Update C sources, add new functions

This commit is contained in:
Milan Nikolic 2017-10-26 19:00:27 +02:00
parent 661c7a9f55
commit 0f4ce7d6d9
30 changed files with 8465 additions and 2315 deletions

View file

@ -1,6 +1,6 @@
/**********************************************************************************************
*
* raymath v1.0 - Math functions to work with Vector3, Matrix and Quaternions
* raymath v1.1 - Math functions to work with Vector3, Matrix and Quaternions
*
* CONFIGURATION:
*
@ -19,7 +19,7 @@
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
* Copyright (c) 2015-2017 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
@ -124,7 +124,7 @@ RMDEF Vector2 Vector2Zero(void); // Vector with c
RMDEF Vector2 Vector2One(void); // Vector with components value 1.0f
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2); // Add two vectors (v1 + v2)
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2); // Subtract two vectors (v1 - v2)
RMDEF float Vector2Lenght(Vector2 v); // Calculate vector lenght
RMDEF float Vector2Length(Vector2 v); // Calculate vector length
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2); // Calculate two vectors dot product
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2); // Calculate distance between two vectors
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2); // Calculate angle between two vectors in X-axis
@ -136,24 +136,27 @@ RMDEF void Vector2Normalize(Vector2 *v); // Normalize pro
//------------------------------------------------------------------------------------
// Functions Declaration to work with Vector3
//------------------------------------------------------------------------------------
RMDEF Vector3 VectorZero(void); // Vector with components value 0.0f
RMDEF Vector3 VectorOne(void); // Vector with components value 1.0f
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
RMDEF Vector3 Vector3Zero(void); // Vector with components value 0.0f
RMDEF Vector3 Vector3One(void); // Vector with components value 1.0f
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2); // Add two vectors
RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar); // Multiply vector by scalar
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2); // Multiply vector by vector
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2); // Substract two vectors
RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
RMDEF Vector3 Vector3Perpendicular(Vector3 v); // Calculate one vector perpendicular vector
RMDEF float Vector3Length(const Vector3 v); // Calculate vector length
RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
RMDEF float Vector3Distance(Vector3 v1, Vector3 v2); // Calculate distance between two points
RMDEF void Vector3Scale(Vector3 *v, float scale); // Scale provided vector
RMDEF void Vector3Negate(Vector3 *v); // Negate provided vector (invert direction)
RMDEF void Vector3Normalize(Vector3 *v); // Normalize provided vector
RMDEF void Vector3Transform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
RMDEF Vector3 Vector3Reflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
RMDEF Vector3 Vector3Min(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
RMDEF Vector3 Vector3Max(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
RMDEF float *Vector3ToFloat(Vector3 vec); // Returns Vector3 as float array
//------------------------------------------------------------------------------------
// Functions Declaration to work with Matrix
@ -177,20 +180,27 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix)
RMDEF float *MatrixToFloat(Matrix mat); // Returns float array of Matrix data
//------------------------------------------------------------------------------------
// Functions Declaration to work with Quaternions
//------------------------------------------------------------------------------------
RMDEF Quaternion QuaternionIdentity(void); // Returns identity quaternion
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount); // Calculate linear interpolation between two quaternions
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount); // Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount); // Calculate slerp-optimized interpolation between two quaternions
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to); // Calculate quaternion based on the rotation from one vector to another
