Update C sources

This commit is contained in:
JupiterRider 2023-04-07 20:23:18 +02:00
parent 22ca1484d1
commit 781c207678
27 changed files with 13963 additions and 4637 deletions

View file

@ -1,8 +1,6 @@
/*******************************************************************************************
*
* rcamera - Basic camera system for multiple camera modes
*
* NOTE: Memory footprint of this library is aproximately 52 bytes (global variables)
* rcamera - Basic camera system with support for multiple camera modes
*
* CONFIGURATION:
*
@ -17,12 +15,13 @@
*
* CONTRIBUTORS:
* Ramon Santamaria: Supervision, review, update and maintenance
* Christoph Wagner: Complete redesign, using raymath (2022)
* Marc Palau: Initial implementation (2014)
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2015-2022 Ramon Santamaria (@raysan5)
* Copyright (c) 2022-2023 Christoph Wagner (@Crydsch) & Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
@ -47,24 +46,35 @@
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
//...
// Function specifiers definition
#ifndef RLAPI
#define RLAPI // Functions defined as 'extern' by default (implicit specifiers)
#endif
#if defined(CAMERA_STANDALONE)
#define CAMERA_CULL_DISTANCE_NEAR 0.01
#define CAMERA_CULL_DISTANCE_FAR 1000.0
#else
#define CAMERA_CULL_DISTANCE_NEAR RL_CULL_DISTANCE_NEAR
#define CAMERA_CULL_DISTANCE_FAR RL_CULL_DISTANCE_FAR
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for CAMERA_STANDALONE usage
//----------------------------------------------------------------------------------
#if defined(CAMERA_STANDALONE)
// Vector2 type
// Vector2, 2 components
typedef struct Vector2 {
float x;
float y;
float x; // Vector x component
float y; // Vector y component
} Vector2;
// Vector3 type
// Vector3, 3 components
typedef struct Vector3 {
float x;
float y;
float z;
float x; // Vector x component
float y; // Vector y component
float z; // Vector z component
} Vector3;
// Camera type, defines a camera position/orientation in 3d space
@ -73,25 +83,25 @@
Vector3 target; // Camera target it looks-at
Vector3 up; // Camera up vector (rotation over its axis)
float fovy; // Camera field-of-view apperture in Y (degrees) in perspective, used as near plane width in orthographic
int type; // Camera type, defines projection type: CAMERA_PERSPECTIVE or CAMERA_ORTHOGRAPHIC
int projection; // Camera projection type: CAMERA_PERSPECTIVE or CAMERA_ORTHOGRAPHIC
} Camera3D;
typedef Camera3D Camera; // Camera type fallback, defaults to Camera3D
// Camera projection
typedef enum {
CAMERA_PERSPECTIVE = 0, // Perspective projection
CAMERA_ORTHOGRAPHIC // Orthographic projection
} CameraProjection;
// Camera system modes
typedef enum {
CAMERA_CUSTOM = 0,
CAMERA_FREE,
CAMERA_ORBITAL,
CAMERA_FIRST_PERSON,
CAMERA_THIRD_PERSON
CAMERA_CUSTOM = 0, // Camera custom, controlled by user (UpdateCamera() does nothing)
CAMERA_FREE, // Camera free mode
CAMERA_ORBITAL, // Camera orbital, around target, zoom supported
CAMERA_FIRST_PERSON, // Camera first person
CAMERA_THIRD_PERSON // Camera third person
} CameraMode;
// Camera projection modes
typedef enum {
CAMERA_PERSPECTIVE = 0,
CAMERA_ORTHOGRAPHIC
} CameraProjection;
#endif
//----------------------------------------------------------------------------------
@ -107,17 +117,23 @@
extern "C" { // Prevents name mangling of functions
#endif
#if defined(CAMERA_STANDALONE)
void SetCameraMode(Camera camera, int mode); // Set camera mode (multiple camera modes available)
void UpdateCamera(Camera *camera); // Update camera position for selected mode
RLAPI Vector3 GetCameraForward(Camera *camera);
RLAPI Vector3 GetCameraUp(Camera *camera);
RLAPI Vector3 GetCameraRight(Camera *camera);
void SetCameraPanControl(int keyPan); // Set camera pan key to combine with mouse movement (free camera)
void SetCameraAltControl(int keyAlt); // Set camera alt key to combine with mouse movement (free camera)
void SetCameraSmoothZoomControl(int szoomKey); // Set camera smooth zoom key to combine with mouse (free camera)
void SetCameraMoveControls(int keyFront, int keyBack,
int keyRight, int keyLeft,
int keyUp, int keyDown); // Set camera move controls (1st person and 3rd person cameras)
#endif
// Camera movement
RLAPI void CameraMoveForward(Camera *camera, float distance, bool moveInWorldPlane);
RLAPI void CameraMoveUp(Camera *camera, float distance);
RLAPI void CameraMoveRight(Camera *camera, float distance, bool moveInWorldPlane);
RLAPI void CameraMoveToTarget(Camera *camera, float delta);
// Camera rotation
RLAPI void CameraYaw(Camera *camera, float angle, bool rotateAroundTarget);
RLAPI void CameraPitch(Camera *camera, float angle, bool lockView, bool rotateAroundTarget, bool rotateUp);
RLAPI void CameraRoll(Camera *camera, float angle);
RLAPI Matrix GetCameraViewMatrix(Camera *camera);
RLAPI Matrix GetCameraProjectionMatrix(Camera* camera, float aspect);
#if defined(__cplusplus)
}
@ -134,425 +150,355 @@ void SetCameraMoveControls(int keyFront, int keyBack,
#if defined(CAMERA_IMPLEMENTATION)
#include <math.h> // Required for: sinf(), cosf(), sqrtf()
#include "raymath.h" // Required for vector maths:
// Vector3Add()
// Vector3Subtract()
// Vector3Scale()
// Vector3Normalize()
// Vector3Distance()
// Vector3CrossProduct()
// Vector3RotateByAxisAngle()
// Vector3Angle()
// Vector3Negate()
// MatrixLookAt()
// MatrixPerspective()
// MatrixOrtho()
// MatrixIdentity()
// raylib required functionality:
// GetMouseDelta()
// GetMouseWheelMove()
// IsKeyDown()
// IsKeyPressed()
// GetFrameTime()
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PI
#define PI 3.14159265358979323846
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI/180.0f)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0f/PI)
#endif
#define CAMERA_MOVE_SPEED 0.09f
#define CAMERA_ROTATION_SPEED 0.03f
// Camera mouse movement sensitivity
#define CAMERA_MOUSE_MOVE_SENSITIVITY 0.5f // TODO: it should be independant of framerate
#define CAMERA_MOUSE_MOVE_SENSITIVITY 0.003f // TODO: it should be independant of framerate
#define CAMERA_MOUSE_SCROLL_SENSITIVITY 1.5f
// FREE_CAMERA
#define CAMERA_FREE_MOUSE_SENSITIVITY 0.01f
#define CAMERA_FREE_DISTANCE_MIN_CLAMP 0.3f
#define CAMERA_FREE_DISTANCE_MAX_CLAMP 120.0f
#define CAMERA_FREE_MIN_CLAMP 85.0f
#define CAMERA_FREE_MAX_CLAMP -85.0f
#define CAMERA_FREE_SMOOTH_ZOOM_SENSITIVITY 0.05f
#define CAMERA_FREE_PANNING_DIVIDER 5.1f
// ORBITAL_CAMERA
#define CAMERA_ORBITAL_SPEED 0.5f // Radians per second
// FIRST_PERSON
//#define CAMERA_FIRST_PERSON_MOUSE_SENSITIVITY 0.003f
#define CAMERA_FIRST_PERSON_FOCUS_DISTANCE 25.0f
#define CAMERA_FIRST_PERSON_MIN_CLAMP 89.0f
#define CAMERA_FIRST_PERSON_MAX_CLAMP -89.0f
// When walking, y-position of the player moves up-down at step frequency (swinging) but
// also the body slightly tilts left-right on every step, when all the body weight is left over one foot (tilting)
#define CAMERA_FIRST_PERSON_STEP_FREQUENCY 1.8f // Step frequency when walking (steps per second)
#define CAMERA_FIRST_PERSON_SWINGING_DELTA 0.03f // Maximum up-down swinging distance when walking
#define CAMERA_FIRST_PERSON_TILTING_DELTA 0.005f // Maximum left-right tilting distance when walking
// THIRD_PERSON
//#define CAMERA_THIRD_PERSON_MOUSE_SENSITIVITY 0.003f
#define CAMERA_THIRD_PERSON_DISTANCE_CLAMP 1.2f
#define CAMERA_THIRD_PERSON_MIN_CLAMP 5.0f
#define CAMERA_THIRD_PERSON_MAX_CLAMP -85.0f
#define CAMERA_THIRD_PERSON_OFFSET (Vector3){ 0.4f, 0.0f, 0.0f }
#define CAMERA_FIRST_PERSON_STEP_TRIGONOMETRIC_DIVIDER 8.0f
#define CAMERA_FIRST_PERSON_STEP_DIVIDER 30.0f
#define CAMERA_FIRST_PERSON_WAVING_DIVIDER 200.0f
// PLAYER (used by camera)
#define PLAYER_MOVEMENT_SENSITIVITY 2.0f
#define PLAYER_MOVEMENT_SENSITIVITY 20.0f
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Camera move modes (first person and third person cameras)
typedef enum {
MOVE_FRONT = 0,
MOVE_BACK,
MOVE_RIGHT,
MOVE_LEFT,
MOVE_UP,
MOVE_DOWN
} CameraMove;
// Camera global state context data [56 bytes]
typedef struct {
unsigned int mode; // Current camera mode
float targetDistance; // Camera distance from position to target
float playerEyesPosition; // Player eyes position from ground (in meters)
Vector2 angle; // Camera angle in plane XZ
// Camera movement control keys
int moveControl[6]; // Move controls (CAMERA_FIRST_PERSON)
int smoothZoomControl; // Smooth zoom control key
int altControl; // Alternative control key
int panControl; // Pan view control key
} CameraData;
//...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static CameraData CAMERA = { // Global CAMERA state context
.mode = 0,
.targetDistance = 0,
.playerEyesPosition = 1.85f,
.angle = { 0 },
.moveControl = { 'W', 'S', 'D', 'A', 'E', 'Q' },
.smoothZoomControl = 341, // raylib: KEY_LEFT_CONTROL
.altControl = 342, // raylib: KEY_LEFT_ALT
.panControl = 2 // raylib: MOUSE_BUTTON_MIDDLE
};
//...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(CAMERA_STANDALONE)
// NOTE: Camera controls depend on some raylib input functions
static void EnableCursor() {} // Unlock cursor
static void DisableCursor() {} // Lock cursor
static int IsKeyDown(int key) { return 0; }
static int IsMouseButtonDown(int button) { return 0;}
static float GetMouseWheelMove() { return 0.0f; }
static Vector2 GetMousePosition() { return (Vector2){ 0.0f, 0.0f }; }
#endif
//...
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Select camera mode (multiple camera modes available)
void SetCameraMode(Camera camera, int mode)
// Returns the cameras forward vector (normalized)
Vector3 GetCameraForward(Camera *camera)
{
Vector3 v1 = camera.position;
Vector3 v2 = camera.target;
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
float dz = v2.z - v1.z;
CAMERA.targetDistance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance to target
// Camera angle calculation
CAMERA.angle.x = atan2f(dx, dz); // Camera angle in plane XZ (0 aligned with Z, move positive CCW)
CAMERA.angle.y = atan2f(dy, sqrtf(dx*dx + dz*dz)); // Camera angle in plane XY (0 aligned with X, move positive CW)
CAMERA.playerEyesPosition = camera.position.y; // Init player eyes position to camera Y position
// Lock cursor for first person and third person cameras
if ((mode == CAMERA_FIRST_PERSON) || (mode == CAMERA_THIRD_PERSON)) DisableCursor();
else EnableCursor();
CAMERA.mode = mode;
return Vector3Normalize(Vector3Subtract(camera->target, camera->position));
}
// Update camera depending on selected mode
// NOTE: Camera controls depend on some raylib functions:
// System: EnableCursor(), DisableCursor()
// Mouse: IsMouseButtonDown(), GetMousePosition(), GetMouseWheelMove()
// Keys: IsKeyDown()
void UpdateCamera(Camera *camera)
// Returns the cameras up vector (normalized)
// Note: The up vector might not be perpendicular to the forward vector
Vector3 GetCameraUp(Camera *camera)
{
static float swingCounter = 0.0f; // Used for 1st person swinging movement
return Vector3Normalize(camera->up);
}
// TODO: Compute CAMERA.targetDistance and CAMERA.angle here (?)
// Returns the cameras right vector (normalized)
Vector3 GetCameraRight(Camera *camera)
{
Vector3 forward = GetCameraForward(camera);
Vector3 up = GetCameraUp(camera);
// Mouse movement detection
Vector2 mousePositionDelta = GetMouseDelta();
float mouseWheelMove = GetMouseWheelMove();
return Vector3CrossProduct(forward, up);
}
// Keys input detection
// TODO: Input detection is raylib-dependant, it could be moved outside the module
bool keyPan = IsMouseButtonDown(CAMERA.panControl);
bool keyAlt = IsKeyDown(CAMERA.altControl);
bool szoomKey = IsKeyDown(CAMERA.smoothZoomControl);
bool direction[6] = { IsKeyDown(CAMERA.moveControl[MOVE_FRONT]),
IsKeyDown(CAMERA.moveControl[MOVE_BACK]),
IsKeyDown(CAMERA.moveControl[MOVE_RIGHT]),
IsKeyDown(CAMERA.moveControl[MOVE_LEFT]),
IsKeyDown(CAMERA.moveControl[MOVE_UP]),
IsKeyDown(CAMERA.moveControl[MOVE_DOWN]) };
// Moves the camera in its forward direction
void CameraMoveForward(Camera *camera, float distance, bool moveInWorldPlane)
{
Vector3 forward = GetCameraForward(camera);
// Support for multiple automatic camera modes
// NOTE: In case of CAMERA_CUSTOM nothing happens here, user must update it manually
switch (CAMERA.mode)
if (moveInWorldPlane)
{
case CAMERA_FREE: // Camera free controls, using standard 3d-content-creation scheme
{
// Camera zoom
if ((CAMERA.targetDistance < CAMERA_FREE_DISTANCE_MAX_CLAMP) && (mouseWheelMove < 0))
{
CAMERA.targetDistance -= (mouseWheelMove*CAMERA_MOUSE_SCROLL_SENSITIVITY);
if (CAMERA.targetDistance > CAMERA_FREE_DISTANCE_MAX_CLAMP) CAMERA.targetDistance = CAMERA_FREE_DISTANCE_MAX_CLAMP;
}
// Project vector onto world plane
forward.y = 0;
forward = Vector3Normalize(forward);
}
// Camera looking down
else if ((camera->position.y > camera->target.y) && (CAMERA.targetDistance == CAMERA_FREE_DISTANCE_MAX_CLAMP) && (mouseWheelMove < 0))
{
camera->target.x += mouseWheelMove*(camera->target.x - camera->position.x)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.y += mouseWheelMove*(camera->target.y - camera->position.y)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.z += mouseWheelMove*(camera->target.z - camera->position.z)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
}
else if ((camera->position.y > camera->target.y) && (camera->target.y >= 0))
{
camera->target.x += mouseWheelMove*(camera->target.x - camera->position.x)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.y += mouseWheelMove*(camera->target.y - camera->position.y)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.z += mouseWheelMove*(camera->target.z - camera->position.z)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
// Scale by distance
forward = Vector3Scale(forward, distance);
// if (camera->target.y < 0) camera->target.y = -0.001;
}
else if ((camera->position.y > camera->target.y) && (camera->target.y < 0) && (mouseWheelMove > 0))
{
CAMERA.targetDistance -= (mouseWheelMove*CAMERA_MOUSE_SCROLL_SENSITIVITY);
if (CAMERA.targetDistance < CAMERA_FREE_DISTANCE_MIN_CLAMP) CAMERA.targetDistance = CAMERA_FREE_DISTANCE_MIN_CLAMP;
}
// Camera looking up
else if ((camera->position.y < camera->target.y) && (CAMERA.targetDistance == CAMERA_FREE_DISTANCE_MAX_CLAMP) && (mouseWheelMove < 0))
{
camera->target.x += mouseWheelMove*(camera->target.x - camera->position.x)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.y += mouseWheelMove*(camera->target.y - camera->position.y)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.z += mouseWheelMove*(camera->target.z - camera->position.z)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
}
else if ((camera->position.y < camera->target.y) && (camera->target.y <= 0))
{
camera->target.x += mouseWheelMove*(camera->target.x - camera->position.x)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.y += mouseWheelMove*(camera->target.y - camera->position.y)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
camera->target.z += mouseWheelMove*(camera->target.z - camera->position.z)*CAMERA_MOUSE_SCROLL_SENSITIVITY/CAMERA.targetDistance;
// Move position and target
camera->position = Vector3Add(camera->position, forward);
camera->target = Vector3Add(camera->target, forward);
}
// if (camera->target.y > 0) camera->target.y = 0.001;
}
else if ((camera->position.y < camera->target.y) && (camera->target.y > 0) && (mouseWheelMove > 0))
{
CAMERA.targetDistance -= (mouseWheelMove*CAMERA_MOUSE_SCROLL_SENSITIVITY);
if (CAMERA.targetDistance < CAMERA_FREE_DISTANCE_MIN_CLAMP) CAMERA.targetDistance = CAMERA_FREE_DISTANCE_MIN_CLAMP;
}
// Moves the camera in its up direction
void CameraMoveUp(Camera *camera, float distance)
{
Vector3 up = GetCameraUp(camera);
// Input keys checks
if (keyPan)
{
if (keyAlt) // Alternative key behaviour
{
if (szoomKey)
{
// Camera smooth zoom
CAMERA.targetDistance += (mousePositionDelta.y*CAMERA_FREE_SMOOTH_ZOOM_SENSITIVITY);
}
else
{
// Camera rotation
CAMERA.angle.x += mousePositionDelta.x*-CAMERA_FREE_MOUSE_SENSITIVITY;
CAMERA.angle.y += mousePositionDelta.y*-CAMERA_FREE_MOUSE_SENSITIVITY;
// Scale by distance
up = Vector3Scale(up, distance);
// Angle clamp
if (CAMERA.angle.y > CAMERA_FREE_MIN_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_FREE_MIN_CLAMP*DEG2RAD;
else if (CAMERA.angle.y < CAMERA_FREE_MAX_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_FREE_MAX_CLAMP*DEG2RAD;
}
}
else
{
// Camera panning
camera->target.x += ((mousePositionDelta.x*CAMERA_FREE_MOUSE_SENSITIVITY)*cosf(CAMERA.angle.x) + (mousePositionDelta.y*-CAMERA_FREE_MOUSE_SENSITIVITY)*sinf(CAMERA.angle.x)*sinf(CAMERA.angle.y))*(CAMERA.targetDistance/CAMERA_FREE_PANNING_DIVIDER);
camera->target.y += ((mousePositionDelta.y*CAMERA_FREE_MOUSE_SENSITIVITY)*cosf(CAMERA.angle.y))*(CAMERA.targetDistance/CAMERA_FREE_PANNING_DIVIDER);
camera->target.z += ((mousePositionDelta.x*-CAMERA_FREE_MOUSE_SENSITIVITY)*sinf(CAMERA.angle.x) + (mousePositionDelta.y*-CAMERA_FREE_MOUSE_SENSITIVITY)*cosf(CAMERA.angle.x)*sinf(CAMERA.angle.y))*(CAMERA.targetDistance/CAMERA_FREE_PANNING_DIVIDER);
}
}
// Move position and target
camera->position = Vector3Add(camera->position, up);
camera->target = Vector3Add(camera->target, up);
}
// Update camera position with changes
camera->position.x = -sinf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.x;
camera->position.y = -sinf(CAMERA.angle.y)*CAMERA.targetDistance + camera->target.y;
camera->position.z = -cosf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.z;
// Moves the camera target in its current right direction
void CameraMoveRight(Camera *camera, float distance, bool moveInWorldPlane)
{
Vector3 right = GetCameraRight(camera);
} break;
case CAMERA_ORBITAL: // Camera just orbits around target, only zoom allowed
{
CAMERA.angle.x += CAMERA_ORBITAL_SPEED*GetFrameTime(); // Camera orbit angle
CAMERA.targetDistance -= (mouseWheelMove*CAMERA_MOUSE_SCROLL_SENSITIVITY); // Camera zoom
if (moveInWorldPlane)
{
// Project vector onto world plane
right.y = 0;
right = Vector3Normalize(right);
}
// Camera distance clamp
if (CAMERA.targetDistance < CAMERA_THIRD_PERSON_DISTANCE_CLAMP) CAMERA.targetDistance = CAMERA_THIRD_PERSON_DISTANCE_CLAMP;
// Scale by distance
right = Vector3Scale(right, distance);
// Update camera position with changes
camera->position.x = sinf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.x;
camera->position.y = ((CAMERA.angle.y <= 0.0f)? 1 : -1)*sinf(CAMERA.angle.y)*CAMERA.targetDistance*sinf(CAMERA.angle.y) + camera->target.y;
camera->position.z = cosf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.z;
// Move position and target
camera->position = Vector3Add(camera->position, right);
camera->target = Vector3Add(camera->target, right);
}
} break;
case CAMERA_FIRST_PERSON: // Camera moves as in a first-person game, controls are configurable
{
camera->position.x += (sinf(CAMERA.angle.x)*direction[MOVE_BACK] -
sinf(CAMERA.angle.x)*direction[MOVE_FRONT] -
cosf(CAMERA.angle.x)*direction[MOVE_LEFT] +
cosf(CAMERA.angle.x)*direction[MOVE_RIGHT])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
// Moves the camera position closer/farther to/from the camera target
void CameraMoveToTarget(Camera *camera, float delta)
{
float distance = Vector3Distance(camera->position, camera->target);
camera->position.y += (sinf(CAMERA.angle.y)*direction[MOVE_FRONT] -
sinf(CAMERA.angle.y)*direction[MOVE_BACK] +
1.0f*direction[MOVE_UP] - 1.0f*direction[MOVE_DOWN])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
// Apply delta
distance += delta;
camera->position.z += (cosf(CAMERA.angle.x)*direction[MOVE_BACK] -
cosf(CAMERA.angle.x)*direction[MOVE_FRONT] +
sinf(CAMERA.angle.x)*direction[MOVE_LEFT] -
sinf(CAMERA.angle.x)*direction[MOVE_RIGHT])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
// Distance must be greater than 0
if (distance < 0) distance = 0.001f;
// Camera orientation calculation
CAMERA.angle.x -= mousePositionDelta.x*CAMERA_MOUSE_MOVE_SENSITIVITY*GetFrameTime();
CAMERA.angle.y -= mousePositionDelta.y*CAMERA_MOUSE_MOVE_SENSITIVITY*GetFrameTime();
// Set new distance by moving the position along the forward vector
Vector3 forward = GetCameraForward(camera);
camera->position = Vector3Add(camera->target, Vector3Scale(forward, -distance));
}
// Angle clamp
if (CAMERA.angle.y > CAMERA_FIRST_PERSON_MIN_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_FIRST_PERSON_MIN_CLAMP*DEG2RAD;
else if (CAMERA.angle.y < CAMERA_FIRST_PERSON_MAX_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_FIRST_PERSON_MAX_CLAMP*DEG2RAD;
// Rotates the camera around its up vector
// Yaw is "looking left and right"
// If rotateAroundTarget is false, the camera rotates around its position
// Note: angle must be provided in radians
void CameraYaw(Camera *camera, float angle, bool rotateAroundTarget)
{
// Rotation axis
Vector3 up = GetCameraUp(camera);
// Calculate translation matrix
Matrix matTranslation = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, (CAMERA.targetDistance/CAMERA_FREE_PANNING_DIVIDER),
0.0f, 0.0f, 0.0f, 1.0f };
// View vector
Vector3 targetPosition = Vector3Subtract(camera->target, camera->position);
// Calculate rotation matrix
Matrix matRotation = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
// Rotate view vector around up axis
targetPosition = Vector3RotateByAxisAngle(targetPosition, up, angle);
float cosz = cosf(0.0f);
float sinz = sinf(0.0f);
float cosy = cosf(-(PI*2 - CAMERA.angle.x));
float siny = sinf(-(PI*2 - CAMERA.angle.x));
float cosx = cosf(-(PI*2 - CAMERA.angle.y));
float sinx = sinf(-(PI*2 - CAMERA.angle.y));
matRotation.m0 = cosz*cosy;
matRotation.m4 = (cosz*siny*sinx) - (sinz*cosx);
matRotation.m8 = (cosz*siny*cosx) + (sinz*sinx);
matRotation.m1 = sinz*cosy;
matRotation.m5 = (sinz*siny*sinx) + (cosz*cosx);
matRotation.m9 = (sinz*siny*cosx) - (cosz*sinx);
matRotation.m2 = -siny;
matRotation.m6 = cosy*sinx;
matRotation.m10= cosy*cosx;
// Multiply translation and rotation matrices
Matrix matTransform = { 0 };
matTransform.m0 = matTranslation.m0*matRotation.m0 + matTranslation.m1*matRotation.m4 + matTranslation.m2*matRotation.m8 + matTranslation.m3*matRotation.m12;
matTransform.m1 = matTranslation.m0*matRotation.m1 + matTranslation.m1*matRotation.m5 + matTranslation.m2*matRotation.m9 + matTranslation.m3*matRotation.m13;
matTransform.m2 = matTranslation.m0*matRotation.m2 + matTranslation.m1*matRotation.m6 + matTranslation.m2*matRotation.m10 + matTranslation.m3*matRotation.m14;
matTransform.m3 = matTranslation.m0*matRotation.m3 + matTranslation.m1*matRotation.m7 + matTranslation.m2*matRotation.m11 + matTranslation.m3*matRotation.m15;
matTransform.m4 = matTranslation.m4*matRotation.m0 + matTranslation.m5*matRotation.m4 + matTranslation.m6*matRotation.m8 + matTranslation.m7*matRotation.m12;
matTransform.m5 = matTranslation.m4*matRotation.m1 + matTranslation.m5*matRotation.m5 + matTranslation.m6*matRotation.m9 + matTranslation.m7*matRotation.m13;
matTransform.m6 = matTranslation.m4*matRotation.m2 + matTranslation.m5*matRotation.m6 + matTranslation.m6*matRotation.m10 + matTranslation.m7*matRotation.m14;
matTransform.m7 = matTranslation.m4*matRotation.m3 + matTranslation.m5*matRotation.m7 + matTranslation.m6*matRotation.m11 + matTranslation.m7*matRotation.m15;
matTransform.m8 = matTranslation.m8*matRotation.m0 + matTranslation.m9*matRotation.m4 + matTranslation.m10*matRotation.m8 + matTranslation.m11*matRotation.m12;
matTransform.m9 = matTranslation.m8*matRotation.m1 + matTranslation.m9*matRotation.m5 + matTranslation.m10*matRotation.m9 + matTranslation.m11*matRotation.m13;
matTransform.m10 = matTranslation.m8*matRotation.m2 + matTranslation.m9*matRotation.m6 + matTranslation.m10*matRotation.m10 + matTranslation.m11*matRotation.m14;
matTransform.m11 = matTranslation.m8*matRotation.m3 + matTranslation.m9*matRotation.m7 + matTranslation.m10*matRotation.m11 + matTranslation.m11*matRotation.m15;
matTransform.m12 = matTranslation.m12*matRotation.m0 + matTranslation.m13*matRotation.m4 + matTranslation.m14*matRotation.m8 + matTranslation.m15*matRotation.m12;
matTransform.m13 = matTranslation.m12*matRotation.m1 + matTranslation.m13*matRotation.m5 + matTranslation.m14*matRotation.m9 + matTranslation.m15*matRotation.m13;
matTransform.m14 = matTranslation.m12*matRotation.m2 + matTranslation.m13*matRotation.m6 + matTranslation.m14*matRotation.m10 + matTranslation.m15*matRotation.m14;
matTransform.m15 = matTranslation.m12*matRotation.m3 + matTranslation.m13*matRotation.m7 + matTranslation.m14*matRotation.m11 + matTranslation.m15*matRotation.m15;
camera->target.x = camera->position.x - matTransform.m12;
camera->target.y = camera->position.y - matTransform.m13;
camera->target.z = camera->position.z - matTransform.m14;
// Camera position update
// NOTE: On CAMERA_FIRST_PERSON player Y-movement is limited to player 'eyes position'
camera->position.y = CAMERA.playerEyesPosition;
// Camera swinging (y-movement), only when walking (some key pressed)
for (int i = 0; i < 6; i++) if (direction[i]) { swingCounter += GetFrameTime(); break; }
camera->position.y -= sinf(2*PI*CAMERA_FIRST_PERSON_STEP_FREQUENCY*swingCounter)*CAMERA_FIRST_PERSON_SWINGING_DELTA;
// Camera waiving (xz-movement), only when walking (some key pressed)
camera->up.x = sinf(2*PI*CAMERA_FIRST_PERSON_STEP_FREQUENCY*swingCounter)*CAMERA_FIRST_PERSON_TILTING_DELTA;
camera->up.z = -sinf(2*PI*CAMERA_FIRST_PERSON_STEP_FREQUENCY*swingCounter)*CAMERA_FIRST_PERSON_TILTING_DELTA;
} break;
case CAMERA_THIRD_PERSON: // Camera moves as in a third-person game, following target at a distance, controls are configurable
{
camera->position.x += (sinf(CAMERA.angle.x)*direction[MOVE_BACK] -
sinf(CAMERA.angle.x)*direction[MOVE_FRONT] -
cosf(CAMERA.angle.x)*direction[MOVE_LEFT] +
cosf(CAMERA.angle.x)*direction[MOVE_RIGHT])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
camera->position.y += (sinf(CAMERA.angle.y)*direction[MOVE_FRONT] -
sinf(CAMERA.angle.y)*direction[MOVE_BACK] +
1.0f*direction[MOVE_UP] - 1.0f*direction[MOVE_DOWN])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
camera->position.z += (cosf(CAMERA.angle.x)*direction[MOVE_BACK] -
cosf(CAMERA.angle.x)*direction[MOVE_FRONT] +
sinf(CAMERA.angle.x)*direction[MOVE_LEFT] -
sinf(CAMERA.angle.x)*direction[MOVE_RIGHT])*PLAYER_MOVEMENT_SENSITIVITY*GetFrameTime();
// Camera orientation calculation
CAMERA.angle.x += (mousePositionDelta.x*-CAMERA_MOUSE_MOVE_SENSITIVITY);
CAMERA.angle.y += (mousePositionDelta.y*-CAMERA_MOUSE_MOVE_SENSITIVITY);
// Angle clamp
if (CAMERA.angle.y > CAMERA_THIRD_PERSON_MIN_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_THIRD_PERSON_MIN_CLAMP*DEG2RAD;
else if (CAMERA.angle.y < CAMERA_THIRD_PERSON_MAX_CLAMP*DEG2RAD) CAMERA.angle.y = CAMERA_THIRD_PERSON_MAX_CLAMP*DEG2RAD;
// Camera zoom
CAMERA.targetDistance -= (mouseWheelMove*CAMERA_MOUSE_SCROLL_SENSITIVITY);
// Camera distance clamp
if (CAMERA.targetDistance < CAMERA_THIRD_PERSON_DISTANCE_CLAMP) CAMERA.targetDistance = CAMERA_THIRD_PERSON_DISTANCE_CLAMP;
camera->position.x = sinf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.x;
if (CAMERA.angle.y <= 0.0f) camera->position.y = sinf(CAMERA.angle.y)*CAMERA.targetDistance*sinf(CAMERA.angle.y) + camera->target.y;
else camera->position.y = -sinf(CAMERA.angle.y)*CAMERA.targetDistance*sinf(CAMERA.angle.y) + camera->target.y;
camera->position.z = cosf(CAMERA.angle.x)*CAMERA.targetDistance*cosf(CAMERA.angle.y) + camera->target.z;
} break;
case CAMERA_CUSTOM: break;
default: break;
if (rotateAroundTarget)
{
// Move position relative to target
camera->position = Vector3Subtract(camera->target, targetPosition);
}
else // rotate around camera.position
{
// Move target relative to position
camera->target = Vector3Add(camera->position, targetPosition);
}
}
// Set camera pan key to combine with mouse movement (free camera)
void SetCameraPanControl(int keyPan) { CAMERA.panControl = keyPan; }
// Set camera alt key to combine with mouse movement (free camera)
void SetCameraAltControl(int keyAlt) { CAMERA.altControl = keyAlt; }
// Set camera smooth zoom key to combine with mouse (free camera)
void SetCameraSmoothZoomControl(int szoomKey) { CAMERA.smoothZoomControl = szoomKey; }
// Set camera move controls (1st person and 3rd person cameras)
void SetCameraMoveControls(int keyFront, int keyBack, int keyRight, int keyLeft, int keyUp, int keyDown)
// Rotates the camera around its right vector, pitch is "looking up and down"
// - lockView prevents camera overrotation (aka "somersaults")
// - rotateAroundTarget defines if rotation is around target or around its position
// - rotateUp rotates the up direction as well (typically only usefull in CAMERA_FREE)
// NOTE: angle must be provided in radians
void CameraPitch(Camera *camera, float angle, bool lockView, bool rotateAroundTarget, bool rotateUp)
{
CAMERA.moveControl[MOVE_FRONT] = keyFront;
CAMERA.moveControl[MOVE_BACK] = keyBack;
CAMERA.moveControl[MOVE_RIGHT] = keyRight;
CAMERA.moveControl[MOVE_LEFT] = keyLeft;
CAMERA.moveControl[MOVE_UP] = keyUp;
CAMERA.moveControl[MOVE_DOWN] = keyDown;
// Up direction
Vector3 up = GetCameraUp(camera);
// View vector
Vector3 targetPosition = Vector3Subtract(camera->target, camera->position);
if (lockView)
{
// In these camera modes we clamp the Pitch angle
// to allow only viewing straight up or down.
// Clamp view up
float maxAngleUp = Vector3Angle(up, targetPosition);
maxAngleUp -= 0.001f; // avoid numerical errors
if (angle > maxAngleUp) angle = maxAngleUp;
// Clamp view down
float maxAngleDown = Vector3Angle(Vector3Negate(up), targetPosition);
maxAngleDown *= -1.0f; // downwards angle is negative
maxAngleDown += 0.001f; // avoid numerical errors
if (angle < maxAngleDown) angle = maxAngleDown;
}
// Rotation axis
Vector3 right = GetCameraRight(camera);
// Rotate view vector around right axis
targetPosition = Vector3RotateByAxisAngle(targetPosition, right, angle);
if (rotateAroundTarget)
{
// Move position relative to target
camera->position = Vector3Subtract(camera->target, targetPosition);
}
else // rotate around camera.position
{
// Move target relative to position
camera->target = Vector3Add(camera->position, targetPosition);
}
if (rotateUp)
{
// Rotate up direction around right axis
camera->up = Vector3RotateByAxisAngle(camera->up, right, angle);
}
}
// Rotates the camera around its forward vector
// Roll is "turning your head sideways to the left or right"
// Note: angle must be provided in radians
void CameraRoll(Camera *camera, float angle)
{
// Rotation axis
Vector3 forward = GetCameraForward(camera);
// Rotate up direction around forward axis
camera->up = Vector3RotateByAxisAngle(camera->up, forward, angle);
}
// Returns the camera view matrix
Matrix GetCameraViewMatrix(Camera *camera)
{
return MatrixLookAt(camera->position, camera->target, camera->up);
}
// Returns the camera projection matrix
Matrix GetCameraProjectionMatrix(Camera *camera, float aspect)
{
if (camera->projection == CAMERA_PERSPECTIVE)
{
return MatrixPerspective(camera->fovy*DEG2RAD, aspect, CAMERA_CULL_DISTANCE_NEAR, CAMERA_CULL_DISTANCE_FAR);
}
else if (camera->projection == CAMERA_ORTHOGRAPHIC)
{
double top = camera->fovy/2.0;
double right = top*aspect;
return MatrixOrtho(-right, right, -top, top, CAMERA_CULL_DISTANCE_NEAR, CAMERA_CULL_DISTANCE_FAR);
}
return MatrixIdentity();
}
#ifndef CAMERA_STANDALONE
// Update camera position for selected mode
// Camera mode: CAMERA_FREE, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON, CAMERA_ORBITAL or CUSTOM
void UpdateCamera(Camera *camera, int mode)
{
Vector2 mousePositionDelta = GetMouseDelta();
bool moveInWorldPlane = ((mode == CAMERA_FIRST_PERSON) || (mode == CAMERA_THIRD_PERSON));
bool rotateAroundTarget = ((mode == CAMERA_THIRD_PERSON) || (mode == CAMERA_ORBITAL));
bool lockView = ((mode == CAMERA_FIRST_PERSON) || (mode == CAMERA_THIRD_PERSON) || (mode == CAMERA_ORBITAL));
bool rotateUp = (mode == CAMERA_FREE);
if (mode == CAMERA_ORBITAL)
{
// Orbital can just orbit
Matrix rotation = MatrixRotate(GetCameraUp(camera), CAMERA_ORBITAL_SPEED*GetFrameTime());
Vector3 view = Vector3Subtract(camera->position, camera->target);
view = Vector3Transform(view, rotation);
camera->position = Vector3Add(camera->target, view);
}
else
{
// Camera rotation
if (IsKeyDown(KEY_DOWN)) CameraPitch(camera, -CAMERA_ROTATION_SPEED, lockView, rotateAroundTarget, rotateUp);
if (IsKeyDown(KEY_UP)) CameraPitch(camera, CAMERA_ROTATION_SPEED, lockView, rotateAroundTarget, rotateUp);
if (IsKeyDown(KEY_RIGHT)) CameraYaw(camera, -CAMERA_ROTATION_SPEED, rotateAroundTarget);
if (IsKeyDown(KEY_LEFT)) CameraYaw(camera, CAMERA_ROTATION_SPEED, rotateAroundTarget);
if (IsKeyDown(KEY_Q)) CameraRoll(camera, -CAMERA_ROTATION_SPEED);
if (IsKeyDown(KEY_E)) CameraRoll(camera, CAMERA_ROTATION_SPEED);
CameraYaw(camera, -mousePositionDelta.x*CAMERA_MOUSE_MOVE_SENSITIVITY, rotateAroundTarget);
CameraPitch(camera, -mousePositionDelta.y*CAMERA_MOUSE_MOVE_SENSITIVITY, lockView, rotateAroundTarget, rotateUp);
// Camera movement
if (IsKeyDown(KEY_W)) CameraMoveForward(camera, CAMERA_MOVE_SPEED, moveInWorldPlane);
if (IsKeyDown(KEY_A)) CameraMoveRight(camera, -CAMERA_MOVE_SPEED, moveInWorldPlane);
if (IsKeyDown(KEY_S)) CameraMoveForward(camera, -CAMERA_MOVE_SPEED, moveInWorldPlane);
if (IsKeyDown(KEY_D)) CameraMoveRight(camera, CAMERA_MOVE_SPEED, moveInWorldPlane);
//if (IsKeyDown(KEY_SPACE)) CameraMoveUp(camera, CAMERA_MOVE_SPEED);
//if (IsKeyDown(KEY_LEFT_CONTROL)) CameraMoveUp(camera, -CAMERA_MOVE_SPEED);
}
if ((mode == CAMERA_THIRD_PERSON) || (mode == CAMERA_ORBITAL))
{
// Zoom target distance
CameraMoveToTarget(camera, -GetMouseWheelMove());
if (IsKeyPressed(KEY_KP_SUBTRACT)) CameraMoveToTarget(camera, 2.0f);
if (IsKeyPressed(KEY_KP_ADD)) CameraMoveToTarget(camera, -2.0f);
}
}
#endif // !CAMERA_STANDALONE
// Update camera movement, movement/rotation values should be provided by user
void UpdateCameraPro(Camera *camera, Vector3 movement, Vector3 rotation, float zoom)
{
// Required values
// movement.x - Move forward/backward
// movement.y - Move right/left
// movement.z - Move up/down
// rotation.x - yaw
// rotation.y - pitch
// rotation.z - roll
// zoom - Move towards target
bool lockView = true;
bool rotateAroundTarget = false;
bool rotateUp = false;
bool moveInWorldPlane = true;
// Camera rotation
CameraPitch(camera, -rotation.y*DEG2RAD, lockView, rotateAroundTarget, rotateUp);
CameraYaw(camera, -rotation.x*DEG2RAD, rotateAroundTarget);
CameraRoll(camera, rotation.z*DEG2RAD);
// Camera movement
CameraMoveForward(camera, movement.x, moveInWorldPlane);
CameraMoveRight(camera, movement.y, moveInWorldPlane);
CameraMoveUp(camera, movement.z);
// Zoom target distance
CameraMoveToTarget(camera, zoom);
}
#endif // CAMERA_IMPLEMENTATION