Update C sources

This commit is contained in:
Milan Nikolic 2023-11-04 13:06:19 +01:00
parent 443f35cfac
commit 15fba7e9ac
No known key found for this signature in database
GPG key ID: 9229D0EAA3AA4E75
29 changed files with 31985 additions and 22038 deletions

View file

@ -2,25 +2,30 @@
*
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
*
* CONFIGURATION:
*
* #define RAYMATH_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define RAYMATH_STATIC_INLINE
* Define static inline functions code, so #include header suffices for use.
* This may use up lots of memory.
*
* CONVENTIONS:
*
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
* math operations performed by the library consider the structure as it was column-major
* It is like transposed versions of the matrices are used for all the maths
* It benefits some functions making them cache-friendly and also avoids matrix
* transpositions sometimes required by OpenGL
* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
* - Functions are always self-contained, no function use another raymath function inside,
* required code is directly re-implemented inside
* - Functions input parameters are always received by value (2 unavoidable exceptions)
* - Functions use always a "result" variable for return
* - Functions are always defined inline
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
* - No compound literals used to make sure libray is compatible with C++
*
* CONFIGURATION:
* #define RAYMATH_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define RAYMATH_STATIC_INLINE
* Define static inline functions code, so #include header suffices for use.
* This may use up lots of memory.
*
*
* LICENSE: zlib/libpng
@ -209,6 +214,10 @@ RMAPI float Wrap(float value, float min, float max)
// Check whether two given floats are almost equal
RMAPI int FloatEquals(float x, float y)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));
return result;
@ -310,7 +319,12 @@ RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
// NOTE: Angle is calculated from origin point (0, 0)
RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
{
float result = atan2f(v2.y - v1.y, v2.x - v1.x);
float result = 0.0f;
float dot = v1.x*v2.x + v1.y*v2.y;
float det = v1.x*v2.y - v1.y*v2.x;
result = atan2f(det, dot);
return result;
}
@ -322,17 +336,8 @@ RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
{
float result = 0.0f;
float dot = start.x*end.x + start.y*end.y; // Dot product
float dotClamp = (dot < -1.0f)? -1.0f : dot; // Clamp
if (dotClamp > 1.0f) dotClamp = 1.0f;
result = acosf(dotClamp);
// Alternative implementation, more costly
//float v1Length = sqrtf((start.x*start.x) + (start.y*start.y));
//float v2Length = sqrtf((end.x*end.x) + (end.y*end.y));
//float result = -acosf((start.x*end.x + start.y*end.y)/(v1Length*v2Length));
// TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
result = -atan2f(end.y - start.y, end.x - start.x);
return result;
}
@ -507,6 +512,10 @@ RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
// Check whether two given vectors are almost equal
RMAPI int Vector2Equals(Vector2 p, Vector2 q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));
@ -703,12 +712,48 @@ RMAPI Vector3 Vector3Normalize(Vector3 v)
Vector3 result = v;
float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f/length;
if (length != 0.0f)
{
float ilength = 1.0f/length;
result.x *= ilength;
result.y *= ilength;
result.z *= ilength;
result.x *= ilength;
result.y *= ilength;
result.z *= ilength;
}
return result;
}
//Calculate the projection of the vector v1 on to v2
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
float mag = v1dv2/v2dv2;
result.x = v2.x*mag;
result.y = v2.y*mag;
result.z = v2.z*mag;
return result;
}
//Calculate the rejection of the vector v1 on to v2
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
{
Vector3 result = { 0 };
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
float mag = v1dv2/v2dv2;
result.x = v1.x - (v2.x*mag);
result.y = v1.y - (v2.y*mag);
result.z = v1.z - (v2.z*mag);
return result;
}
@ -785,7 +830,7 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
Vector3 result = v;
// Vector3Normalize(axis);
float length = sqrtf(axis.x * axis.x + axis.y * axis.y + axis.z * axis.z);
float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
if (length == 0.0f) length = 1.0f;
float ilength = 1.0f / length;
axis.x *= ilength;
@ -794,19 +839,19 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
angle /= 2.0f;
float a = sinf(angle);
float b = axis.x * a;
float c = axis.y * a;
float d = axis.z * a;
float b = axis.x*a;
float c = axis.y*a;
float d = axis.z*a;
a = cosf(angle);
Vector3 w = { b, c, d };
// Vector3CrossProduct(w, v)
Vector3 wv = { w.y * v.z - w.z * v.y, w.z * v.x - w.x * v.z, w.x * v.y - w.y * v.x };
Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };
// Vector3CrossProduct(w, wv)
Vector3 wwv = { w.y * wv.z - w.z * wv.y, w.z * wv.x - w.x * wv.z, w.x * wv.y - w.y * wv.x };
Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };
// Vector3Scale(wv, 2 * a)
// Vector3Scale(wv, 2*a)
a *= 2;
wv.x *= a;
wv.y *= a;
@ -1055,19 +1100,22 @@ RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
// Check whether two given vectors are almost equal
RMAPI int Vector3Equals(Vector3 p, Vector3 q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
return result;
}
// Compute the direction of a refracted ray where v specifies the
// normalized direction of the incoming ray, n specifies the
// normalized normal vector of the interface of two optical media,
// and r specifies the ratio of the refractive index of the medium
// from where the ray comes to the refractive index of the medium
// on the other side of the surface
// Compute the direction of a refracted ray
// v: normalized direction of the incoming ray
// n: normalized normal vector of the interface of two optical media
// r: ratio of the refractive index of the medium from where the ray comes
// to the refractive index of the medium on the other side of the surface
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
{
Vector3 result = { 0 };
@ -1509,11 +1557,11 @@ RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top,
// Get perspective projection matrix
// NOTE: Fovy angle must be provided in radians
RMAPI Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
{
Matrix result = { 0 };
double top = near*tan(fovy*0.5);
double top = nearPlane*tan(fovY*0.5);
double bottom = -top;
double right = top*aspect;
double left = -right;
@ -1521,27 +1569,27 @@ RMAPI Matrix MatrixPerspective(double fovy, double aspect, double near, double f
// MatrixFrustum(-right, right, -top, top, near, far);
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(far - near);
float fn = (float)(farPlane - nearPlane);
result.m0 = ((float)near*2.0f)/rl;
result.m5 = ((float)near*2.0f)/tb;
result.m0 = ((float)nearPlane*2.0f)/rl;
result.m5 = ((float)nearPlane*2.0f)/tb;
result.m8 = ((float)right + (float)left)/rl;
result.m9 = ((float)top + (float)bottom)/tb;
result.m10 = -((float)far + (float)near)/fn;
result.m10 = -((float)farPlane + (float)nearPlane)/fn;
result.m11 = -1.0f;
result.m14 = -((float)far*(float)near*2.0f)/fn;
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
return result;
}
// Get orthographic projection matrix
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
Matrix result = { 0 };
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(far - near);
float fn = (float)(farPlane - nearPlane);
result.m0 = 2.0f/rl;
result.m1 = 0.0f;
@ -1557,7 +1605,7 @@ RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, d
result.m11 = 0.0f;
result.m12 = -((float)left + (float)right)/rl;
result.m13 = -((float)top + (float)bottom)/tb;
result.m14 = -((float)far + (float)near)/fn;
result.m14 = -((float)farPlane + (float)nearPlane)/fn;
result.m15 = 1.0f;
return result;
@ -1812,6 +1860,10 @@ RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result = { 0 };
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
if (cosHalfTheta < 0)
@ -1827,7 +1879,7 @@ RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
float halfTheta = acosf(cosHalfTheta);
float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
if (fabsf(sinHalfTheta) < 0.001f)
if (fabsf(sinHalfTheta) < EPSILON)
{
result.x = (q1.x*0.5f + q2.x*0.5f);
result.y = (q1.y*0.5f + q2.y*0.5f);
@ -1882,9 +1934,9 @@ RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
{
Quaternion result = { 0 };
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10;
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10;
float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10;
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10;
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10;
float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10;
float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;
int biggestIndex = 0;
@ -1907,34 +1959,34 @@ RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
biggestIndex = 3;
}
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f) * 0.5f;
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
float mult = 0.25f / biggestVal;
switch (biggestIndex)
{
case 0:
result.w = biggestVal;
result.x = (mat.m6 - mat.m9) * mult;
result.y = (mat.m8 - mat.m2) * mult;
result.z = (mat.m1 - mat.m4) * mult;
result.x = (mat.m6 - mat.m9)*mult;
result.y = (mat.m8 - mat.m2)*mult;
result.z = (mat.m1 - mat.m4)*mult;
break;
case 1:
result.x = biggestVal;
result.w = (mat.m6 - mat.m9) * mult;
result.y = (mat.m1 + mat.m4) * mult;
result.z = (mat.m8 + mat.m2) * mult;
result.w = (mat.m6 - mat.m9)*mult;
result.y = (mat.m1 + mat.m4)*mult;
result.z = (mat.m8 + mat.m2)*mult;
break;
case 2:
result.y = biggestVal;
result.w = (mat.m8 - mat.m2) * mult;
result.x = (mat.m1 + mat.m4) * mult;
result.z = (mat.m6 + mat.m9) * mult;
result.w = (mat.m8 - mat.m2)*mult;
result.x = (mat.m1 + mat.m4)*mult;
result.z = (mat.m6 + mat.m9)*mult;
break;
case 3:
result.z = biggestVal;
result.w = (mat.m1 - mat.m4) * mult;
result.x = (mat.m8 + mat.m2) * mult;
result.y = (mat.m6 + mat.m9) * mult;
result.w = (mat.m1 - mat.m4)*mult;
result.x = (mat.m8 + mat.m2)*mult;
result.y = (mat.m6 + mat.m9)*mult;
break;
}
@ -2040,7 +2092,7 @@ RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle
float resAngle = 2.0f*acosf(q.w);
float den = sqrtf(1.0f - q.w*q.w);
if (den > 0.0001f)
if (den > EPSILON)
{
resAxis.x = q.x/den;
resAxis.y = q.y/den;
@ -2119,11 +2171,15 @@ RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
// Check whether two given quaternions are almost equal
RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
{
#if !defined(EPSILON)
#define EPSILON 0.000001f
#endif
int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
(((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
(((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));