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle); // Returns rotation quaternion for an angle and axis
RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle); // Returns the rotation angle and axis for a given quaternion
RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle); // Returns the rotation angle and axis for a given quaternion
RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw); // Returns he quaternion equivalent to Euler angles
RMDEF Vector3 QuaternionToEuler(Quaternion q); // Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
#endif // notdef RAYMATH_EXTERN_INLINE
@ -234,8 +244,8 @@ RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
return (Vector2){ v1.x - v2.x, v1.y - v2.y };
}
// Calculate vector lenght
RMDEF float Vector2Lenght(Vector2 v)
// Calculate vector length
RMDEF float Vector2Length(Vector2 v)
{
return sqrtf((v.x*v.x) + (v.y*v.y));
}
@ -285,7 +295,7 @@ RMDEF void Vector2Divide(Vector2 *v, float div)
// Normalize provided vector
RMDEF void Vector2Normalize(Vector2 *v)
{
Vector2Divide(v, Vector2Lenght(*v));
Vector2Divide(v, Vector2Length(*v));
}
//----------------------------------------------------------------------------------
@ -293,25 +303,47 @@ RMDEF void Vector2Normalize(Vector2 *v)
//----------------------------------------------------------------------------------
// Vector with components value 0.0f
RMDEF Vector3 VectorZero(void) { return (Vector3){ 0.0f, 0.0f, 0.0f }; }
RMDEF Vector3 Vector3Zero(void) { return (Vector3){ 0.0f, 0.0f, 0.0f }; }
// Vector with components value 1.0f
RMDEF Vector3 VectorOne(void) { return (Vector3){ 1.0f, 1.0f, 1.0f }; }
RMDEF Vector3 Vector3One(void) { return (Vector3){ 1.0f, 1.0f, 1.0f }; }
// Add two vectors
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
{
return (Vector3){ v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
}
// Substract two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
{
return (Vector3){ v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
}
// Multiply vector by scalar
RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar)
{
v.x *= scalar;
v.y *= scalar;
v.z *= scalar;
return v;
}
// Multiply vector by vector
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2)
{
Vector3 result;
result.x = v1.x * v2.x;
result.y = v1.y * v2.y;
result.z = v1.z * v2.z;
return result;
}
// Calculate two vectors cross product
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
{
Vector3 result;
@ -323,7 +355,7 @@ RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
}
// Calculate one vector perpendicular vector
RMDEF Vector3 VectorPerpendicular(Vector3 v)
RMDEF Vector3 Vector3Perpendicular(Vector3 v)
{
Vector3 result;
@ -341,25 +373,25 @@ RMDEF Vector3 VectorPerpendicular(Vector3 v)
cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
}
result = VectorCrossProduct(v, cardinalAxis);
result = Vector3CrossProduct(v, cardinalAxis);
return result;
}
// Calculate vector lenght
RMDEF float VectorLength(const Vector3 v)
// Calculate vector length
RMDEF float Vector3Length(const Vector3 v)
{
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
}
// Calculate two vectors dot product
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
{
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}
// Calculate distance between two vectors
RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
{
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
@ -369,7 +401,7 @@ RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
}
// Scale provided vector
RMDEF void VectorScale(Vector3 *v, float scale)
RMDEF void Vector3Scale(Vector3 *v, float scale)
{
v->x *= scale;
v->y *= scale;
@ -377,7 +409,7 @@ RMDEF void VectorScale(Vector3 *v, float scale)
}
// Negate provided vector (invert direction)
RMDEF void VectorNegate(Vector3 *v)
RMDEF void Vector3Negate(Vector3 *v)
{
v->x = -v->x;
v->y = -v->y;
@ -385,11 +417,11 @@ RMDEF void VectorNegate(Vector3 *v)
}
// Normalize provided vector
RMDEF void VectorNormalize(Vector3 *v)
RMDEF void Vector3Normalize(Vector3 *v)
{
float length, ilength;
length = VectorLength(*v);
length = Vector3Length(*v);
if (length == 0.0f) length = 1.0f;
@ -401,8 +433,7 @@ RMDEF void VectorNormalize(Vector3 *v)
}
// Transforms a Vector3 by a given Matrix
// TODO: Review math (matrix transpose required?)
RMDEF void VectorTransform(Vector3 *v, Matrix mat)
RMDEF void Vector3Transform(Vector3 *v, Matrix mat)
{
float x = v->x;
float y = v->y;
@ -414,7 +445,7 @@ RMDEF void VectorTransform(Vector3 *v, Matrix mat)
};
// Calculate linear interpolation between two vectors
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
{
Vector3 result;
@ -426,7 +457,7 @@ RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
}
// Calculate reflected vector to normal
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
RMDEF Vector3 Vector3Reflect(Vector3 vector, Vector3 normal)
{
// I is the original vector
// N is the normal of the incident plane
@ -434,7 +465,7 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
Vector3 result;
float dotProduct = VectorDotProduct(vector, normal);
float dotProduct = Vector3DotProduct(vector, normal);
result.x = vector.x - (2.0f*normal.x)*dotProduct;
result.y = vector.y - (2.0f*normal.y)*dotProduct;
@ -444,7 +475,7 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
}
// Return min value for each pair of components
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2)
RMDEF Vector3 Vector3Min(Vector3 vec1, Vector3 vec2)
{
Vector3 result;
@ -456,7 +487,7 @@ RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2)
}
// Return max value for each pair of components
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2)
RMDEF Vector3 Vector3Max(Vector3 vec1, Vector3 vec2)
{
Vector3 result;
@ -469,18 +500,18 @@ RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2)
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
{
//Vector v0 = b - a, v1 = c - a, v2 = p - a;
Vector3 v0 = VectorSubtract(b, a);
Vector3 v1 = VectorSubtract(c, a);
Vector3 v2 = VectorSubtract(p, a);
float d00 = VectorDotProduct(v0, v0);
float d01 = VectorDotProduct(v0, v1);
float d11 = VectorDotProduct(v1, v1);
float d20 = VectorDotProduct(v2, v0);
float d21 = VectorDotProduct(v2, v1);
Vector3 v0 = Vector3Subtract(b, a);
Vector3 v1 = Vector3Subtract(c, a);
Vector3 v2 = Vector3Subtract(p, a);
float d00 = Vector3DotProduct(v0, v0);
float d01 = Vector3DotProduct(v0, v1);
float d11 = Vector3DotProduct(v1, v1);
float d20 = Vector3DotProduct(v2, v0);
float d21 = Vector3DotProduct(v2, v1);
float denom = d00*d11 - d01*d01;
@ -493,6 +524,18 @@ RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
return result;
}
// Returns Vector3 as float array
RMDEF float *Vector3ToFloat(Vector3 vec)
{
static float buffer[3];
buffer[0] = vec.x;
buffer[1] = vec.y;
buffer[2] = vec.z;
return buffer;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------
@ -683,10 +726,10 @@ RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
// Returns translation matrix
RMDEF Matrix MatrixTranslate(float x, float y, float z)
{
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
x, y, z, 1.0f };
Matrix result = { 1.0f, 0.0f, 0.0f, x,
0.0f, 1.0f, 0.0f, y,
0.0f, 0.0f, 1.0f, z,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
@ -811,22 +854,22 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
{
Matrix result;
result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12;
result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13;
result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14;
result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15;
result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12;
result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13;
result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14;
result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15;
result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12;
result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13;
result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14;
result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15;
result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12;
result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13;
result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14;
result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15;
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
return result;
}
@ -864,9 +907,10 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
}
// Returns perspective projection matrix
// NOTE: Angle should be provided in radians
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
{
double top = near*tan(fovy*PI/360.0);
double top = near*tan(fovy*0.5);
double right = top*aspect;
return MatrixFrustum(-right, right, -top, top, near, far);
@ -906,37 +950,70 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
Matrix result;
Vector3 z = VectorSubtract(eye, target);
VectorNormalize(&z);
Vector3 x = VectorCrossProduct(up, z);
VectorNormalize(&x);
Vector3 y = VectorCrossProduct(z, x);
VectorNormalize(&y);
Vector3 z = Vector3Subtract(eye, target);
Vector3Normalize(&z);
Vector3 x = Vector3CrossProduct(up, z);
Vector3Normalize(&x);
Vector3 y = Vector3CrossProduct(z, x);
Vector3Normalize(&y);
result.m0 = x.x;
result.m1 = x.y;
result.m2 = x.z;
result.m3 = -((x.x*eye.x) + (x.y*eye.y) + (x.z*eye.z));
result.m3 = 0.0f;
result.m4 = y.x;
result.m5 = y.y;
result.m6 = y.z;
result.m7 = -((y.x*eye.x) + (y.y*eye.y) + (y.z*eye.z));
result.m7 = 0.0f;
result.m8 = z.x;
result.m9 = z.y;
result.m10 = z.z;
result.m11 = -((z.x*eye.x) + (z.y*eye.y) + (z.z*eye.z));
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = 0.0f;
result.m11 = 0.0f;
result.m12 = eye.x;
result.m13 = eye.y;
result.m14 = eye.z;
result.m15 = 1.0f;
MatrixInvert(&result);
return result;
}
// Returns float array of matrix data
RMDEF float *MatrixToFloat(Matrix mat)
{
static float buffer[16];
buffer[0] = mat.m0;
buffer[1] = mat.m1;
buffer[2] = mat.m2;
buffer[3] = mat.m3;
buffer[4] = mat.m4;
buffer[5] = mat.m5;
buffer[6] = mat.m6;
buffer[7] = mat.m7;
buffer[8] = mat.m8;
buffer[9] = mat.m9;
buffer[10] = mat.m10;
buffer[11] = mat.m11;
buffer[12] = mat.m12;
buffer[13] = mat.m13;
buffer[14] = mat.m14;
buffer[15] = mat.m15;
return buffer;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Quaternion math
//----------------------------------------------------------------------------------
// Returns identity quaternion
RMDEF Quaternion QuaternionIdentity(void)
{
return (Quaternion){ 0.0f, 0.0f, 0.0f, 1.0f };
}
// Computes the length of a quaternion
RMDEF float QuaternionLength(Quaternion quat)
{
@ -993,6 +1070,19 @@ RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
return result;
}
// Calculate linear interpolation between two quaternions
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result;
result.x = q1.x + amount*(q2.x - q1.x);
result.y = q1.y + amount*(q2.y - q1.y);
result.z = q1.z + amount*(q2.z - q1.z);
result.w = q1.w + amount*(q2.w - q1.w);
return result;
}
// Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
@ -1001,6 +1091,7 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
if (fabs(cosHalfTheta) >= 1.0f) result = q1;
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
else
{
float halfTheta = acos(cosHalfTheta);
@ -1028,6 +1119,37 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
return result;
}
// Calculate slerp-optimized interpolation between two quaternions
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
{
Quaternion result = QuaternionLerp(q1, q2, amount);
QuaternionNormalize(&result);
return result;
}
// Calculate quaternion based on the rotation from one vector to another
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
{
Quaternion q = { 0 };
float cos2Theta = Vector3DotProduct(from, to);
Vector3 cross = Vector3CrossProduct(from, to);
q.x = cross.x;
q.y = cross.y;
q.z = cross.y;
q.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity()
// Normalize to essentially nlerp the original and identity to 0.5
QuaternionNormalize(&q);
// Above lines are equivalent to:
//Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
return q;
}
// Returns a quaternion for a given rotation matrix
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
{
@ -1094,18 +1216,21 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
float x2 = x + x;
float y2 = y + y;
float z2 = z + z;
float length = QuaternionLength(q);
float lengthSquared = length*length;
float xx = x*x2;
float xy = x*y2;
float xz = x*z2;
float xx = x*x2/lengthSquared;
float xy = x*y2/lengthSquared;
float xz = x*z2/lengthSquared;
float yy = y*y2;
float yz = y*z2;
float zz = z*z2;
float yy = y*y2/lengthSquared;
float yz = y*z2/lengthSquared;
float zz = z*z2/lengthSquared;
float wx = w*x2;
float wy = w*y2;
float wz = w*z2;
float wx = w*x2/lengthSquared;
float wy = w*y2/lengthSquared;
float wz = w*z2/lengthSquared;
result.m0 = 1.0f - (yy + zz);
result.m1 = xy - wz;
@ -1133,11 +1258,11 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
{
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
if (VectorLength(axis) != 0.0f)
if (Vector3Length(axis) != 0.0f)
angle *= 0.5f;
VectorNormalize(&axis);
Vector3Normalize(&axis);
float sinres = sinf(angle);
float cosres = cosf(angle);
@ -1180,6 +1305,51 @@ RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle
*outAngle = resAngle;
}
// Returns he quaternion equivalent to Euler angles
RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
{
Quaternion q = { 0 };
float x0 = cosf(roll*0.5f);
float x1 = sinf(roll*0.5f);
float y0 = cosf(pitch*0.5f);
float y1 = sinf(pitch*0.5f);
float z0 = cosf(yaw*0.5f);
float z1 = sinf(yaw*0.5f);
q.x = x1*y0*z0 - x0*y1*z1;
q.y = x0*y1*z0 + x1*y0*z1;
q.z = x0*y0*z1 - x1*y1*z0;
q.w = x0*y0*z0 + x1*y1*z1;
return q;
}
// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
// NOTE: Angles are returned in a Vector3 struct in degrees
RMDEF Vector3 QuaternionToEuler(Quaternion q)
{
Vector3 v = { 0 };
// roll (x-axis rotation)
float x0 = 2.0f*(q.w*q.x + q.y*q.z);
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
v.x = atan2f(x0, x1)*RAD2DEG;
// pitch (y-axis rotation)
float y0 = 2.0f*(q.w*q.y - q.z*q.x);
y0 = y0 > 1.0f ? 1.0f : y0;
y0 = y0 < -1.0f ? -1.0f : y0;
v.y = asinf(y0)*RAD2DEG;
// yaw (z-axis rotation)
float z0 = 2.0f*(q.w*q.z + q.x*q.y);
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
v.z = atan2f(z0, z1)*RAD2DEG;
return v;
}
// Transform a quaternion given a transformation matrix
RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
{