Update C sources, add new functions and rename package to
This commit is contained in:
parent
391c25482d
commit
08aa518a46
156 changed files with 34542 additions and 19573 deletions
245
raylib/raymath.h
245
raylib/raymath.h
|
@ -12,9 +12,9 @@
|
|||
* #define RAYMATH_HEADER_ONLY
|
||||
* Define static inline functions code, so #include header suffices for use.
|
||||
* This may use up lots of memory.
|
||||
*
|
||||
*
|
||||
* #define RAYMATH_STANDALONE
|
||||
* Avoid raylib.h header inclusion in this file.
|
||||
* Avoid raylib.h header inclusion in this file.
|
||||
* Vector3 and Matrix data types are defined internally in raymath module.
|
||||
*
|
||||
*
|
||||
|
@ -60,7 +60,13 @@
|
|||
#endif
|
||||
|
||||
#ifdef RAYMATH_IMPLEMENTATION
|
||||
#define RMDEF extern inline // Provide external definition
|
||||
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
|
||||
#define RMDEF __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
|
||||
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
|
||||
#define RLAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
|
||||
#else
|
||||
#define RMDEF extern inline // Provide external definition
|
||||
#endif
|
||||
#elif defined RAYMATH_HEADER_ONLY
|
||||
#define RMDEF static inline // Functions may be inlined, no external out-of-line definition
|
||||
#else
|
||||
|
@ -94,7 +100,7 @@
|
|||
|
||||
// Return float vector for Vector3
|
||||
#ifndef Vector3ToFloat
|
||||
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
|
||||
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
|
||||
#endif
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
|
@ -114,6 +120,14 @@
|
|||
float y;
|
||||
float z;
|
||||
} Vector3;
|
||||
|
||||
// Quaternion type
|
||||
typedef struct Quaternion {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
float w;
|
||||
} Quaternion;
|
||||
|
||||
// Matrix type (OpenGL style 4x4 - right handed, column major)
|
||||
typedef struct Matrix {
|
||||
|
@ -128,14 +142,6 @@
|
|||
typedef struct float3 { float v[3]; } float3;
|
||||
typedef struct float16 { float v[16]; } float16;
|
||||
|
||||
// Quaternion type
|
||||
typedef struct Quaternion {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
float w;
|
||||
} Quaternion;
|
||||
|
||||
#include <math.h> // Required for: sinf(), cosf(), tan(), fabs()
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
|
@ -143,26 +149,32 @@ typedef struct Quaternion {
|
|||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Clamp float value
|
||||
RMDEF float Clamp(float value, float min, float max)
|
||||
RMDEF float Clamp(float value, float min, float max)
|
||||
{
|
||||
const float res = value < min ? min : value;
|
||||
return res > max ? max : res;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMDEF float Lerp(float start, float end, float amount)
|
||||
{
|
||||
return start + amount*(end - start);
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector2 math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector2 Vector2Zero(void)
|
||||
{
|
||||
RMDEF Vector2 Vector2Zero(void)
|
||||
{
|
||||
Vector2 result = { 0.0f, 0.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector2 Vector2One(void)
|
||||
{
|
||||
RMDEF Vector2 Vector2One(void)
|
||||
{
|
||||
Vector2 result = { 1.0f, 1.0f };
|
||||
return result;
|
||||
}
|
||||
|
@ -217,6 +229,13 @@ RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Multiply vector by vector
|
||||
RMDEF Vector2 Vector2MultiplyV(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 result = { v1.x*v2.x, v1.y*v2.y };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Negate vector
|
||||
RMDEF Vector2 Vector2Negate(Vector2 v)
|
||||
{
|
||||
|
@ -231,6 +250,13 @@ RMDEF Vector2 Vector2Divide(Vector2 v, float div)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Divide vector by vector
|
||||
RMDEF Vector2 Vector2DivideV(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 result = { v1.x/v2.x, v1.y/v2.y };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMDEF Vector2 Vector2Normalize(Vector2 v)
|
||||
{
|
||||
|
@ -238,36 +264,47 @@ RMDEF Vector2 Vector2Normalize(Vector2 v)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMDEF Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
|
||||
{
|
||||
Vector2 result = { 0 };
|
||||
|
||||
result.x = v1.x + amount*(v2.x - v1.x);
|
||||
