raymath.h updated (not really required, because it has been rewritten in go)
This commit is contained in:
parent
3b4a7104e2
commit
f293ef1482
1 changed files with 379 additions and 20 deletions
399
raylib/raymath.h
399
raylib/raymath.h
|
@ -1,6 +1,6 @@
|
|||
/**********************************************************************************************
|
||||
*
|
||||
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
|
||||
* raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
|
||||
*
|
||||
* CONVENTIONS:
|
||||
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
|
||||
|
@ -12,7 +12,7 @@
|
|||
* - Functions are always self-contained, no function use another raymath function inside,
|
||||
* required code is directly re-implemented inside
|
||||
* - Functions input parameters are always received by value (2 unavoidable exceptions)
|
||||
* - Functions use always a "result" variable for return
|
||||
* - Functions use always a "result" variable for return (except C++ operators)
|
||||
* - Functions are always defined inline
|
||||
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
|
||||
* - No compound literals used to make sure libray is compatible with C++
|
||||
|
@ -27,6 +27,8 @@
|
|||
* Define static inline functions code, so #include header suffices for use.
|
||||
* This may use up lots of memory.
|
||||
*
|
||||
* #define RAYMATH_DISABLE_CPP_OPERATORS
|
||||
* Disables C++ operator overloads for raymath types.
|
||||
*
|
||||
* LICENSE: zlib/libpng
|
||||
*
|
||||
|
@ -77,6 +79,7 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
|
@ -174,7 +177,7 @@ typedef struct float16 {
|
|||
// Clamp float value
|
||||
RMAPI float Clamp(float value, float min, float max)
|
||||
{
|
||||
float result = (value < min) ? min : value;
|
||||
float result = (value < min)? min : value;
|
||||
|
||||
if (result > max) result = max;
|
||||
|
||||
|
@ -961,12 +964,12 @@ RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vect
|
|||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float amountPow2 = amount * amount;
|
||||
float amountPow3 = amount * amount * amount;
|
||||
float amountPow2 = amount*amount;
|
||||
float amountPow3 = amount*amount*amount;
|
||||
|
||||
result.x = (2 * amountPow3 - 3 * amountPow2 + 1) * v1.x + (amountPow3 - 2 * amountPow2 + amount) * tangent1.x + (-2 * amountPow3 + 3 * amountPow2) * v2.x + (amountPow3 - amountPow2) * tangent2.x;
|
||||
result.y = (2 * amountPow3 - 3 * amountPow2 + 1) * v1.y + (amountPow3 - 2 * amountPow2 + amount) * tangent1.y + (-2 * amountPow3 + 3 * amountPow2) * v2.y + (amountPow3 - amountPow2) * tangent2.y;
|
||||
result.z = (2 * amountPow3 - 3 * amountPow2 + 1) * v1.z + (amountPow3 - 2 * amountPow2 + amount) * tangent1.z + (-2 * amountPow3 + 3 * amountPow2) * v2.z + (amountPow3 - amountPow2) * tangent2.z;
|
||||
result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
|
||||
result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
|
||||
result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -1836,32 +1839,32 @@ RMAPI Matrix MatrixScale(float x, float y, float z)
|
|||
}
|
||||
|
||||
// Get perspective projection matrix
|
||||
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
|
||||
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
|
||||
{
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (float)(right - left);
|
||||
float tb = (float)(top - bottom);
|
||||
float fn = (float)(far - near);
|
||||
float fn = (float)(farPlane - nearPlane);
|
||||
|
||||
result.m0 = ((float)near*2.0f)/rl;
|
||||
result.m0 = ((float)nearPlane*2.0f)/rl;
|
||||
result.m1 = 0.0f;
|
||||
result.m2 = 0.0f;
|
||||
result.m3 = 0.0f;
|
||||
|
||||
result.m4 = 0.0f;
|
||||
result.m5 = ((float)near*2.0f)/tb;
|
||||
result.m5 = ((float)nearPlane*2.0f)/tb;
|
||||
result.m6 = 0.0f;
|
||||
result.m7 = 0.0f;
|
||||
|
||||
result.m8 = ((float)right + (float)left)/rl;
|
||||
result.m9 = ((float)top + (float)bottom)/tb;
|
||||
result.m10 = -((float)far + (float)near)/fn;
|
||||
result.m10 = -((float)farPlane + (float)nearPlane)/fn;
|
||||
result.m11 = -1.0f;
|
||||
|
||||
result.m12 = 0.0f;
|
||||
result.m13 = 0.0f;
|
||||
result.m14 = -((float)far*(float)near*2.0f)/fn;
|
||||
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
|
||||
result.m15 = 0.0f;
|
||||
|
||||
return result;
|
||||
|
@ -2217,12 +2220,12 @@ RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
|||
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
|
||||
RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
|
||||
{
|
||||
float t2 = t * t;
|
||||
float t3 = t2 * t;
|
||||
float h00 = 2 * t3 - 3 * t2 + 1;
|
||||
float h10 = t3 - 2 * t2 + t;
|
||||
float h01 = -2 * t3 + 3 * t2;
|
||||
float h11 = t3 - t2;
|
||||
float t2 = t*t;
|
||||
float t3 = t2*t;
|
||||
float h00 = 2*t3 - 3*t2 + 1;
|
||||
float h10 = t3 - 2*t2 + t;
|
||||
float h01 = -2*t3 + 3*t2;
|
||||
float h11 = t3 - t2;
|
||||
|
||||
Quaternion p0 = QuaternionScale(q1, h00);
|
||||
Quaternion m0 = QuaternionScale(outTangent1, h10);
|
||||
|
@ -2566,7 +2569,13 @@ RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotatio
|
|||
if (!FloatEquals(det, 0))
|
||||
{
|
||||
clone.m0 /= s.x;
|
||||
clone.m4 /= s.x;
|
||||
clone.m8 /= s.x;
|
||||
clone.m1 /= s.y;
|
||||
clone.m5 /= s.y;
|
||||
