.W)), math.Abs(float64(q.W))))) math.Abs(float64(p.W+q.W)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.W)), math.Abs(float64(q.W)))))
} }
// MatrixDecompose - Decompose a transformation matrix into its rotational, translational and scaling components
func MatrixDecompose(mat Matrix, translation *Vector3, rotation *Quaternion, scale *Vector3) {
// Extract translation.
translation.X = mat.M12
translation.Y = mat.M13
translation.Z = mat.M14
// Extract upper-left for determinant computation
a := mat.M0
b := mat.M4
c := mat.M8
d := mat.M1
e := mat.M5
f := mat.M9
g := mat.M2
h := mat.M6
i := mat.M10
A := e*i - f*h
B := f*g - d*i
C := d*h - e*g
// Extract scale
det := a*A + b*B + c*C
abc := NewVector3(a, b, c)
def := NewVector3(d, e, f)
ghi := NewVector3(g, h, i)
scalex := Vector3Length(abc)
scaley := Vector3Length(def)
scalez := Vector3Length(ghi)
s := NewVector3(scalex, scaley, scalez)
if det < 0 {
s = Vector3Negate(s)
}
*scale = s
// Remove scale from the matrix if it is not close to zero
clone := mat
if !FloatEquals(det, 0) {
clone.M0 /= s.X
clone.M5 /= s.Y
clone.M10 /= s.Z
// Extract rotation
*rotation = QuaternionFromMatrix(clone)
} else {
// Set to identity if close to zero
*rotation = QuaternionIdentity()
}
}

View file

@ -2524,4 +2524,59 @@ RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
return result; return result;
} }
// Decompose a transformation matrix into its rotational, translational and scaling components
RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
{
// Extract translation.
translation->x = mat.m12;
translation->y = mat.m13;
translation->z = mat.m14;
// Extract upper-left for determinant computation
const float a = mat.m0;
const float b = mat.m4;
const float c = mat.m8;
const float d = mat.m1;
const float e = mat.m5;
const float f = mat.m9;
const float g = mat.m2;
const float h = mat.m6;
const float i = mat.m10;
const float A = e*i - f*h;
const float B = f*g - d*i;
const float C = d*h - e*g;
// Extract scale
const float det = a*A + b*B + c*C;
Vector3 abc = { a, b, c };
Vector3 def = { d, e, f };
Vector3 ghi = { g, h, i };
float scalex = Vector3Length(abc);
float scaley = Vector3Length(def);
float scalez = Vector3Length(ghi);
Vector3 s = { scalex, scaley, scalez };
if (det < 0) s = Vector3Negate(s);
*scale = s;
// Remove scale from the matrix if it is not close to zero
Matrix clone = mat;
if (!FloatEquals(det, 0))
{
clone.m0 /= s.x;
clone.m5 /= s.y;
clone.m10 /= s.z;
// Extract rotation
*rotation = QuaternionFromMatrix(clone);
}
else
{
// Set to identity if close to zero
*rotation = QuaternionIdentity();
}
}
#endif // RAYMATH_H #endif // RAYMATH_H