Move raymath to raylib package, issue #58
This commit is contained in:
parent
97a2104544
commit
5b0944b556
4 changed files with 215 additions and 222 deletions
2
Makefile
2
Makefile
|
@ -1,4 +1,4 @@
|
|||
PACKAGES= raylib raygui raymath easings physics rres
|
||||
PACKAGES= raylib raygui easings physics rres
|
||||
|
||||
GO?= go
|
||||
|
||||
|
|
|
@ -7,7 +7,6 @@ import (
|
|||
"math"
|
||||
|
||||
"github.com/gen2brain/raylib-go/raylib"
|
||||
"github.com/gen2brain/raylib-go/raymath"
|
||||
)
|
||||
|
||||
// ShapeType type
|
||||
|
@ -196,7 +195,7 @@ func NewBodyRectangle(pos rl.Vector2, width, height, density float32) *Body {
|
|||
}
|
||||
p2 := newBody.Shape.VertexData.Vertices[nextIndex]
|
||||
|
||||
D := raymath.Vector2CrossProduct(p1, p2)
|
||||
D := rl.Vector2CrossProduct(p1, p2)
|
||||
triangleArea := D / 2
|
||||
|
||||
area += triangleArea
|
||||
|
@ -276,7 +275,7 @@ func NewBodyPolygon(pos rl.Vector2, radius float32, sides int, density float32)
|
|||
}
|
||||
position2 := newBody.Shape.VertexData.Vertices[nextIndex]
|
||||
|
||||
cross := raymath.Vector2CrossProduct(position1, position2)
|
||||
cross := rl.Vector2CrossProduct(position1, position2)
|
||||
triangleArea := cross / 2
|
||||
|
||||
area += triangleArea
|
||||
|
@ -502,7 +501,7 @@ func Close() {
|
|||
|
||||
// AddForce - Adds a force to a physics body
|
||||
func (b *Body) AddForce(force rl.Vector2) {
|
||||
b.Force = raymath.Vector2Add(b.Force, force)
|
||||
b.Force = rl.Vector2Add(b.Force, force)
|
||||
}
|
||||
|
||||
// AddTorque - Adds an angular force to a physics body
|
||||
|
@ -521,14 +520,14 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
|
||||
for i := 0; i < vertexData.VertexCount; i++ {
|
||||
positionA := b.Position
|
||||
positionB := raymath.Mat2MultiplyVector2(vertexData.Transform, raymath.Vector2Add(b.Position, vertexData.Vertices[i]))
|
||||
positionB := rl.Mat2MultiplyVector2(vertexData.Transform, rl.Vector2Add(b.Position, vertexData.Vertices[i]))
|
||||
|
||||
nextIndex := 0
|
||||
if i+1 < vertexData.VertexCount {
|
||||
nextIndex = i + 1
|
||||
}
|
||||
|
||||
positionC := raymath.Mat2MultiplyVector2(vertexData.Transform, raymath.Vector2Add(b.Position, vertexData.Vertices[nextIndex]))
|
||||
positionC := rl.Mat2MultiplyVector2(vertexData.Transform, rl.Vector2Add(b.Position, vertexData.Vertices[nextIndex]))
|
||||
|
||||
// Check collision between each triangle
|
||||
alpha := ((positionB.Y-positionC.Y)*(position.X-positionC.X) + (positionC.X-positionB.X)*(position.Y-positionC.Y)) /
|
||||
|
@ -565,8 +564,8 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
}
|
||||
|
||||
center := triangleBarycenter(vertices[i], vertices[nextIndex], rl.NewVector2(0, 0))
|
||||
center = raymath.Vector2Add(bodyPos, center)
|
||||
offset := raymath.Vector2Subtract(center, bodyPos)
|
||||
center = rl.Vector2Add(bodyPos, center)
|
||||
offset := rl.Vector2Subtract(center, bodyPos)
|
||||
|
||||
newBody := NewBodyPolygon(center, 10, 3, 10) // Create polygon physics body with relevant values
|
||||
|
||||
|
@ -574,9 +573,9 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
newData.VertexCount = 3
|
||||
newData.Transform = trans
|
||||
|
||||
newData.Vertices[0] = raymath.Vector2Subtract(vertices[i], offset)
|
||||
newData.Vertices[1] = raymath.Vector2Subtract(vertices[nextIndex], offset)
|
||||
newData.Vertices[2] = raymath.Vector2Subtract(position, center)
|
||||
newData.Vertices[0] = rl.Vector2Subtract(vertices[i], offset)
|
||||
newData.Vertices[1] = rl.Vector2Subtract(vertices[nextIndex], offset)
|
||||
newData.Vertices[2] = rl.Vector2Subtract(position, center)
|
||||
|
||||
// Separate vertices to avoid unnecessary physics collisions
|
||||
newData.Vertices[0].X *= 0.95
|
||||
|
@ -593,7 +592,7 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
nextVertex = j + 1
|
||||
}
|
||||
|
||||
face := raymath.Vector2Subtract(newData.Vertices[nextVertex], newData.Vertices[j])
|
||||
face := rl.Vector2Subtract(newData.Vertices[nextVertex], newData.Vertices[j])
|
||||
|
||||
newData.Normals[j] = rl.NewVector2(face.Y, -face.X)
|
||||
normalize(&newData.Normals[j])
|
||||
|
@ -617,7 +616,7 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
}
|
||||
p2 := newBody.Shape.VertexData.Vertices[nextVertex]
|
||||
|
||||
D := raymath.Vector2CrossProduct(p1, p2)
|
||||
D := rl.Vector2CrossProduct(p1, p2)
|
||||
triangleArea := D / 2
|
||||
|
||||
area += triangleArea
|
||||
|
@ -647,10 +646,10 @@ func (b *Body) Shatter(position rl.Vector2, force float32) {
|
|||
|
||||
// Calculate explosion force direction
|
||||
pointA := newBody.Position
|
||||
pointB := raymath.Vector2Subtract(newData.Vertices[1], newData.Vertices[0])
|
||||
pointB := rl.Vector2Subtract(newData.Vertices[1], newData.Vertices[0])
|
||||
pointB.X /= 2
|
||||
pointB.Y /= 2
|
||||
forceDirection := raymath.Vector2Subtract(raymath.Vector2Add(pointA, raymath.Vector2Add(newData.Vertices[0], pointB)), newBody.Position)
|
||||
forceDirection := rl.Vector2Subtract(rl.Vector2Add(pointA, rl.Vector2Add(newData.Vertices[0], pointB)), newBody.Position)
|
||||
normalize(&forceDirection)
|
||||
forceDirection.X *= force
|
||||
forceDirection.Y *= force
|
||||
|
@ -671,7 +670,7 @@ func (b *Body) GetShapeVertex(vertex int) rl.Vector2 {
|
|||
position.Y = b.Position.Y + float32(math.Sin(360/float64(circleVertices)*float64(vertex)*rl.Deg2rad))*b.Shape.Radius
|
||||
break
|
||||
case PolygonShape:
|
||||
position = raymath.Vector2Add(b.Position, raymath.Mat2MultiplyVector2(b.Shape.VertexData.Transform, b.Shape.VertexData.Vertices[vertex]))
|
||||
position = rl.Vector2Add(b.Position, rl.Mat2MultiplyVector2(b.Shape.VertexData.Transform, b.Shape.VertexData.Vertices[vertex]))
|
||||
break
|
||||
}
|
||||
|
||||
|
@ -683,7 +682,7 @@ func (b *Body) SetRotation(radians float32) {
|
|||
b.Orient = radians
|
||||
|
||||
if b.Shape.Type == PolygonShape {
|
||||
b.Shape.VertexData.Transform = raymath.Mat2Radians(radians)
|
||||
b.Shape.VertexData.Transform = rl.Mat2Radians(radians)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -700,7 +699,7 @@ func (b *Body) integrateVelocity() {
|
|||
b.Orient += b.AngularVelocity * deltaTime
|
||||
}
|
||||
|
||||
raymath.Mat2Set(&b.Shape.VertexData.Transform, b.Orient)
|
||||
rl.Mat2Set(&b.Shape.VertexData.Transform, b.Orient)
|
||||
|
||||
b.integrateForces()
|
||||
}
|
||||
|
@ -730,7 +729,7 @@ func newRandomPolygon(radius float32, sides int) Polygon {
|
|||
data.VertexCount = sides
|
||||
|
||||
orient := rl.GetRandomValue(0, 360)
|
||||
data.Transform = raymath.Mat2Radians(float32(orient) * rl.Deg2rad)
|
||||
data.Transform = rl.Mat2Radians(float32(orient) * rl.Deg2rad)
|
||||
|
||||
// Calculate polygon vertices positions
|
||||
for i := 0; i < data.VertexCount; i++ {
|
||||
|
@ -745,7 +744,7 @@ func newRandomPolygon(radius float32, sides int) Polygon {
|
|||
nextIndex = i + 1
|
||||
}
|
||||
|
||||
face := raymath.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
||||
face := rl.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
||||
|
||||
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
|
||||
normalize(&data.Normals[i])
|
||||
|
@ -759,7 +758,7 @@ func newRectanglePolygon(pos, size rl.Vector2) Polygon {
|
|||
data := Polygon{}
|
||||
|
||||
data.VertexCount = 4
|
||||
data.Transform = raymath.Mat2Radians(0)
|
||||
data.Transform = rl.Mat2Radians(0)
|
||||
|
||||
// Calculate polygon vertices positions
|
||||
data.Vertices[0] = rl.NewVector2(pos.X+size.X/2, pos.Y-size.Y/2)
|
||||
|
@ -773,7 +772,7 @@ func newRectanglePolygon(pos, size rl.Vector2) Polygon {
|
|||
if i+1 < data.VertexCount {
|
||||
nextIndex = i + 1
|
||||
}
|
||||
face := raymath.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
||||
face := rl.Vector2Subtract(data.Vertices[nextIndex], data.Vertices[i])
|
||||
|
||||
data.Normals[i] = rl.NewVector2(face.Y, -face.X)
|
||||
normalize(&data.Normals[i])
|
||||
|
@ -852,9 +851,9 @@ func (m *manifold) solveCircleToCircle() {
|
|||
bodyB := m.BodyB
|
||||
|
||||
// Calculate translational vector, which is normal
|
||||
normal := raymath.Vector2Subtract(bodyB.Position, bodyA.Position)
|
||||
normal := rl.Vector2Subtract(bodyB.Position, bodyA.Position)
|
||||
|
||||
distSqr := raymath.Vector2LenSqr(normal)
|
||||
distSqr := rl.Vector2LenSqr(normal)
|
||||
radius := bodyA.Shape.Radius + bodyB.Shape.Radius
|
||||
|
||||
// Check if circles are not in contact
|
||||
|
@ -888,7 +887,7 @@ func (m *manifold) solveCircleToPolygon() {
|
|||
|
||||
// Transform circle center to polygon transform space
|
||||
center := m.BodyA.Position
|
||||
center = raymath.Mat2MultiplyVector2(raymath.Mat2Transpose(m.BodyB.Shape.VertexData.Transform), raymath.Vector2Subtract(center, m.BodyB.Position))
|
||||
center = rl.Mat2MultiplyVector2(rl.Mat2Transpose(m.BodyB.Shape.VertexData.Transform), rl.Vector2Subtract(center, m.BodyB.Position))
|
||||
|
||||
// Find edge with minimum penetration
|
||||
// It is the same concept as using support points in solvePolygonToPolygon
|
||||
|
@ -897,7 +896,7 @@ func (m *manifold) solveCircleToPolygon() {
|
|||
vertexData := m.BodyB.Shape.VertexData
|
||||
|
||||
for i := 0; i < vertexData.VertexCount; i++ {
|
||||
currentSeparation := raymath.Vector2DotProduct(vertexData.Normals[i], raymath.Vector2Subtract(center, vertexData.Vertices[i]))
|
||||
currentSeparation := rl.Vector2DotProduct(vertexData.Normals[i], rl.Vector2Subtract(center, vertexData.Vertices[i]))
|
||||
|
||||
if currentSeparation > m.BodyA.Shape.Radius {
|
||||
return
|
||||
|
@ -920,7 +919,7 @@ func (m *manifold) solveCircleToPolygon() {
|
|||
// Check to see if center is within polygon
|
||||
if separation < epsilon {
|
||||
m.ContactsCount = 1
|
||||
normal := raymath.Mat2MultiplyVector2(vertexData.Transform, vertexData.Normals[faceNormal])
|
||||
normal := rl.Mat2MultiplyVector2(vertexData.Transform, vertexData.Normals[faceNormal])
|
||||
m.Normal = rl.NewVector2(-normal.X, -normal.Y)
|
||||
m.Contacts[0] = rl.NewVector2(m.Normal.X*m.BodyA.Shape.Radius+m.BodyA.Position.X, m.Normal.Y*m.BodyA.Shape.Radius+m.BodyA.Position.Y)
|
||||
m.Penetration = m.BodyA.Shape.Radius
|
||||
|
@ -928,44 +927,44 @@ func (m *manifold) solveCircleToPolygon() {
|
|||
}
|
||||
|
||||
// Determine which voronoi region of the edge center of circle lies within
|
||||
dot1 := raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v1), raymath.Vector2Subtract(v2, v1))
|
||||
dot2 := raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v2), raymath.Vector2Subtract(v1, v2))
|
||||
dot1 := rl.Vector2DotProduct(rl.Vector2Subtract(center, v1), rl.Vector2Subtract(v2, v1))
|
||||
dot2 := rl.Vector2DotProduct(rl.Vector2Subtract(center, v2), rl.Vector2Subtract(v1, v2))
|
||||
m.Penetration = m.BodyA.Shape.Radius - separation
|
||||
|
||||
if dot1 <= 0 { // Closest to v1
|
||||
if raymath.Vector2Distance(center, v1) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
||||
if rl.Vector2Distance(center, v1) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
||||
return
|
||||
}
|
||||
|
||||
m.ContactsCount = 1
|
||||
normal := raymath.Vector2Subtract(v1, center)
|
||||
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
normal := rl.Vector2Subtract(v1, center)
|
||||
normal = rl.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
normalize(&normal)
|
||||
m.Normal = normal
|
||||
v1 = raymath.Mat2MultiplyVector2(vertexData.Transform, v1)
|
||||
v1 = raymath.Vector2Add(v1, m.BodyB.Position)
|
||||
v1 = rl.Mat2MultiplyVector2(vertexData.Transform, v1)
|
||||
v1 = rl.Vector2Add(v1, m.BodyB.Position)
|
||||
m.Contacts[0] = v1
|
||||
} else if dot2 <= 0 { // Closest to v2
|
||||
if raymath.Vector2Distance(center, v2) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
||||
if rl.Vector2Distance(center, v2) > m.BodyA.Shape.Radius*m.BodyA.Shape.Radius {
|
||||
return
|
||||
}
|
||||
|
||||
m.ContactsCount = 1
|
||||
normal := raymath.Vector2Subtract(v2, center)
|
||||
v2 = raymath.Mat2MultiplyVector2(vertexData.Transform, v2)
|
||||
v2 = raymath.Vector2Add(v2, m.BodyB.Position)
|
||||
normal := rl.Vector2Subtract(v2, center)
|
||||
v2 = rl.Mat2MultiplyVector2(vertexData.Transform, v2)
|
||||
v2 = rl.Vector2Add(v2, m.BodyB.Position)
|
||||
m.Contacts[0] = v2
|
||||
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
normal = rl.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
normalize(&normal)
|
||||
m.Normal = normal
|
||||
} else { // Closest to face
|
||||
normal := vertexData.Normals[faceNormal]
|
||||
|
||||
if raymath.Vector2DotProduct(raymath.Vector2Subtract(center, v1), normal) > m.BodyA.Shape.Radius {
|
||||
if rl.Vector2DotProduct(rl.Vector2Subtract(center, v1), normal) > m.BodyA.Shape.Radius {
|
||||
return
|
||||
}
|
||||
|
||||
normal = raymath.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
normal = rl.Mat2MultiplyVector2(vertexData.Transform, normal)
|
||||
m.Normal = rl.NewVector2(-normal.X, -normal.Y)
|
||||
m.Contacts[0] = rl.NewVector2(m.Normal.X*m.BodyA.Shape.Radius+m.BodyA.Position.X, m.Normal.Y*m.BodyA.Shape.Radius+m.BodyA.Position.Y)
|
||||
m.ContactsCount = 1
|
||||
|
@ -1038,20 +1037,20 @@ func (m *manifold) solvePolygonToPolygon() {
|
|||
v2 := refData.Vertices[referenceIndex]
|
||||
|
||||
// Transform vertices to world space
|
||||
v1 = raymath.Mat2MultiplyVector2(refData.Transform, v1)
|
||||
v1 = raymath.Vector2Add(v1, refPoly.Body.Position)
|
||||
v2 = raymath.Mat2MultiplyVector2(refData.Transform, v2)
|
||||
v2 = raymath.Vector2Add(v2, refPoly.Body.Position)
|
||||
v1 = rl.Mat2MultiplyVector2(refData.Transform, v1)
|
||||
v1 = rl.Vector2Add(v1, refPoly.Body.Position)
|
||||
v2 = rl.Mat2MultiplyVector2(refData.Transform, v2)
|
||||
v2 = rl.Vector2Add(v2, refPoly.Body.Position)
|
||||
|
||||
// Calculate reference face side normal in world space
|
||||
sidePlaneNormal := raymath.Vector2Subtract(v2, v1)
|
||||
sidePlaneNormal := rl.Vector2Subtract(v2, v1)
|
||||
normalize(&sidePlaneNormal)
|
||||
|
||||
// Orthogonalize
|
||||
refFaceNormal := rl.NewVector2(sidePlaneNormal.Y, -sidePlaneNormal.X)
|
||||
refC := raymath.Vector2DotProduct(refFaceNormal, v1)
|
||||
negSide := raymath.Vector2DotProduct(sidePlaneNormal, v1) * -1
|
||||
posSide := raymath.Vector2DotProduct(sidePlaneNormal, v2)
|
||||
refC := rl.Vector2DotProduct(refFaceNormal, v1)
|
||||
negSide := rl.Vector2DotProduct(sidePlaneNormal, v1) * -1
|
||||
posSide := rl.Vector2DotProduct(sidePlaneNormal, v2)
|
||||
|
||||
// clip incident face to reference face side planes (due to floating point error, possible to not have required points
|
||||
if clip(rl.NewVector2(-sidePlaneNormal.X, -sidePlaneNormal.Y), negSide, &incidentFace0, &incidentFace1) < 2 {
|
||||
|
@ -1070,7 +1069,7 @@ func (m *manifold) solvePolygonToPolygon() {
|
|||
|
||||
// Keep points behind reference face
|
||||
currentPoint := 0 // clipped points behind reference face
|
||||
separation := raymath.Vector2DotProduct(refFaceNormal, incidentFace0) - refC
|
||||
separation := rl.Vector2DotProduct(refFaceNormal, incidentFace0) - refC
|
||||
if separation <= 0 {
|
||||
m.Contacts[currentPoint] = incidentFace0
|
||||
m.Penetration = -separation
|
||||
|
@ -1079,7 +1078,7 @@ func (m *manifold) solvePolygonToPolygon() {
|
|||
m.Penetration = 0
|
||||
}
|
||||
|
||||
separation = raymath.Vector2DotProduct(refFaceNormal, incidentFace1) - refC
|
||||
separation = rl.Vector2DotProduct(refFaceNormal, incidentFace1) - refC
|
||||
|
||||
if separation <= 0 {
|
||||
m.Contacts[currentPoint] = incidentFace1
|
||||
|
@ -1105,11 +1104,11 @@ func (m *manifold) initializeManifolds() {
|
|||
|
||||
for i := 0; i < 2; i++ {
|
||||
// Caculate radius from center of mass to contact
|
||||
radiusA := raymath.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
||||
radiusB := raymath.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
||||
radiusA := rl.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
||||
radiusB := rl.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
||||
|
||||
crossA := raymath.Vector2Cross(bodyA.AngularVelocity, radiusA)
|
||||
crossB := raymath.Vector2Cross(bodyB.AngularVelocity, radiusB)
|
||||
crossA := rl.Vector2Cross(bodyA.AngularVelocity, radiusA)
|
||||
crossB := rl.Vector2Cross(bodyB.AngularVelocity, radiusB)
|
||||
|
||||
radiusV := rl.Vector2{}
|
||||
radiusV.X = bodyB.Velocity.X + crossB.X - bodyA.Velocity.X - crossA.X
|
||||
|
@ -1117,7 +1116,7 @@ func (m *manifold) initializeManifolds() {
|
|||
|
||||
// Determine if we should perform a resting collision or not;
|
||||
// The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
|
||||
if raymath.Vector2LenSqr(radiusV) < (raymath.Vector2LenSqr(rl.NewVector2(gravityForce.X*deltaTime/1000, gravityForce.Y*deltaTime/1000)) + epsilon) {
|
||||
if rl.Vector2LenSqr(radiusV) < (rl.Vector2LenSqr(rl.NewVector2(gravityForce.X*deltaTime/1000, gravityForce.Y*deltaTime/1000)) + epsilon) {
|
||||
m.Restitution = 0
|
||||
}
|
||||
}
|
||||
|
@ -1137,24 +1136,24 @@ func (m *manifold) integrateImpulses() {
|
|||
|
||||
for i := 0; i < m.ContactsCount; i++ {
|
||||
// Calculate radius from center of mass to contact
|
||||
radiusA := raymath.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
||||
radiusB := raymath.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
||||
radiusA := rl.Vector2Subtract(m.Contacts[i], bodyA.Position)
|
||||
radiusB := rl.Vector2Subtract(m.Contacts[i], bodyB.Position)
|
||||
|
||||
// Calculate relative velocity
|
||||
radiusV := rl.Vector2{}
|
||||
radiusV.X = bodyB.Velocity.X + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
||||
radiusV.Y = bodyB.Velocity.Y + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
||||
radiusV.X = bodyB.Velocity.X + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
||||
radiusV.Y = bodyB.Velocity.Y + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
||||
|
||||
// Relative velocity along the normal
|
||||
contactVelocity := raymath.Vector2DotProduct(radiusV, m.Normal)
|
||||
contactVelocity := rl.Vector2DotProduct(radiusV, m.Normal)
|
||||
|
||||
// Do not resolve if velocities are separating
|
||||
if contactVelocity > 0 {
|
||||
return
|
||||
}
|
||||
|
||||
raCrossN := raymath.Vector2CrossProduct(radiusA, m.Normal)
|
||||
rbCrossN := raymath.Vector2CrossProduct(radiusB, m.Normal)
|
||||
raCrossN := rl.Vector2CrossProduct(radiusA, m.Normal)
|
||||
rbCrossN := rl.Vector2CrossProduct(radiusB, m.Normal)
|
||||
|
||||
inverseMassSum := bodyA.InverseMass + bodyB.InverseMass + (raCrossN*raCrossN)*bodyA.InverseInertia + (rbCrossN*rbCrossN)*bodyB.InverseInertia
|
||||
|
||||
|
@ -1170,7 +1169,7 @@ func (m *manifold) integrateImpulses() {
|
|||
bodyA.Velocity.X += bodyA.InverseMass * (-impulseV.X)
|
||||
bodyA.Velocity.Y += bodyA.InverseMass * (-impulseV.Y)
|
||||
if !bodyA.FreezeOrient {
|
||||
bodyA.AngularVelocity += bodyA.InverseInertia * raymath.Vector2CrossProduct(radiusA, rl.NewVector2(-impulseV.X, -impulseV.Y))
|
||||
bodyA.AngularVelocity += bodyA.InverseInertia * rl.Vector2CrossProduct(radiusA, rl.NewVector2(-impulseV.X, -impulseV.Y))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1178,19 +1177,19 @@ func (m *manifold) integrateImpulses() {
|
|||
bodyB.Velocity.X += bodyB.InverseMass * (impulseV.X)
|
||||
bodyB.Velocity.Y += bodyB.InverseMass * (impulseV.Y)
|
||||
if !bodyB.FreezeOrient {
|
||||
bodyB.AngularVelocity += bodyB.InverseInertia * raymath.Vector2CrossProduct(radiusB, impulseV)
|
||||
bodyB.AngularVelocity += bodyB.InverseInertia * rl.Vector2CrossProduct(radiusB, impulseV)
|
||||
}
|
||||
}
|
||||
|
||||
// Apply friction impulse to each physics body
|
||||
radiusV.X = bodyB.Velocity.X + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
||||
radiusV.Y = bodyB.Velocity.Y + raymath.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - raymath.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
||||
radiusV.X = bodyB.Velocity.X + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).X - bodyA.Velocity.X - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).X
|
||||
radiusV.Y = bodyB.Velocity.Y + rl.Vector2Cross(bodyB.AngularVelocity, radiusB).Y - bodyA.Velocity.Y - rl.Vector2Cross(bodyA.AngularVelocity, radiusA).Y
|
||||
|
||||
tangent := rl.NewVector2(radiusV.X-(m.Normal.X*raymath.Vector2DotProduct(radiusV, m.Normal)), radiusV.Y-(m.Normal.Y*raymath.Vector2DotProduct(radiusV, m.Normal)))
|
||||
tangent := rl.NewVector2(radiusV.X-(m.Normal.X*rl.Vector2DotProduct(radiusV, m.Normal)), radiusV.Y-(m.Normal.Y*rl.Vector2DotProduct(radiusV, m.Normal)))
|
||||
normalize(&tangent)
|
||||
|
||||
// Calculate impulse tangent magnitude
|
||||
impulseTangent := -(raymath.Vector2DotProduct(radiusV, tangent))
|
||||
impulseTangent := -(rl.Vector2DotProduct(radiusV, tangent))
|
||||
impulseTangent /= inverseMassSum
|
||||
impulseTangent /= float32(m.ContactsCount)
|
||||
|
||||
|
@ -1215,7 +1214,7 @@ func (m *manifold) integrateImpulses() {
|
|||
bodyA.Velocity.Y += bodyA.InverseMass * (-tangentImpulse.Y)
|
||||
|
||||
if !bodyA.FreezeOrient {
|
||||
bodyA.AngularVelocity += bodyA.InverseInertia * raymath.Vector2CrossProduct(radiusA, rl.NewVector2(-tangentImpulse.X, -tangentImpulse.Y))
|
||||
bodyA.AngularVelocity += bodyA.InverseInertia * rl.Vector2CrossProduct(radiusA, rl.NewVector2(-tangentImpulse.X, -tangentImpulse.Y))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1224,7 +1223,7 @@ func (m *manifold) integrateImpulses() {
|
|||
bodyB.Velocity.Y += bodyB.InverseMass * (tangentImpulse.Y)
|
||||
|
||||
if !bodyB.FreezeOrient {
|
||||
bodyB.AngularVelocity += bodyB.InverseInertia * raymath.Vector2CrossProduct(radiusB, tangentImpulse)
|
||||
bodyB.AngularVelocity += bodyB.InverseInertia * rl.Vector2CrossProduct(radiusB, tangentImpulse)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1257,7 +1256,7 @@ func getSupport(shape Shape, dir rl.Vector2) rl.Vector2 {
|
|||
|
||||
for i := 0; i < shape.VertexData.VertexCount; i++ {
|
||||
vertex := shape.VertexData.Vertices[i]
|
||||
projection := raymath.Vector2DotProduct(vertex, dir)
|
||||
projection := rl.Vector2DotProduct(vertex, dir)
|
||||
|
||||
if projection > bestProjection {
|
||||
bestVertex = vertex
|
||||
|
@ -1279,24 +1278,24 @@ func findAxisLeastPenetration(shapeA, shapeB Shape) (int, float32) {
|
|||
for i := 0; i < dataA.VertexCount; i++ {
|
||||
// Retrieve a face normal from A shape
|
||||
normal := dataA.Normals[i]
|
||||
transNormal := raymath.Mat2MultiplyVector2(dataA.Transform, normal)
|
||||
transNormal := rl.Mat2MultiplyVector2(dataA.Transform, normal)
|
||||
|
||||
// Transform face normal into B shape's model space
|
||||
buT := raymath.Mat2Transpose(dataB.Transform)
|
||||
normal = raymath.Mat2MultiplyVector2(buT, transNormal)
|
||||
buT := rl.Mat2Transpose(dataB.Transform)
|
||||
normal = rl.Mat2MultiplyVector2(buT, transNormal)
|
||||
|
||||
// Retrieve support point from B shape along -n
|
||||
support := getSupport(shapeB, rl.NewVector2(-normal.X, -normal.Y))
|
||||
|
||||
// Retrieve vertex on face from A shape, transform into B shape's model space
|
||||
vertex := dataA.Vertices[i]
|
||||
vertex = raymath.Mat2MultiplyVector2(dataA.Transform, vertex)
|
||||
vertex = raymath.Vector2Add(vertex, shapeA.Body.Position)
|
||||
vertex = raymath.Vector2Subtract(vertex, shapeB.Body.Position)
|
||||
vertex = raymath.Mat2MultiplyVector2(buT, vertex)
|
||||
vertex = rl.Mat2MultiplyVector2(dataA.Transform, vertex)
|
||||
vertex = rl.Vector2Add(vertex, shapeA.Body.Position)
|
||||
vertex = rl.Vector2Subtract(vertex, shapeB.Body.Position)
|
||||
vertex = rl.Mat2MultiplyVector2(buT, vertex)
|
||||
|
||||
// Compute penetration distance in B shape's model space
|
||||
distance := raymath.Vector2DotProduct(normal, raymath.Vector2Subtract(support, vertex))
|
||||
distance := rl.Vector2DotProduct(normal, rl.Vector2Subtract(support, vertex))
|
||||
|
||||
// Store greatest distance
|
||||
if distance > bestDistance {
|
||||
|
@ -1316,15 +1315,15 @@ func findIncidentFace(v0, v1 *rl.Vector2, ref, inc Shape, index int) {
|
|||
referenceNormal := refData.Normals[index]
|
||||
|
||||
// Calculate normal in incident's frame of reference
|
||||
referenceNormal = raymath.Mat2MultiplyVector2(refData.Transform, referenceNormal) // To world space
|
||||
referenceNormal = raymath.Mat2MultiplyVector2(raymath.Mat2Transpose(incData.Transform), referenceNormal) // To incident's model space
|
||||
referenceNormal = rl.Mat2MultiplyVector2(refData.Transform, referenceNormal) // To world space
|
||||
referenceNormal = rl.Mat2MultiplyVector2(rl.Mat2Transpose(incData.Transform), referenceNormal) // To incident's model space
|
||||
|
||||
// Find most anti-normal face on polygon
|
||||
incidentFace := 0
|
||||
minDot := float32(fltMax)
|
||||
|
||||
for i := 0; i < incData.VertexCount; i++ {
|
||||
dot := raymath.Vector2DotProduct(referenceNormal, incData.Normals[i])
|
||||
dot := rl.Vector2DotProduct(referenceNormal, incData.Normals[i])
|
||||
|
||||
if dot < minDot {
|
||||
minDot = dot
|
||||
|
@ -1333,8 +1332,8 @@ func findIncidentFace(v0, v1 *rl.Vector2, ref, inc Shape, index int) {
|
|||
}
|
||||
|
||||
// Assign face vertices for incident face
|
||||
*v0 = raymath.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
||||
*v0 = raymath.Vector2Add(*v0, inc.Body.Position)
|
||||
*v0 = rl.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
||||
*v0 = rl.Vector2Add(*v0, inc.Body.Position)
|
||||
|
||||
if incidentFace+1 < incData.VertexCount {
|
||||
incidentFace = incidentFace + 1
|
||||
|
@ -1342,8 +1341,8 @@ func findIncidentFace(v0, v1 *rl.Vector2, ref, inc Shape, index int) {
|
|||
incidentFace = 0
|
||||
}
|
||||
|
||||
*v1 = raymath.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
||||
*v1 = raymath.Vector2Add(*v1, inc.Body.Position)
|
||||
*v1 = rl.Mat2MultiplyVector2(incData.Transform, incData.Vertices[incidentFace])
|
||||
*v1 = rl.Vector2Add(*v1, inc.Body.Position)
|
||||
}
|
||||
|
||||
// clip - Calculates clipping based on a normal and two faces
|
||||
|
@ -1355,8 +1354,8 @@ func clip(normal rl.Vector2, clip float32, faceA, faceB *rl.Vector2) int {
|
|||
out[1] = *faceB
|
||||
|
||||
// Retrieve distances from each endpoint to the line
|
||||
distanceA := raymath.Vector2DotProduct(normal, *faceA) - clip
|
||||
distanceB := raymath.Vector2DotProduct(normal, *faceB) - clip
|
||||
distanceA := rl.Vector2DotProduct(normal, *faceA) - clip
|
||||
distanceB := rl.Vector2DotProduct(normal, *faceB) - clip
|
||||
|
||||
// If negative (behind plane)
|
||||
if distanceA <= 0 {
|
||||
|
@ -1373,10 +1372,10 @@ func clip(normal rl.Vector2, clip float32, faceA, faceB *rl.Vector2) int {
|
|||
// Push intersection point
|
||||
alpha := distanceA / (distanceA - distanceB)
|
||||
out[sp] = *faceA