clone.m9 /= s.y;
|
||||
clone.m2 /= s.z;
|
||||
clone.m6 /= s.z;
|
||||
clone.m10 /= s.z;
|
||||
|
||||
// Extract rotation
|
||||
|
@ -2579,4 +2588,354 @@ RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotatio
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS)
|
||||
|
||||
// Optional C++ math operators
|
||||
//-------------------------------------------------------------------------------
|
||||
|
||||
// Vector2 operators
|
||||
static constexpr Vector2 Vector2Zeros = { 0, 0 };
|
||||
static constexpr Vector2 Vector2Ones = { 1, 1 };
|
||||
static constexpr Vector2 Vector2UnitX = { 1, 0 };
|
||||
static constexpr Vector2 Vector2UnitY = { 0, 1 };
|
||||
|
||||
inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const float& rhs)
|
||||
{
|
||||
return Vector2Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator *= (Vector2& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector2Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs)
|
||||
{
|
||||
return Vector2Transform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator -= (Vector2& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = Vector2Transform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator / (const Vector2& lhs, const float& rhs)
|
||||
{
|
||||
return Vector2Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector2Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y);
|
||||
}
|
||||
|
||||
// Vector3 operators
|
||||
static constexpr Vector3 Vector3Zeros = { 0, 0, 0 };
|
||||
static constexpr Vector3 Vector3Ones = { 1, 1, 1 };
|
||||
static constexpr Vector3 Vector3UnitX = { 1, 0, 0 };
|
||||
static constexpr Vector3 Vector3UnitY = { 0, 1, 0 };
|
||||
static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 };
|
||||
|
||||
inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const float& rhs)
|
||||
{
|
||||
return Vector3Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator *= (Vector3& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector3Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs)
|
||||
{
|
||||
return Vector3Transform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator -= (Vector3& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = Vector3Transform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator / (const Vector3& lhs, const float& rhs)
|
||||
{
|
||||
return Vector3Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector3Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z);
|
||||
}
|
||||
|
||||
// Vector4 operators
|
||||
static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 };
|
||||
static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 };
|
||||
static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 };
|
||||
static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 };
|
||||
static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 };
|
||||
static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 };
|
||||
|
||||
inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator * (const Vector4& lhs, const float& rhs)
|
||||
{
|
||||
return Vector4Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator *= (Vector4& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector4Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator / (const Vector4& lhs, const float& rhs)
|
||||
{
|
||||
return Vector4Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector4Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w);
|
||||
}
|
||||
|
||||
// Quaternion operators
|
||||
static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 };
|
||||
static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 };
|
||||
static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 };
|
||||
|
||||
inline Quaternion operator + (const Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
return QuaternionAddValue(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator += (Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
lhs = QuaternionAddValue(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Quaternion operator - (const Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
return QuaternionSubtractValue(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
lhs = QuaternionSubtractValue(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs)
|
||||
{
|
||||
return QuaternionTransform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = QuaternionTransform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
// Matrix operators
|
||||
inline Matrix operator + (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixAdd(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixAdd(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Matrix operator - (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixSubtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixSubtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Matrix operator * (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixMultiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixMultiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
//-------------------------------------------------------------------------------
|
||||
#endif // C++ operators
|
||||
|
||||
#endif // RAYMATH_H
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue