Load calibration from device via payload

Signed-off-by: TheJackiMonster <thejackimonster@gmail.com>
This commit is contained in:
TheJackiMonster 2023-04-23 02:10:55 +02:00
parent bacc08e594
commit 678c0196ea
No known key found for this signature in database
GPG key ID: D850A5F772E880F9
3 changed files with 191 additions and 6 deletions

View file

@ -6,6 +6,8 @@ set(CMAKE_C_STANDARD 17)
find_package(PkgConfig REQUIRED)
pkg_search_module(LIBUSB1 REQUIRED libusb-1.0)
find_package(json-c REQUIRED)
add_library(
nrealAirLibrary
src/crc32.c
@ -22,7 +24,7 @@ target_include_directories(nrealAirLibrary
)
target_link_libraries(nrealAirLibrary
${LIBUSB1_LIBRARIES} ${FUSION_LIBRARY} m
${LIBUSB1_LIBRARIES} json-c::json-c ${FUSION_LIBRARY} m
)
set(NRA_INCLUDE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/include PARENT_SCOPE)

View file

@ -115,6 +115,8 @@ struct device3_t {
bool detached;
bool claimed;
uint32_t static_id;
uint64_t last_timestamp;
float temperature; // (in °C)

View file

@ -30,6 +30,7 @@
#include <Fusion/Fusion.h>
#include <libusb-1.0/libusb.h>
#include <json-c/json.h>
#include "crc32.h"
@ -44,6 +45,8 @@ struct device3_calibration_t {
FusionMatrix softIronMatrix;
FusionVector hardIronOffset;
FusionQuaternion noises;
};
static bool send_payload(device3_type* device, uint8_t size, uint8_t* payload) {
@ -67,7 +70,43 @@ static bool send_payload(device3_type* device, uint8_t size, uint8_t* payload) {
);
if ((0 != error) || (transferred != payload_size)) {
perror("ERROR\n");
perror("ERROR: sending payload failed\n");
return false;
}
return (transferred == size);
}
static bool recv_payload(device3_type* device, uint8_t size, uint8_t* payload) {
if (!device->claimed) {
return false;
}
int payload_size = size;
if (payload_size > device->max_packet_size_in) {
payload_size = device->max_packet_size_in;
}
int transferred = 0;
int error = libusb_bulk_transfer(
device->handle,
device->endpoint_address_in,
payload,
device->max_packet_size_in,
&transferred,
0
);
if (transferred >= payload_size) {
transferred = payload_size;
}
if (error == LIBUSB_ERROR_TIMEOUT) {
return false;
}
if ((0 != error) || (transferred != payload_size)) {
perror("ERROR: receiving payload failed\n");
return false;
}
@ -94,7 +133,7 @@ struct __attribute__((__packed__)) device3_payload_packet_t {
typedef struct device3_payload_packet_t device3_payload_packet_type;
static bool send_payload_msg(device3_type* device, uint8_t msgid, uint8_t len, const uint8_t* data) {
device3_payload_packet_type packet;
static device3_payload_packet_type packet;
const uint16_t packet_len = 3 + len;
const uint16_t payload_len = 5 + packet_len;
@ -113,6 +152,55 @@ static bool send_payload_msg_signal(device3_type* device, uint8_t msgid, uint8_t
return send_payload_msg(device, msgid, 1, &signal);
}
static bool recv_payload_msg(device3_type* device, uint8_t msgid, uint8_t len, uint8_t* data) {
static device3_payload_packet_type packet;
packet.head = 0;
packet.length = 0;
packet.msgid = 0;
const uint16_t packet_len = 3 + len;
const uint16_t payload_len = 5 + packet_len;
if (!recv_payload(device, payload_len, (uint8_t*) (&packet))) {
return false;
}
if (packet.msgid != msgid) {
return false;
}
memcpy(data, packet.data, len);
return true;
}
static FusionVector json_object_get_vector(struct json_object* obj) {
if ((!json_object_is_type(obj, json_type_array)) ||
(json_object_array_length(obj) != 3)) {
return FUSION_VECTOR_ZERO;
}
FusionVector vector;
vector.axis.x = (float) json_object_get_double(json_object_array_get_idx(obj, 0));
vector.axis.y = (float) json_object_get_double(json_object_array_get_idx(obj, 1));
vector.axis.z = (float) json_object_get_double(json_object_array_get_idx(obj, 2));
return vector;
}
static FusionQuaternion json_object_get_quaternion(struct json_object* obj) {
if ((!json_object_is_type(obj, json_type_array)) ||
(json_object_array_length(obj) != 3)) {
return FUSION_IDENTITY_QUATERNION;
}
FusionQuaternion quaternion;
quaternion.element.x = (float) json_object_get_double(json_object_array_get_idx(obj, 0));
quaternion.element.y = (float) json_object_get_double(json_object_array_get_idx(obj, 1));
quaternion.element.z = (float) json_object_get_double(json_object_array_get_idx(obj, 2));
quaternion.element.w = (float) json_object_get_double(json_object_array_get_idx(obj, 3));
return quaternion;
}
device3_type* device3_open(device3_event_callback callback) {
device3_type* device = (device3_type*) malloc(sizeof(device3_type));
@ -209,6 +297,83 @@ device3_type* device3_open(device3_event_callback callback) {
device->claimed = true;
}
if (!send_payload_msg(device, DEVICE3_MSG_GET_STATIC_ID, 0, NULL)) {
return device;
}
uint32_t static_id = 0;
if (recv_payload_msg(device, DEVICE3_MSG_GET_STATIC_ID, 4, (uint8_t*) &static_id)) {
device->static_id = static_id;
} else {
device->static_id = 0x20220101;
}
device->calibration = malloc(sizeof(device3_calibration_type));
device3_reset_calibration(device);
if (!send_payload_msg(device, DEVICE3_MSG_GET_CAL_DATA_LENGTH, 0, NULL)) {
return device;
}
uint32_t calibration_len = 0;
if (recv_payload_msg(device, DEVICE3_MSG_GET_CAL_DATA_LENGTH, 4, (uint8_t*) &calibration_len)) {
char* calibration_data = malloc(calibration_len);
uint32_t position = 0;
while (position < calibration_len) {
const uint32_t remaining = (calibration_len - position);
if (!send_payload_msg(device, DEVICE3_MSG_CAL_DATA_GET_NEXT_SEGMENT, 0, NULL)) {
break;
}
const uint8_t next = (remaining > 56? 56 : remaining);
if (!recv_payload_msg(device, DEVICE3_MSG_CAL_DATA_GET_NEXT_SEGMENT, next, (uint8_t*) calibration_data + position)) {
break;
}
position += next;
}
struct json_tokener* tokener = json_tokener_new();
struct json_object* root = json_tokener_parse_ex(tokener, calibration_data, calibration_len);
struct json_object* imu = json_object_object_get(root, "IMU");
struct json_object* dev1 = json_object_object_get(imu, "device_1");
FusionVector accel_bias = json_object_get_vector(json_object_object_get(dev1, "accel_bias"));
FusionQuaternion accel_q_gyro = json_object_get_quaternion(json_object_object_get(dev1, "accel_q_gyro"));
FusionVector gyro_bias = json_object_get_vector(json_object_object_get(dev1, "gyro_bias"));
FusionVector gyro_p_mag = json_object_get_vector(json_object_object_get(dev1, "gyro_p_mag"));
FusionQuaternion gyro_q_mag = json_object_get_quaternion(json_object_object_get(dev1, "gyro_q_mag"));
FusionQuaternion imu_noises = json_object_get_quaternion(json_object_object_get(dev1, "imu_noises"));
FusionVector mag_bias = json_object_get_vector(json_object_object_get(dev1, "mag_bias"));
FusionVector scale_accel = json_object_get_vector(json_object_object_get(dev1, "scale_accel"));
FusionVector scale_gyro = json_object_get_vector(json_object_object_get(dev1, "scale_gyro"));
//FusionVector scale_mag = json_object_get_vector(json_object_object_get(dev1, "scale_mag"));
FusionMatrix gyro_misalignment = FusionQuaternionToMatrix(accel_q_gyro);
FusionQuaternion accel_q_mag = FusionQuaternionMultiply(accel_q_gyro, gyro_q_mag);
device->calibration->gyroscopeMisalignment = gyro_misalignment;
device->calibration->gyroscopeSensitivity = scale_gyro;
device->calibration->gyroscopeOffset = gyro_bias;
device->calibration->accelerometerSensitivity = scale_accel;
device->calibration->accelerometerOffset = accel_bias;
FusionMatrix mag_misalignment = FusionQuaternionToMatrix(accel_q_mag);
mag_bias = FusionMatrixMultiplyVector(mag_misalignment, mag_bias);
device->calibration->softIronMatrix = mag_misalignment;
device->calibration->hardIronOffset = FusionVectorAdd(gyro_p_mag, mag_bias);
device->calibration->noises = imu_noises;
json_tokener_free(tokener);
free(calibration_data);
}
if (!send_payload_msg_signal(device, DEVICE3_MSG_START_IMU_DATA, 0x1)) {
return device;
}
@ -221,9 +386,6 @@ device3_type* device3_open(device3_event_callback callback) {
FusionOffsetInitialise((FusionOffset*) device->offset, SAMPLE_RATE);
FusionAhrsInitialise((FusionAhrs*) device->ahrs);
device->calibration = malloc(sizeof(device3_calibration_type));
device3_reset_calibration(device);
const FusionAhrsSettings settings = {
.convention = FusionConventionNwu,
.gain = 0.5f,
@ -259,6 +421,9 @@ void device3_reset_calibration(device3_type* device) {
device->calibration->softIronMatrix = FUSION_IDENTITY_MATRIX;
device->calibration->hardIronOffset = FUSION_VECTOR_ZERO;
device->calibration->noises = FUSION_IDENTITY_QUATERNION;
device->calibration->noises.element.w = 0.0f;
}
int device3_load_calibration(device3_type* device, const char* path) {
@ -653,8 +818,24 @@ int device3_read(device3_type* device, int timeout) {
gyroscope = FusionOffsetUpdate((FusionOffset*) device->offset, gyroscope);
FusionQuaternion prev = FusionAhrsGetQuaternion((FusionAhrs*) device->ahrs);
FusionAhrsUpdate((FusionAhrs*) device->ahrs, gyroscope, accelerometer, magnetometer, deltaTime);
FusionAhrsFlags flags = FusionAhrsGetFlags((FusionAhrs*) device->ahrs);
if ((device->calibration) &&
(!flags.initialising) &&
(!flags.accelerationRejectionTimeout) &&
(!flags.magneticRejectionTimeout)) {
const float* noises = device->calibration->noises.array;
FusionQuaternion* q = &((FusionAhrs*) device->ahrs)->quaternion;
q->array[0] = noises[0] * prev.array[0] + (1.0f - noises[0]) * q->array[0];
q->array[1] = noises[1] * prev.array[1] + (1.0f - noises[1]) * q->array[1];
q->array[2] = noises[2] * prev.array[2] + (1.0f - noises[2]) * q->array[2];
q->array[3] = noises[3] * prev.array[3] + (1.0f - noises[3]) * q->array[3];
}
device3_callback(device, timestamp, DEVICE3_EVENT_UPDATE);
return 0;
}