|
||||
delta := raymath.Vector2Subtract(*faceB, *faceA)
|
||||
delta := rl.Vector2Subtract(*faceB, *faceA)
|
||||
delta.X *= alpha
|
||||
delta.Y *= alpha
|
||||
out[sp] = raymath.Vector2Add(out[sp], delta)
|
||||
out[sp] = rl.Vector2Add(out[sp], delta)
|
||||
sp++
|
||||
}
|
||||
|
||||
|
|
|
@ -1,50 +1,47 @@
|
|||
// Package raymath - Some useful functions to work with Vector2, Vector3, Matrix and Quaternions
|
||||
package raymath
|
||||
package rl
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/gen2brain/raylib-go/raylib"
|
||||
)
|
||||
|
||||
// Vector2Zero - Vector with components value 0.0
|
||||
func Vector2Zero() rl.Vector2 {
|
||||
return rl.NewVector2(0.0, 0.0)
|
||||
func Vector2Zero() Vector2 {
|
||||
return NewVector2(0.0, 0.0)
|
||||
}
|
||||
|
||||
// Vector2One - Vector with components value 1.0
|
||||
func Vector2One() rl.Vector2 {
|
||||
return rl.NewVector2(1.0, 1.0)
|
||||
func Vector2One() Vector2 {
|
||||
return NewVector2(1.0, 1.0)
|
||||
}
|
||||
|
||||
// Vector2Add - Add two vectors (v1 + v2)
|
||||
func Vector2Add(v1, v2 rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(v1.X+v2.X, v1.Y+v2.Y)
|
||||
func Vector2Add(v1, v2 Vector2) Vector2 {
|
||||
return NewVector2(v1.X+v2.X, v1.Y+v2.Y)
|
||||
}
|
||||
|
||||
// Vector2Subtract - Subtract two vectors (v1 - v2)
|
||||
func Vector2Subtract(v1, v2 rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(v1.X-v2.X, v1.Y-v2.Y)
|
||||
func Vector2Subtract(v1, v2 Vector2) Vector2 {
|
||||
return NewVector2(v1.X-v2.X, v1.Y-v2.Y)
|
||||
}
|
||||
|
||||
// Vector2Length - Calculate vector length
|
||||
func Vector2Length(v rl.Vector2) float32 {
|
||||
func Vector2Length(v Vector2) float32 {
|
||||
return float32(math.Sqrt(float64((v.X * v.X) + (v.Y * v.Y))))
|
||||
}
|
||||
|
||||
// Vector2DotProduct - Calculate two vectors dot product
|
||||
func Vector2DotProduct(v1, v2 rl.Vector2) float32 {
|
||||
func Vector2DotProduct(v1, v2 Vector2) float32 {
|
||||
return v1.X*v2.X + v1.Y*v2.Y
|
||||
}
|
||||
|
||||
// Vector2Distance - Calculate distance between two vectors
|
||||
func Vector2Distance(v1, v2 rl.Vector2) float32 {
|
||||
func Vector2Distance(v1, v2 Vector2) float32 {
|
||||
return float32(math.Sqrt(float64((v1.X-v2.X)*(v1.X-v2.X) + (v1.Y-v2.Y)*(v1.Y-v2.Y))))
|
||||
}
|
||||
|
||||
// Vector2Angle - Calculate angle between two vectors in X-axis
|
||||
func Vector2Angle(v1, v2 rl.Vector2) float32 {
|
||||
angle := float32(math.Atan2(float64(v2.Y-v1.Y), float64(v2.X-v1.X)) * (180.0 / float64(rl.Pi)))
|
||||
func Vector2Angle(v1, v2 Vector2) float32 {
|
||||
angle := float32(math.Atan2(float64(v2.Y-v1.Y), float64(v2.X-v1.X)) * (180.0 / float64(Pi)))
|
||||
|
||||
if angle < 0 {
|
||||
angle += 360.0
|
||||
|
@ -54,60 +51,60 @@ func Vector2Angle(v1, v2 rl.Vector2) float32 {
|
|||
}
|
||||
|
||||
// Vector2Scale - Scale vector (multiply by value)
|
||||
func Vector2Scale(v rl.Vector2, scale float32) rl.Vector2 {
|
||||
return rl.NewVector2(v.X*scale, v.Y*scale)
|
||||
func Vector2Scale(v Vector2, scale float32) Vector2 {
|
||||
return NewVector2(v.X*scale, v.Y*scale)
|
||||
}
|
||||
|
||||
// Vector2Multiply - Multiply vector by vector
|
||||
func Vector2Multiply(v1, v2 rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(v1.X*v2.X, v1.Y*v2.Y)
|
||||
func Vector2Multiply(v1, v2 Vector2) Vector2 {
|
||||
return NewVector2(v1.X*v2.X, v1.Y*v2.Y)
|
||||
}
|
||||
|
||||
// Vector2Negate - Negate vector
|
||||
func Vector2Negate(v rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(-v.X, -v.Y)
|
||||
func Vector2Negate(v Vector2) Vector2 {
|
||||
return NewVector2(-v.X, -v.Y)
|
||||
}
|
||||
|
||||
// Vector2Divide - Divide vector by vector
|
||||
func Vector2DivideV(v1, v2 rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(v1.X/v2.X, v1.Y/v2.Y)
|
||||
func Vector2DivideV(v1, v2 Vector2) Vector2 {
|
||||
return NewVector2(v1.X/v2.X, v1.Y/v2.Y)
|
||||
}
|
||||
|
||||
// Vector2Normalize - Normalize provided vector
|
||||
func Vector2Normalize(v rl.Vector2) rl.Vector2 {
|
||||
func Vector2Normalize(v Vector2) Vector2 {
|
||||
return Vector2Scale(v, 1/Vector2Length(v))
|
||||
}
|
||||
|
||||
// Vector2Lerp - Calculate linear interpolation between two vectors
|
||||
func Vector2Lerp(v1, v2 rl.Vector2, amount float32) rl.Vector2 {
|
||||
return rl.NewVector2(v1.X+amount*(v2.X-v1.X), v1.Y+amount*(v2.Y-v1.Y))
|
||||
func Vector2Lerp(v1, v2 Vector2, amount float32) Vector2 {
|
||||
return NewVector2(v1.X+amount*(v2.X-v1.X), v1.Y+amount*(v2.Y-v1.Y))
|
||||
}
|
||||
|
||||
// Vector2CrossProduct - Calculate two vectors cross product
|
||||
func Vector2CrossProduct(v1, v2 rl.Vector2) float32 {
|
||||
func Vector2CrossProduct(v1, v2 Vector2) float32 {
|
||||
return v1.X*v2.Y - v1.Y*v2.X
|
||||
}
|
||||
|
||||
// Vector2Cross - Calculate the cross product of a vector and a value
|
||||
func Vector2Cross(value float32, vector rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(-value*vector.Y, value*vector.X)
|
||||
func Vector2Cross(value float32, vector Vector2) Vector2 {
|
||||
return NewVector2(-value*vector.Y, value*vector.X)
|
||||
}
|
||||
|
||||
// Vector2LenSqr - Returns the len square root of a vector
|
||||
func Vector2LenSqr(vector rl.Vector2) float32 {
|
||||
func Vector2LenSqr(vector Vector2) float32 {
|
||||
return vector.X*vector.X + vector.Y*vector.Y
|
||||
}
|
||||
|
||||
// Mat2Radians - Creates a matrix 2x2 from a given radians value
|
||||
func Mat2Radians(radians float32) rl.Mat2 {
|
||||
func Mat2Radians(radians float32) Mat2 {
|
||||
c := float32(math.Cos(float64(radians)))
|
||||
s := float32(math.Sin(float64(radians)))
|
||||
|
||||
return rl.NewMat2(c, -s, s, c)
|
||||
return NewMat2(c, -s, s, c)
|
||||
}
|
||||
|
||||
// Mat2Set - Set values from radians to a created matrix 2x2
|
||||
func Mat2Set(matrix *rl.Mat2, radians float32) {
|
||||
func Mat2Set(matrix *Mat2, radians float32) {
|
||||
cos := float32(math.Cos(float64(radians)))
|
||||
sin := float32(math.Sin(float64(radians)))
|
||||
|
||||
|
@ -118,33 +115,33 @@ func Mat2Set(matrix *rl.Mat2, radians float32) {
|
|||
}
|
||||
|
||||
// Mat2Transpose - Returns the transpose of a given matrix 2x2
|
||||
func Mat2Transpose(matrix rl.Mat2) rl.Mat2 {
|
||||
return rl.NewMat2(matrix.M00, matrix.M10, matrix.M01, matrix.M11)
|
||||
func Mat2Transpose(matrix Mat2) Mat2 {
|
||||
return NewMat2(matrix.M00, matrix.M10, matrix.M01, matrix.M11)
|
||||
}
|
||||
|
||||
// Mat2MultiplyVector2 - Multiplies a vector by a matrix 2x2
|
||||
func Mat2MultiplyVector2(matrix rl.Mat2, vector rl.Vector2) rl.Vector2 {
|
||||
return rl.NewVector2(matrix.M00*vector.X+matrix.M01*vector.Y, matrix.M10*vector.X+matrix.M11*vector.Y)
|
||||
func Mat2MultiplyVector2(matrix Mat2, vector Vector2) Vector2 {
|
||||
return NewVector2(matrix.M00*vector.X+matrix.M01*vector.Y, matrix.M10*vector.X+matrix.M11*vector.Y)
|
||||
}
|
||||
|
||||
// Vector3Zero - Vector with components value 0.0
|
||||
func Vector3Zero() rl.Vector3 {
|
||||
return rl.NewVector3(0.0, 0.0, 0.0)
|
||||
func Vector3Zero() Vector3 {
|
||||
return NewVector3(0.0, 0.0, 0.0)
|
||||
}
|
||||
|
||||
// Vector3One - Vector with components value 1.0
|
||||
func Vector3One() rl.Vector3 {
|
||||
return rl.NewVector3(1.0, 1.0, 1.0)
|
||||
func Vector3One() Vector3 {
|
||||
return NewVector3(1.0, 1.0, 1.0)
|
||||
}
|
||||
|
||||
// Vector3Add - Add two vectors
|
||||
func Vector3Add(v1, v2 rl.Vector3) rl.Vector3 {
|
||||
return rl.NewVector3(v1.X+v2.X, v1.Y+v2.Y, v1.Z+v2.Z)
|
||||
func Vector3Add(v1, v2 Vector3) Vector3 {
|
||||
return NewVector3(v1.X+v2.X, v1.Y+v2.Y, v1.Z+v2.Z)
|
||||
}
|
||||
|
||||
// Vector3Multiply - Multiply vector by scalar
|
||||
func Vector3Multiply(v rl.Vector3, scalar float32) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Multiply(v Vector3, scalar float32) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = v.X * scalar
|
||||
result.Y = v.Y * scalar
|
||||
|
@ -154,8 +151,8 @@ func Vector3Multiply(v rl.Vector3, scalar float32) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3MultiplyV - Multiply vector by vector
|
||||
func Vector3MultiplyV(v1, v2 rl.Vector3) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3MultiplyV(v1, v2 Vector3) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = v1.X * v2.X
|
||||
result.Y = v1.Y * v2.Y
|
||||
|
@ -165,13 +162,13 @@ func Vector3MultiplyV(v1, v2 rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Subtract - Subtract two vectors
|
||||
func Vector3Subtract(v1, v2 rl.Vector3) rl.Vector3 {
|
||||
return rl.NewVector3(v1.X-v2.X, v1.Y-v2.Y, v1.Z-v2.Z)
|
||||
func Vector3Subtract(v1, v2 Vector3) Vector3 {
|
||||
return NewVector3(v1.X-v2.X, v1.Y-v2.Y, v1.Z-v2.Z)
|
||||
}
|
||||
|
||||
// Vector3CrossProduct - Calculate two vectors cross product
|
||||
func Vector3CrossProduct(v1, v2 rl.Vector3) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3CrossProduct(v1, v2 Vector3) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = v1.Y*v2.Z - v1.Z*v2.Y
|
||||
result.Y = v1.Z*v2.X - v1.X*v2.Z
|
||||
|
@ -181,19 +178,19 @@ func Vector3CrossProduct(v1, v2 rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Perpendicular - Calculate one vector perpendicular vector
|
||||
func Vector3Perpendicular(v rl.Vector3) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Perpendicular(v Vector3) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
min := math.Abs(float64(v.X))
|
||||
cardinalAxis := rl.NewVector3(1.0, 0.0, 0.0)
|
||||
cardinalAxis := NewVector3(1.0, 0.0, 0.0)
|
||||
|
||||
if math.Abs(float64(v.Y)) < min {
|
||||
min = math.Abs(float64(v.Y))
|
||||
cardinalAxis = rl.NewVector3(0.0, 1.0, 0.0)
|
||||
cardinalAxis = NewVector3(0.0, 1.0, 0.0)
|
||||
}
|
||||
|
||||
if math.Abs(float64(v.Z)) < min {
|
||||
cardinalAxis = rl.NewVector3(0.0, 0.0, 1.0)
|
||||
cardinalAxis = NewVector3(0.0, 0.0, 1.0)
|
||||
}
|
||||
|
||||
result = Vector3CrossProduct(v, cardinalAxis)
|
||||
|
@ -202,17 +199,17 @@ func Vector3Perpendicular(v rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Length - Calculate vector length
|
||||
func Vector3Length(v rl.Vector3) float32 {
|
||||
func Vector3Length(v Vector3) float32 {
|
||||
return float32(math.Sqrt(float64(v.X*v.X + v.Y*v.Y + v.Z*v.Z)))
|
||||
}
|
||||
|
||||
// Vector3DotProduct - Calculate two vectors dot product
|
||||
func Vector3DotProduct(v1, v2 rl.Vector3) float32 {
|
||||
func Vector3DotProduct(v1, v2 Vector3) float32 {
|
||||
return v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z
|
||||
}
|
||||
|
||||
// Vector3Distance - Calculate distance between two vectors
|
||||
func Vector3Distance(v1, v2 rl.Vector3) float32 {
|
||||
func Vector3Distance(v1, v2 Vector3) float32 {
|
||||
dx := v2.X - v1.X
|
||||
dy := v2.Y - v1.Y
|
||||
dz := v2.Z - v1.Z
|
||||
|
@ -221,17 +218,17 @@ func Vector3Distance(v1, v2 rl.Vector3) float32 {
|
|||
}
|
||||
|
||||
// Vector3Scale - Scale provided vector
|
||||
func Vector3Scale(v rl.Vector3, scale float32) rl.Vector3 {
|
||||
return rl.NewVector3(v.X*scale, v.Y*scale, v.Z*scale)
|
||||
func Vector3Scale(v Vector3, scale float32) Vector3 {
|
||||
return NewVector3(v.X*scale, v.Y*scale, v.Z*scale)
|
||||
}
|
||||
|
||||
// Vector3Negate - Negate provided vector (invert direction)
|
||||
func Vector3Negate(v rl.Vector3) rl.Vector3 {
|
||||
return rl.NewVector3(-v.X, -v.Y, -v.Z)
|
||||
func Vector3Negate(v Vector3) Vector3 {
|
||||
return NewVector3(-v.X, -v.Y, -v.Z)
|
||||
}
|
||||
|
||||
// Vector3Normalize - Normalize provided vector
|
||||
func Vector3Normalize(v rl.Vector3) rl.Vector3 {
|
||||
func Vector3Normalize(v Vector3) Vector3 {
|
||||
result := v
|
||||
|
||||
var length, ilength float32
|
||||
|
@ -252,8 +249,8 @@ func Vector3Normalize(v rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Transform - Transforms a Vector3 by a given Matrix
|
||||
func Vector3Transform(v rl.Vector3, mat rl.Matrix) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Transform(v Vector3, mat Matrix) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
x := v.X
|
||||
y := v.Y
|
||||
|
@ -267,8 +264,8 @@ func Vector3Transform(v rl.Vector3, mat rl.Matrix) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Lerp - Calculate linear interpolation between two vectors
|
||||
func Vector3Lerp(v1, v2 rl.Vector3, amount float32) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Lerp(v1, v2 Vector3, amount float32) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = v1.X + amount*(v2.X-v1.X)
|
||||
result.Y = v1.Y + amount*(v2.Y-v1.Y)
|
||||
|
@ -278,12 +275,12 @@ func Vector3Lerp(v1, v2 rl.Vector3, amount float32) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Reflect - Calculate reflected vector to normal
|
||||
func Vector3Reflect(vector, normal rl.Vector3) rl.Vector3 {
|
||||
func Vector3Reflect(vector, normal Vector3) Vector3 {
|
||||
// I is the original vector
|
||||
// N is the normal of the incident plane
|
||||
// R = I - (2*N*( DotProduct[ I,N] ))
|
||||
|
||||
result := rl.Vector3{}
|
||||
result := Vector3{}
|
||||
|
||||
dotProduct := Vector3DotProduct(vector, normal)
|
||||
|
||||
|
@ -295,8 +292,8 @@ func Vector3Reflect(vector, normal rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Min - Return min value for each pair of components
|
||||
func Vector3Min(vec1, vec2 rl.Vector3) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Min(vec1, vec2 Vector3) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = float32(math.Min(float64(vec1.X), float64(vec2.X)))
|
||||
result.Y = float32(math.Min(float64(vec1.Y), float64(vec2.Y)))
|
||||
|
@ -306,8 +303,8 @@ func Vector3Min(vec1, vec2 rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Max - Return max value for each pair of components
|
||||
func Vector3Max(vec1, vec2 rl.Vector3) rl.Vector3 {
|
||||
result := rl.Vector3{}
|
||||
func Vector3Max(vec1, vec2 Vector3) Vector3 {
|
||||
result := Vector3{}
|
||||
|
||||
result.X = float32(math.Max(float64(vec1.X), float64(vec2.X)))
|
||||
result.Y = float32(math.Max(float64(vec1.Y), float64(vec2.Y)))
|
||||
|
@ -317,7 +314,7 @@ func Vector3Max(vec1, vec2 rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// Vector3Barycenter - Barycenter coords for p in triangle abc
|
||||
func Vector3Barycenter(p, a, b, c rl.Vector3) rl.Vector3 {
|
||||
func Vector3Barycenter(p, a, b, c Vector3) Vector3 {
|
||||
v0 := Vector3Subtract(b, a)
|
||||
v1 := Vector3Subtract(c, a)
|
||||
v2 := Vector3Subtract(p, a)
|
||||
|
@ -329,7 +326,7 @@ func Vector3Barycenter(p, a, b, c rl.Vector3) rl.Vector3 {
|
|||
|
||||
denom := d00*d11 - d01*d01
|
||||
|
||||
result := rl.Vector3{}
|
||||
result := Vector3{}
|
||||
|
||||
result.Y = (d11*d20 - d01*d21) / denom
|
||||
result.Z = (d00*d21 - d01*d20) / denom
|
||||
|
@ -339,7 +336,7 @@ func Vector3Barycenter(p, a, b, c rl.Vector3) rl.Vector3 {
|
|||
}
|
||||
|
||||
// MatrixDeterminant - Compute matrix determinant
|
||||
func MatrixDeterminant(mat rl.Matrix) float32 {
|
||||
func MatrixDeterminant(mat Matrix) float32 {
|
||||
var result float32
|
||||
|
||||
a00 := mat.M0
|
||||
|
@ -370,13 +367,13 @@ func MatrixDeterminant(mat rl.Matrix) float32 {
|
|||
}
|
||||
|
||||
// MatrixTrace - Returns the trace of the matrix (sum of the values along the diagonal)
|
||||
func MatrixTrace(mat rl.Matrix) float32 {
|
||||
func MatrixTrace(mat Matrix) float32 {
|
||||
return mat.M0 + mat.M5 + mat.M10 + mat.M15
|
||||
}
|
||||
|
||||
// MatrixTranspose - Transposes provided matrix
|
||||
func MatrixTranspose(mat rl.Matrix) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixTranspose(mat Matrix) Matrix {
|
||||
var result Matrix
|
||||
|
||||
result.M0 = mat.M0
|
||||
result.M1 = mat.M4
|
||||
|
@ -399,8 +396,8 @@ func MatrixTranspose(mat rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixInvert - Invert provided matrix
|
||||
func MatrixInvert(mat rl.Matrix) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixInvert(mat Matrix) Matrix {
|
||||
var result Matrix
|
||||
|
||||
a00 := mat.M0
|
||||
a01 := mat.M1
|
||||
|
@ -456,8 +453,8 @@ func MatrixInvert(mat rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixNormalize - Normalize provided matrix
|
||||
func MatrixNormalize(mat rl.Matrix) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixNormalize(mat Matrix) Matrix {
|
||||
var result Matrix
|
||||
|
||||
det := MatrixDeterminant(mat)
|
||||
|
||||
|
@ -482,8 +479,8 @@ func MatrixNormalize(mat rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixIdentity - Returns identity matrix
|
||||
func MatrixIdentity() rl.Matrix {
|
||||
return rl.NewMatrix(
|
||||
func MatrixIdentity() Matrix {
|
||||
return NewMatrix(
|
||||
1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0,
|
||||
|
@ -491,7 +488,7 @@ func MatrixIdentity() rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixAdd - Add two matrices
|
||||
func MatrixAdd(left, right rl.Matrix) rl.Matrix {
|
||||
func MatrixAdd(left, right Matrix) Matrix {
|
||||
result := MatrixIdentity()
|
||||
|
||||
result.M0 = left.M0 + right.M0
|
||||
|
@ -515,7 +512,7 @@ func MatrixAdd(left, right rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixSubtract - Subtract two matrices (left - right)
|
||||
func MatrixSubtract(left, right rl.Matrix) rl.Matrix {
|
||||
func MatrixSubtract(left, right Matrix) Matrix {
|
||||
result := MatrixIdentity()
|
||||
|
||||
result.M0 = left.M0 - right.M0
|
||||
|
@ -539,8 +536,8 @@ func MatrixSubtract(left, right rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixTranslate - Returns translation matrix
|
||||
func MatrixTranslate(x, y, z float32) rl.Matrix {
|
||||
return rl.NewMatrix(
|
||||
func MatrixTranslate(x, y, z float32) Matrix {
|
||||
return NewMatrix(
|
||||
1.0, 0.0, 0.0, x,
|
||||
0.0, 1.0, 0.0, y,
|
||||
0.0, 0.0, 1.0, z,
|
||||
|
@ -548,8 +545,8 @@ func MatrixTranslate(x, y, z float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixRotate - Returns rotation matrix for an angle around an specified axis (angle in radians)
|
||||
func MatrixRotate(axis rl.Vector3, angle float32) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixRotate(axis Vector3, angle float32) Matrix {
|
||||
var result Matrix
|
||||
|
||||
mat := MatrixIdentity()
|
||||
|
||||
|
@ -617,7 +614,7 @@ func MatrixRotate(axis rl.Vector3, angle float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixRotateX - Returns x-rotation matrix (angle in radians)
|
||||
func MatrixRotateX(angle float32) rl.Matrix {
|
||||
func MatrixRotateX(angle float32) Matrix {
|
||||
result := MatrixIdentity()
|
||||
|
||||
cosres := float32(math.Cos(float64(angle)))
|
||||
|
@ -632,7 +629,7 @@ func MatrixRotateX(angle float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixRotateY - Returns y-rotation matrix (angle in radians)
|
||||
func MatrixRotateY(angle float32) rl.Matrix {
|
||||
func MatrixRotateY(angle float32) Matrix {
|
||||
result := MatrixIdentity()
|
||||
|
||||
cosres := float32(math.Cos(float64(angle)))
|
||||
|
@ -647,7 +644,7 @@ func MatrixRotateY(angle float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixRotateZ - Returns z-rotation matrix (angle in radians)
|
||||
func MatrixRotateZ(angle float32) rl.Matrix {
|
||||
func MatrixRotateZ(angle float32) Matrix {
|
||||
result := MatrixIdentity()
|
||||
|
||||
cosres := float32(math.Cos(float64(angle)))
|
||||
|
@ -662,8 +659,8 @@ func MatrixRotateZ(angle float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixScale - Returns scaling matrix
|
||||
func MatrixScale(x, y, z float32) rl.Matrix {
|
||||
result := rl.NewMatrix(
|
||||
func MatrixScale(x, y, z float32) Matrix {
|
||||
result := NewMatrix(
|
||||
x, 0.0, 0.0, 0.0,
|
||||
0.0, y, 0.0, 0.0,
|
||||
0.0, 0.0, z, 0.0,
|
||||
|
@ -673,8 +670,8 @@ func MatrixScale(x, y, z float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixMultiply - Returns two matrix multiplication
|
||||
func MatrixMultiply(left, right rl.Matrix) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixMultiply(left, right Matrix) Matrix {
|
||||
var result Matrix
|
||||
|
||||
result.M0 = right.M0*left.M0 + right.M1*left.M4 + right.M2*left.M8 + right.M3*left.M12
|
||||
result.M1 = right.M0*left.M1 + right.M1*left.M5 + right.M2*left.M9 + right.M3*left.M13
|
||||
|
@ -697,8 +694,8 @@ func MatrixMultiply(left, right rl.Matrix) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixFrustum - Returns perspective projection matrix
|
||||
func MatrixFrustum(left, right, bottom, top, near, far float32) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixFrustum(left, right, bottom, top, near, far float32) Matrix {
|
||||
var result Matrix
|
||||
|
||||
rl := right - left
|
||||
tb := top - bottom
|
||||
|
@ -728,16 +725,16 @@ func MatrixFrustum(left, right, bottom, top, near, far float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixPerspective - Returns perspective projection matrix
|
||||
func MatrixPerspective(fovy, aspect, near, far float32) rl.Matrix {
|
||||
top := near * float32(math.Tan(float64(fovy*rl.Pi)/360.0))
|
||||
func MatrixPerspective(fovy, aspect, near, far float32) Matrix {
|
||||
top := near * float32(math.Tan(float64(fovy*Pi)/360.0))
|
||||
right := top * aspect
|
||||
|
||||
return MatrixFrustum(-right, right, -top, top, near, far)
|
||||
}
|
||||
|
||||
// MatrixOrtho - Returns orthographic projection matrix
|
||||
func MatrixOrtho(left, right, bottom, top, near, far float32) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixOrtho(left, right, bottom, top, near, far float32) Matrix {
|
||||
var result Matrix
|
||||
|
||||
rl := right - left
|
||||
tb := top - bottom
|
||||
|
@ -764,8 +761,8 @@ func MatrixOrtho(left, right, bottom, top, near, far float32) rl.Matrix {
|
|||
}
|
||||
|
||||
// MatrixLookAt - Returns camera look-at matrix (view matrix)
|
||||
func MatrixLookAt(eye, target, up rl.Vector3) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func MatrixLookAt(eye, target, up Vector3) Matrix {
|
||||
var result Matrix
|
||||
|
||||
z := Vector3Subtract(eye, target)
|
||||
z = Vector3Normalize(z)
|
||||
|
@ -795,13 +792,13 @@ func MatrixLookAt(eye, target, up rl.Vector3) rl.Matrix {
|
|||
}
|
||||
|
||||
// QuaternionLength - Compute the length of a quaternion
|
||||
func QuaternionLength(quat rl.Quaternion) float32 {
|
||||
func QuaternionLength(quat Quaternion) float32 {
|
||||
return float32(math.Sqrt(float64(quat.X*quat.X + quat.Y*quat.Y + quat.Z*quat.Z + quat.W*quat.W)))
|
||||
}
|
||||
|
||||
// QuaternionNormalize - Normalize provided quaternion
|
||||
func QuaternionNormalize(q rl.Quaternion) rl.Quaternion {
|
||||
var result rl.Quaternion
|
||||
func QuaternionNormalize(q Quaternion) Quaternion {
|
||||
var result Quaternion
|
||||
|
||||
var length, ilength float32
|
||||
|
||||
|
@ -822,7 +819,7 @@ func QuaternionNormalize(q rl.Quaternion) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionInvert - Invert provided quaternion
|
||||
func QuaternionInvert(quat rl.Quaternion) rl.Quaternion {
|
||||
func QuaternionInvert(quat Quaternion) Quaternion {
|
||||
result := quat
|
||||
|
||||
length := QuaternionLength(quat)
|
||||
|
@ -841,8 +838,8 @@ func QuaternionInvert(quat rl.Quaternion) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionMultiply - Calculate two quaternion multiplication
|
||||
func QuaternionMultiply(q1, q2 rl.Quaternion) rl.Quaternion {
|
||||
var result rl.Quaternion
|
||||
func QuaternionMultiply(q1, q2 Quaternion) Quaternion {
|
||||
var result Quaternion
|
||||
|
||||
qax := q1.X
|
||||
qay := q1.Y
|
||||
|
@ -862,8 +859,8 @@ func QuaternionMultiply(q1, q2 rl.Quaternion) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionSlerp - Calculates spherical linear interpolation between two quaternions
|
||||
func QuaternionSlerp(q1, q2 rl.Quaternion, amount float32) rl.Quaternion {
|
||||
var result rl.Quaternion
|
||||
func QuaternionSlerp(q1, q2 Quaternion, amount float32) Quaternion {
|
||||
var result Quaternion
|
||||
|
||||
cosHalfTheta := q1.X*q2.X + q1.Y*q2.Y + q1.Z*q2.Z + q1.W*q2.W
|
||||
|
||||
|
@ -893,8 +890,8 @@ func QuaternionSlerp(q1, q2 rl.Quaternion, amount float32) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionFromMatrix - Returns a quaternion for a given rotation matrix
|
||||
func QuaternionFromMatrix(matrix rl.Matrix) rl.Quaternion {
|
||||
var result rl.Quaternion
|
||||
func QuaternionFromMatrix(matrix Matrix) Quaternion {
|
||||
var result Quaternion
|
||||
|
||||
trace := MatrixTrace(matrix)
|
||||
|
||||
|
@ -942,8 +939,8 @@ func QuaternionFromMatrix(matrix rl.Matrix) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionToMatrix - Returns a matrix for a given quaternion
|
||||
func QuaternionToMatrix(q rl.Quaternion) rl.Matrix {
|
||||
var result rl.Matrix
|
||||
func QuaternionToMatrix(q Quaternion) Matrix {
|
||||
var result Matrix
|
||||
|
||||
x := q.X
|
||||
y := q.Y
|
||||
|
@ -987,8 +984,8 @@ func QuaternionToMatrix(q rl.Quaternion) rl.Matrix {
|
|||
}
|
||||
|
||||
// QuaternionFromAxisAngle - Returns rotation quaternion for an angle and axis
|
||||
func QuaternionFromAxisAngle(axis rl.Vector3, angle float32) rl.Quaternion {
|
||||
result := rl.NewQuaternion(0.0, 0.0, 0.0, 1.0)
|
||||
func QuaternionFromAxisAngle(axis Vector3, angle float32) Quaternion {
|
||||
result := NewQuaternion(0.0, 0.0, 0.0, 1.0)
|
||||
|
||||
if Vector3Length(axis) != 0.0 {
|
||||
angle *= 0.5
|
||||
|
@ -1010,12 +1007,12 @@ func QuaternionFromAxisAngle(axis rl.Vector3, angle float32) rl.Quaternion {
|
|||
}
|
||||
|
||||
// QuaternionToAxisAngle - Returns the rotation angle and axis for a given quaternion
|
||||
func QuaternionToAxisAngle(q rl.Quaternion, outAxis *rl.Vector3, outAngle *float32) {
|
||||
func QuaternionToAxisAngle(q Quaternion, outAxis *Vector3, outAngle *float32) {
|
||||
if math.Abs(float64(q.W)) > 1.0 {
|
||||
q = QuaternionNormalize(q)
|
||||
}
|
||||
|
||||
resAxis := rl.NewVector3(0.0, 0.0, 0.0)
|
||||
resAxis := NewVector3(0.0, 0.0, 0.0)
|
||||
|
||||
resAngle := 2.0 * float32(math.Acos(float64(q.W)))
|
||||
den := float32(math.Sqrt(float64(1.0 - q.W*q.W)))
|
||||
|
@ -1035,8 +1032,8 @@ func QuaternionToAxisAngle(q rl.Quaternion, outAxis *rl.Vector3, outAngle *float
|
|||
}
|
||||
|
||||
// QuaternionTransform - Transform a quaternion given a transformation matrix
|
||||
func QuaternionTransform(q rl.Quaternion, mat rl.Matrix) rl.Quaternion {
|
||||
var result rl.Quaternion
|
||||
func QuaternionTransform(q Quaternion, mat Matrix) Quaternion {
|
||||
var result Quaternion
|
||||
|
||||
x := q.X
|
||||
y := q.Y
|
|
@ -1,3 +0,0 @@
|
|||
## raymath [](https://godoc.org/github.com/gen2brain/raylib-go/raymath)
|
||||
|
||||
Some useful functions to work with Vector2, Vector3, Matrix and Quaternions.
|
Loading…
Add table
Add a link
Reference in a new issue