result.y = v1.y + amount*(v2.y - v1.y);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector3 math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector3 Vector3Zero(void)
|
||||
{
|
||||
RMDEF Vector3 Vector3Zero(void)
|
||||
{
|
||||
Vector3 result = { 0.0f, 0.0f, 0.0f };
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector3 Vector3One(void)
|
||||
{
|
||||
RMDEF Vector3 Vector3One(void)
|
||||
{
|
||||
Vector3 result = { 1.0f, 1.0f, 1.0f };
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Add two vectors
|
||||
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Substract two vectors
|
||||
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Multiply vector by scalar
|
||||
|
@ -279,7 +316,7 @@ RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar)
|
|||
|
||||
// Multiply vector by vector
|
||||
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
{
|
||||
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
|
||||
return result;
|
||||
}
|
||||
|
@ -296,17 +333,17 @@ RMDEF Vector3 Vector3Perpendicular(Vector3 v)
|
|||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float min = fabsf(v.x);
|
||||
float min = (float) fabs(v.x);
|
||||
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
|
||||
|
||||
if (fabsf(v.y) < min)
|
||||
if (fabs(v.y) < min)
|
||||
{
|
||||
min = fabsf(v.y);
|
||||
min = (float) fabs(v.y);
|
||||
Vector3 tmp = {0.0f, 1.0f, 0.0f};
|
||||
cardinalAxis = tmp;
|
||||
}
|
||||
|
||||
if (fabsf(v.z) < min)
|
||||
if (fabs(v.z) < min)
|
||||
{
|
||||
Vector3 tmp = {0.0f, 0.0f, 1.0f};
|
||||
cardinalAxis = tmp;
|
||||
|
@ -355,11 +392,25 @@ RMDEF Vector3 Vector3Negate(Vector3 v)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Divide vector by a float value
|
||||
RMDEF Vector3 Vector3Divide(Vector3 v, float div)
|
||||
{
|
||||
Vector3 result = { v.x / div, v.y / div, v.z / div };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Divide vector by vector
|
||||
RMDEF Vector3 Vector3DivideV(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMDEF Vector3 Vector3Normalize(Vector3 v)
|
||||
{
|
||||
Vector3 result = v;
|
||||
|
||||
|
||||
float length, ilength;
|
||||
length = Vector3Length(v);
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
|
@ -394,10 +445,22 @@ RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
|
|||
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
|
||||
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
|
||||
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
|
||||
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
// Transform a vector by quaternion rotation
|
||||
RMDEF Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
|
||||
result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
|
||||
result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
|
||||
{
|
||||
|
@ -432,11 +495,11 @@ RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
|
|||
RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
|
||||
result.x = fminf(v1.x, v2.x);
|
||||
result.y = fminf(v1.y, v2.y);
|
||||
result.z = fminf(v1.z, v2.z);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -444,11 +507,11 @@ RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
|
|||
RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
|
||||
result.x = fmaxf(v1.x, v2.x);
|
||||
result.y = fmaxf(v1.y, v2.y);
|
||||
result.z = fmaxf(v1.z, v2.z);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -457,7 +520,7 @@ RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
|
|||
RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
||||
{
|
||||
//Vector v0 = b - a, v1 = c - a, v2 = p - a;
|
||||
|
||||
|
||||
Vector3 v0 = Vector3Subtract(b, a);
|
||||
Vector3 v1 = Vector3Subtract(c, a);
|
||||
Vector3 v2 = Vector3Subtract(p, a);
|
||||
|
@ -466,15 +529,15 @@ RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
|||
float d11 = Vector3DotProduct(v1, v1);
|
||||
float d20 = Vector3DotProduct(v2, v0);
|
||||
float d21 = Vector3DotProduct(v2, v1);
|
||||
|
||||
|
||||
float denom = d00*d11 - d01*d01;
|
||||
|
||||
|
||||
Vector3 result = { 0 };
|
||||
|
||||
|
||||
result.y = (d11*d20 - d01*d21)/denom;
|
||||
result.z = (d00*d21 - d01*d20)/denom;
|
||||
result.x = 1.0f - (result.z + result.y);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -598,7 +661,7 @@ RMDEF Matrix MatrixInvert(Matrix mat)
|
|||
RMDEF Matrix MatrixNormalize(Matrix mat)
|
||||
{
|
||||
Matrix result = { 0 };
|
||||
|
||||
|
||||
float det = MatrixDeterminant(mat);
|
||||
|
||||
result.m0 = mat.m0/det;
|
||||
|
@ -617,15 +680,15 @@ RMDEF Matrix MatrixNormalize(Matrix mat)
|
|||
result.m13 = mat.m13/det;
|
||||
result.m14 = mat.m14/det;
|
||||
result.m15 = mat.m15/det;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns identity matrix
|
||||
RMDEF Matrix MatrixIdentity(void)
|
||||
{
|
||||
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 1.0f, 0.0f, 0.0f,
|
||||
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 1.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 1.0f, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 1.0f };
|
||||
|
||||
|
@ -685,9 +748,9 @@ RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
|
|||
// Returns translation matrix
|
||||
RMDEF Matrix MatrixTranslate(float x, float y, float z)
|
||||
{
|
||||
Matrix result = { 1.0f, 0.0f, 0.0f, x,
|
||||
0.0f, 1.0f, 0.0f, y,
|
||||
0.0f, 0.0f, 1.0f, z,
|
||||
Matrix result = { 1.0f, 0.0f, 0.0f, x,
|
||||
0.0f, 1.0f, 0.0f, y,
|
||||
0.0f, 0.0f, 1.0f, z,
|
||||
0.0f, 0.0f, 0.0f, 1.0f };
|
||||
|
||||
return result;
|
||||
|
@ -724,12 +787,12 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
|
|||
result.m5 = y*y*t + cosres;
|
||||
result.m6 = z*y*t + x*sinres;
|
||||
result.m7 = 0.0f;
|
||||
|
||||
|
||||
result.m8 = x*z*t + y*sinres;
|
||||
result.m9 = y*z*t - x*sinres;
|
||||
result.m10 = z*z*t + cosres;
|
||||
result.m11 = 0.0f;
|
||||
|
||||
|
||||
result.m12 = 0.0f;
|
||||
result.m13 = 0.0f;
|
||||
result.m14 = 0.0f;
|
||||
|
@ -789,9 +852,9 @@ RMDEF Matrix MatrixRotateZ(float angle)
|
|||
// Returns scaling matrix
|
||||
RMDEF Matrix MatrixScale(float x, float y, float z)
|
||||
{
|
||||
Matrix result = { x, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, y, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, z, 0.0f,
|
||||
Matrix result = { x, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, y, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, z, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 1.0f };
|
||||
|
||||
return result;
|
||||
|
@ -828,28 +891,28 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
|
|||
{
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (right - left);
|
||||
float tb = (top - bottom);
|
||||
float fn = (far - near);
|
||||
float rl = (float)(right - left);
|
||||
float tb = (float)(top - bottom);
|
||||
float fn = (float)(far - near);
|
||||
|
||||
result.m0 = (near*2.0f)/rl;
|
||||
result.m0 = ((float) near*2.0f)/rl;
|
||||
result.m1 = 0.0f;
|
||||
result.m2 = 0.0f;
|
||||
result.m3 = 0.0f;
|
||||
|
||||
result.m4 = 0.0f;
|
||||
result.m5 = (near*2.0f)/tb;
|
||||
result.m5 = ((float) near*2.0f)/tb;
|
||||
result.m6 = 0.0f;
|
||||
result.m7 = 0.0f;
|
||||
|
||||
result.m8 = (right + left)/rl;
|
||||
result.m9 = (top + bottom)/tb;
|
||||
result.m10 = -(far + near)/fn;
|
||||
result.m8 = ((float)right + (float)left)/rl;
|
||||
result.m9 = ((float)top + (float)bottom)/tb;
|
||||
result.m10 = -((float)far + (float)near)/fn;
|
||||
result.m11 = -1.0f;
|
||||
|
||||
result.m12 = 0.0f;
|
||||
result.m13 = 0.0f;
|
||||
result.m14 = -(far*near*2.0f)/fn;
|
||||
result.m14 = -((float)far*(float)near*2.0f)/fn;
|
||||
result.m15 = 0.0f;
|
||||
|
||||
return result;
|
||||
|
@ -859,11 +922,11 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
|
|||
// NOTE: Angle should be provided in radians
|
||||
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
|
||||
{
|
||||
double top = near*tan(fovy*0.5);
|
||||
double top = near*tan(fovy*0.5);
|
||||
double right = top*aspect;
|
||||
Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
|
||||
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns orthographic projection matrix
|
||||
|
@ -871,9 +934,9 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d
|
|||
{
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (right - left);
|
||||
float tb = (top - bottom);
|
||||
float fn = (far - near);
|
||||
float rl = (float)(right - left);
|
||||
float tb = (float)(top - bottom);
|
||||
float fn = (float)(far - near);
|
||||
|
||||
result.m0 = 2.0f/rl;
|
||||
result.m1 = 0.0f;
|
||||
|
@ -887,9 +950,9 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d
|
|||
result.m9 = 0.0f;
|
||||
result.m10 = -2.0f/fn;
|
||||
result.m11 = 0.0f;
|
||||
result.m12 = -(left + right)/rl;
|
||||
result.m13 = -(top + bottom)/tb;
|
||||
result.m14 = -(far + near)/fn;
|
||||
result.m12 = -((float)left + (float)right)/rl;
|
||||
result.m13 = -((float)top + (float)bottom)/tb;
|
||||
result.m14 = -((float)far + (float)near)/fn;
|
||||
result.m15 = 1.0f;
|
||||
|
||||
return result;
|
||||
|
@ -906,7 +969,7 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
|
|||
x = Vector3Normalize(x);
|
||||
Vector3 y = Vector3CrossProduct(z, x);
|
||||
y = Vector3Normalize(y);
|
||||
|
||||
|
||||
result.m0 = x.x;
|
||||
result.m1 = x.y;
|
||||
result.m2 = x.z;
|
||||
|
@ -968,7 +1031,7 @@ RMDEF Quaternion QuaternionIdentity(void)
|
|||
// Computes the length of a quaternion
|
||||
RMDEF float QuaternionLength(Quaternion q)
|
||||
{
|
||||
float result = sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
|
||||
float result = (float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -976,7 +1039,7 @@ RMDEF float QuaternionLength(Quaternion q)
|
|||
RMDEF Quaternion QuaternionNormalize(Quaternion q)
|
||||
{
|
||||
Quaternion result = { 0 };
|
||||
|
||||
|
||||
float length, ilength;
|
||||
length = QuaternionLength(q);
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
|
@ -986,7 +1049,7 @@ RMDEF Quaternion QuaternionNormalize(Quaternion q)
|
|||
result.y = q.y*ilength;
|
||||
result.z = q.z*ilength;
|
||||
result.w = q.w*ilength;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -996,17 +1059,17 @@ RMDEF Quaternion QuaternionInvert(Quaternion q)
|
|||
Quaternion result = q;
|
||||
float length = QuaternionLength(q);
|
||||
float lengthSq = length*length;
|
||||
|
||||
|
||||
if (lengthSq != 0.0)
|
||||
{
|
||||
float i = 1.0f/lengthSq;
|
||||
|
||||
|
||||
result.x *= -i;
|
||||
result.y *= -i;
|
||||
result.z *= -i;
|
||||
result.w *= i;
|
||||
}
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1044,7 +1107,7 @@ RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
|
|||
{
|
||||
Quaternion result = QuaternionLerp(q1, q2, amount);
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1059,8 +1122,8 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
|||
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
|
||||
else
|
||||
{
|
||||
float halfTheta = acos(cosHalfTheta);
|
||||
float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta);
|
||||
float halfTheta = (float) acos(cosHalfTheta);
|
||||
float sinHalfTheta = (float) sqrt(1.0f - cosHalfTheta*cosHalfTheta);
|
||||
|
||||
if (fabs(sinHalfTheta) < 0.001f)
|
||||
{
|
||||
|
@ -1096,13 +1159,13 @@ RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
|||
result.y = cross.y;
|
||||
result.z = cross.y;
|
||||
result.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity()
|
||||
|
||||
|
||||
// Normalize to essentially nlerp the original and identity to 0.5
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
// Above lines are equivalent to:
|
||||
//Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1172,7 +1235,7 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|||
float x2 = x + x;
|
||||
float y2 = y + y;
|
||||
float z2 = z + z;
|
||||
|
||||
|
||||
float length = QuaternionLength(q);
|
||||
float lengthSquared = length*length;
|
||||
|
||||
|
@ -1204,7 +1267,7 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|||
result.m13 = 0.0f;
|
||||
result.m14 = 0.0f;
|
||||
result.m15 = 1.0f;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1219,7 +1282,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
|
|||
angle *= 0.5f;
|
||||
|
||||
axis = Vector3Normalize(axis);
|
||||
|
||||
|
||||
float sinres = sinf(angle);
|
||||
float cosres = cosf(angle);
|
||||
|
||||
|
@ -1277,7 +1340,7 @@ RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
|
|||
q.y = x0*y1*z0 + x1*y0*z1;
|
||||
q.z = x0*y0*z1 - x1*y1*z0;
|
||||
q.w = x0*y0*z0 + x1*y1*z1;
|
||||
|
||||
|
||||
return q;
|
||||
}
|
||||
|
||||
|
@ -1300,9 +1363,9 @@ RMDEF Vector3 QuaternionToEuler(Quaternion q)
|
|||
|
||||
// yaw (z-axis rotation)
|
||||
float z0 = 2.0f*(q.w*q.z + q.x*q.y);
|
||||
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
|
||||
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
|
||||
result.z = atan2f(z0, z1)*RAD2DEG;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1315,7 +1378,7 @@ RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
|
|||
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
|
||||
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
|
||||
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue